
Towards Optimizing Cloud Computing: An

Example of Optimization under Uncertainty

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu

Abstract

One of the most efficient way to store and process data is cloud comput-
ing, when we store the data so as to minimize the expenses and increase
the efficiency. In this paper, we provide an analytical solution to the
corresponding optimization problem.

1 Cloud Computing: Why We Need It and How
Can We Make It Most Efficient

Why cloud computing. In many application areas (bioinformatics, geo-
sciences, etc.) we need to process large amounts of data, which requires fast
computers and fast communication. Historically, there have been limits on the
amount of the information that can be transmitted at a high speed, and these
limits affected information processing.

A few decades ago, we could only send the results of data processing fast. As
a result, the best strategy to speed up computations was to move all the data
into a central location, close to the high performance computers for processing
this data.

In the last decades, it became equally fast to move big portions of databases
needed to answer a certain query. This enabled the users to switch to a cyberin-
frastructure paradigm, when there is no longer need for time-consuming moving
of data to a central location: the data is stored where it was generated, and
when needed, the corresponding data is moved to processing computers; see,
e.g., [4, 6, 12, 14, 15] and references therein.

Nowadays, moving the whole databases becomes almost as fast, so there is
no longer need to store the data where it was produced – it is possible to store
the data where it will be best for future data processing. This idea underlies
the paradigm of cloud computing.

1



What is the most efficient way of cloud computing. The main advan-
tage of cloud computing is that we can make computations more efficient by
finding optimal placement of the servers that store and/or process the corre-
sponding data. So, in developing cloud computing schemes, it is important
to be able to solve the corresponding optimization problems. In this chapter,
we concentrate on the problem of optimal server server placement and on the
related optimization problems.

Comments.

• The server placement problem is very similar to the type of problems faced
by Akamai and other companies that do web acceleration via caching; we
therefore hope that our solution can be of help in web acceleration as well.

• Some of the results presented in this chapter first appeared in [10].

2 Formulation of the Optimal Server Placement
Problem: First Approximation

What we want and what we need. We usually know the geographic den-
sity ρu(x) describing possible users of this particular database (e.g., a database
containing geophysical data), and we know the number of duplicates D that we
can afford to store. We need to determine the storage density ρs(x), i.e., number
of copies per geographic region, so as to minimize the average communication
delay.

First approximation model: main assumption. In the first approxima-
tion, we can measure the travel delay by the average travel distance.

Derivation of the corresponding model. How can we describe this dis-
tance in terms of the density ρs(x)? When the density is constant, we want
to place the servers in such a way that the largest distance r to a sensor is as
small as possible. (Alternatively, if r is fixed, we want to minimize the number
of servers for which every point is at a distance ≤ r from one of the servers. In
geometric terms, this means that every point on a plane belongs to a circle of
radius r centered on one the sensors – and thus, the whole plane is covered by
such circles. Out of all such coverings, we want to find the covering with the
smallest possible number of sensors.

It is known that the smallest such number is provided by an equilateral
triangle grid, i.e., a grid formed by equilateral triangles; see, e.g., [8, 9].

Let us assume that we have already selected the server density function
ρs(x). Within a small region of area A, we have A · ρs(x) servers. Thus, if we,
e.g., place these servers on a grid with distance h between the two neighboring
ones in each direction, we have:

2



-� h

r r r r

r r r r
r r r

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

A
A
A
A
A
A
A
A
A
A

A
A
A
AUA
A
A
AK
h

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A

For this placement, the set of all the points which are closest to a given
detector forms a hexagonal area:

-� h

r r r r

r r r r
r r r

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

A
A
A
A
A
A
A
A
A
A

A
A
A
AUA
A
A
AK
h

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A

����

����

HH
HH

HH
HH

This hexagonal area consists of 6 equilateral triangles with height h/2:

-� h

r r r r

r r r r
r r r

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

A
A
A
A
A
A
A
A
A
A

A
A
A
AUA
A
A
AK
h

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A

����

����

HH
HH

HH
HH

Z
ZZ

�
��

Z
ZZ

�
��

In each triangle, the height h/2 is related to the size s by the formula

h

2
= s · cos(60◦) = s ·

√
3

2
,

3



hence

s =
h√
3
= h ·

√
3

3
.

Thus, the area At of each triangle is equal to

At =
1

2
· s · h

2
=

1

2
·
√
3

3
· 1
2
· h2 =

√
3

12
· h2.

So, the area As of the whole set is equal to 6 times the triangle area:

As = 6 ·At =

√
3

2
· h2.

Each point from the region is the closest to one of the points from the server
grid, so the region of area A is thus divided into A · ρs(x) (practically) disjoint

sets of area

√
3

2
· h2. So, the area of the region is equal to the sum of the areas

of these sets:

A = (A · ρs(x)) ·
√
3

2
· h2.

Dividing both sides of this equality by A, we conclude that

1 = ρs(x) ·
√
3

2
· h2,

and hence, that

h =
c0√
ρs(x)

,

where we denote

c0
def
=

√
2√
3
.

The largest distance r to a server is thus equal to

h

2
=

c0

2 ·
√
ρs(x)

.

The average distance ρ is proportional to r – since when we re-scale the pic-
ture, all the distances –including the average distance – increase proportionally.
Since the distance r is proportional to (ρs(x))

−1/2, the average distance near the
location x is thus also proportional to this same value: ρ(x) = const·(ρs(x))−1/2

for some constant.
At each location x, we have ∼ ρu(x) users. Thus, the total average distance

– the value that we would like to minimize – is equal to
∫
ρ(x) · ρu(x) dx and is,

thus, proportional to ∫
(ρs(x))

−1/2 · ρu(x) dx.

So, minimizing the average distance is equivalent to minimizing the value of the
above integral.

We want to find the server placement ρs(x) that minimizes this integral under
the constraint that the total number of server is D, i.e., that

∫
ρs(x) = D.

4



Resulting constraint optimization problem. Thus, we arrive at the fol-
lowing optimization problem:

• We know the density ρu(x) and an integer D;

• under all possible functions ρs(x) for which
∫
ρs(x) dx = D, we must find

a function that minimizes the integral
∫
(ρs(x))

−1/2 · ρu(x) dx.

3 Towards Optimal Server Placement in Cloud
Computing: First Approximation

Solving the constraint optimization problem. A standard way to solve
a constraint optimization problem of optimizing a function f(X) under the
constraint g(X) = 0 is to use the Lagrange multiplier method, i.e., to apply
unconstrained optimization to an auxiliary function f(X)+λ · g(X), where the
parameter λ (called Lagrange multiplier) is selected in such a way so as to satisfy
the constraint g(X) = 0.

With respect to our constraint optimization problem, this means that we
need to select a density ρs(x) that optimizes the following auxiliary expression:∫

(ρs(x))
−1/2 · ρu(x) dx+ λ ·

(∫
ρs(x) dx−D

)
.

Having an unknown function ρs(x) means, in effect, that we have infinitely
many unknown values ρ(x) corresponding to different locations x. Optimum
is attained when the derivative with respect to each variable is equal to 0.
Differentiating the above expression with respect to each variable ρs(x), and
equating the result to 0, we get the equation

−1

2
· (ρs(x))−3/2 · ρu(x) + λ = 0,

hence ρs(x) = c · (ρu(x))2/3 for some constant c.
The constant c can be determined from the constraint

∫
ρs(x) dx = D, i.e.,

that ∫
c · (ρu(x))2/3 dx = c ·

∫
(ρu(x))

2/3 dx = D.

Thus,

c =
D∫

(ρu(x))2/3 dx
,

and we arrive at the following solution.

Solution to the problem. Once we know the user density ρu(x) and the
total number of servers D that we can afford, the optimal server density ρs(x)
is equal to

ρs(x) = D · (ρu(x))
2/3∫

(ρu(y))2/3 dy
.

5



Discussion. In line with common sense, the optimal server density increases
when the user density increases, i.e.:

• in locations where there are more users, we place more servers, and

• in locations where there are fewer users, we place fewer servers.

However, when the user density decreases, the server density decreases slower –
because otherwise, if we took the server density simply proportional to the user
density, the delays in areas with few users would have been huge.

Comment. From the mathematical viewpoint, this analysis is similar to the
analysis of a security-related optimization problem, in which, instead of placing
servers, we need to place sensors; see [9].

4 Server Placement in Cloud Computing: To-
wards A More Realistic Model

First idea. In the above first approximation, we only took into account the
time that it takes to move the data to the user. This would be all if the database
was not changing. In real life, databases need to be periodically updated. Up-
dating also takes time. Thus, when we find the optimal placement of servers,
we need to take into account not only expenses on moving the data to the users,
but also the expenses of updating the information.

Towards a precise formulation of this idea. How do we estimate these
expenses? In a small area, where the user distribution is approximately uniform,
the servers are also uniformly distributed, i.e., they form a grid with distance
h = 2r between the two neighboring servers [8, 9]. Within a unit area, there
are ∼ 1/r2 servers, and reaching each of them from one of its neighbors requires
time proportional to the distance ∼ r. The overall effort of updating all the
servers can be obtained by multiplying the number of servers by an effort needed
to update each server, and is thus proportional to 1/r2 · r ∼ 1/r. We already
know that r ∼ (ρs(x))

−1/2, thus, the cost of updating all the servers in the
vicinity of a location x is proportional to (ρs(x))

1/2. The overall update cost
can thus be obtained by integrating this value over the whole area. Thus, we
arrive at the following problem.

Resulting optimization problem:

• We know the density ρu(x), an integer D, and a constant C that is deter-
mined by the relative frequency of updates in comparison with frequency
of normal use of the database;

6



• under all possible functions ρs(x) for which
∫
ρs(x) dx = D, we must find

a function that minimizes the expression∫
(ρs(x))

−1/2 · ρu(x) dx+

∫
C · (ρs(x))1/2 dx.

Solving the problem. To solve the new optimization problem, we can simi-
larly form the Lagrange multiplier expression∫

(ρs(x))
−1/2 · ρu(x) dx+

∫
C · (ρs(x))1/2 dx+ λ ·

(∫
ρs(x) dx−D

)
,

differentiate it with respect to each unknown ρs(x), and equate the resulting
derivative to 0. As a result, we get an equation

−1

2
· (ρs(x))−3/2 · ρu(x) +

1

2
· C · (ρs(x))−1/2 + λ = 0.

This is a cubic equation in terms of (ρs(x))
−1/2, so while it is easy to solve

numerically, there is no simple analytical expression as in the first approximation
case.

The resulting solution ρs(x) depends on the choice of the Lagrange multiplier
λ, i.e., in effect, we have ρs(x) = ρs(x, λ). The value λ can be determined from
the condition that

∫
ρs(x, λ) dx = D.

Second idea. The second idea is that usually, a service provides a time guar-
antee, so we should require that no matter where a user is located, the time for
this user to get the desired information from the database should not exceed a
certain value. In our model, this means that a distance r from the user to the
nearest server should not exceed a certain given value r0. Since r ∼ (ρs(x))

−1/2,
this means, in turn, that the server density should not decrease below a certain
threshold ρ0.

This is an additional constraint that we impose on ρs(x). In the first ap-
proximation model, it means that instead of the formula ρs(x) = c · (ρu(x))2/3
– which could potentially lead to server densities below ρ0 – we should have
ρs(x) = max(c · (ρu(x))2/3, ρ0).

The parameter c can be determined from the constraint∫
ρs(x) dx =

∫
max(c · (ρu(x))2/3, ρ0) dx = D.

Since the integral is an increasing function of c, we can easily find the solution
c of this equation by bisection (see, e.g., [3]).

Combining both ideas. If we take both ideas into account, then we need to
consider only those roots of the above cubic equation which are larger than or
equal to ρ0; if all the roots are < ρ0, we take ρs(x) = ρ.

The resulting solution ρs(x) depends on the choice of the Lagrange multiplier
λ, i.e., in effect, we have ρs(x) = ρs(x, λ). The corresponding value λ can also
be similarly determined from the equation

∫
ρs(x, λ) dx = D.

7



5 Predicting Cloud Growth: Formulation of the
Problem and Our Approach to Solving This
Problem

Why it is important to predict the cloud growth. In the previous sec-
tions, when selecting the optimal placement of servers, we assumed that we
know the distribution of (and demands of) the users. In principle, the informa-
tion about the users’ locations and demands can be determined by recording the
users’ requests to the cloud. However, cloud computing is a growing enterprize,
so when we plan to select the server’s location, we need to take into account not
only the current users’ locations and demands, but also their future demands
and locations. In other words, we need to be able to predict the growth of the
cloud – both of the cloud in general, and of each specific group of users.

How we can predict the cloud growth. To predict the cloud growth, we
can use the observed cloud size s(t) at different past moments of time t. Based

on these observed values, we need to predict how the rate
ds

dt
with which the size

changes depends on the actual size, i.e., to come up with a dependence
ds

dt
= f(s)

for an appropriate function f(s), and then use the resulting differential equation
to predict the cloud size at future moments of time.

Why this prediction is difficult: the problem of uncertainty. The
use of differential equations to predict the future behavior of a system is a
usual thing in physics: this is how Newton’s equations work, this is how many
other physical equations work. However, in physics, we usually have a good
understanding of the underlying processes, an understanding that allows us to
write down reasonable differential equations – so that often all that remains to
be done is to find the parameters of these equations based on the observations.
In contrast, we do not have a good understanding of factors leading to the cloud
growth. Because of this uncertainty, we do not have a good understanding of
which functions should be used to predict the cloud growth.

Main idea of our solution: uncertainty itself can help. The proposed
solution to this problem is based on the very uncertainty that is the source of
the problem.

Specifically, we take into account that the numerical value of each quantity –
in particular, the cloud size – depends on the selection of the measuring unit. If,
to measure the cloud size, we select a unit which is λ times smaller, then instead
of the original numerical value s we get a new numerical value s′ = λ · s. The
choice of a measuring unit is rather arbitrary. We do not have any information
that would enable us to select one measuring unit and not the other one. Thus,
it makes sense to require that the dependence f(s) look the same no matter
what measuring unit we choose.

8



6 Predicting Cloud Growth: First Approxima-
tion

How to formalize this idea: first approximation. How can we formal-
ize the above requirement? The fact that the dependence has the same form
irrespective of the measuring unit means that when we use the new units, the
growth rate takes the form f(s′) = f(λ · s). Thus, in the new units, we get

a differential equation
ds′

dt
= f(s′). Substituting s′ = λ · s into both sides of

this equation, we get λ · ds
dt

= f(λ · s). We know that
ds

dt
= f(s), so we get

f(λ · s) = λ · f(s).

Solution to the corresponding problem. From the above equation, for
s = 1, we conclude that f(λ) = λ · const, i.e., that f(s) = c · s for some constant
c.

As a result, we get a differential equation
ds

dt
= f(s) = c · s. If we move all

the terms containing the unknown function s to one side of this equation and all

the other terms to the other side, we conclude that
ds

s
= c ·dt. Integrating both

sides of this equation, we get ln(s) = c · t+A for some integration constant A.
Exponentiating both sides, we get a formula s(t) = a·exp(c·t) (with a = exp(A))
that describes exponential growth.

Limitations of the first approximation model. Exponential growth is a
good description for a certain growth stage, but in practice, the exponential
function grows too fast to be a realistic description on all the growth stages. It
is therefore necessary to select more accurate models.

7 Predicting Cloud Growth: Second Approxi-
mation

Second approximation: main idea. While it makes sense to assume that
the equations remain the same if we change the measuring unit for cloud size,
this does not mean that other related units do not have to change accordingly
if we change the cloud size unit. In particular, it is possible that if we change
a unit for measuring the cloud size, then to get the same differential equation,
we need to select a different unit of time, a unit in which the numerical value of
time takes the new form t′ = µ · t for some value µ which, in general, depends

on λ. Thus, in the new units, we have a differential equation
ds′

dt′
= f(s′).

Substituting s′ = λ · s and t′ = µ(λ) · t into both sides of this equation, we get
λ

µ(λ)
· ds
dt

= f(λ · s). We know that
ds

dt
= f(s), so we get f(λ · s) = g(λ) · f(s),

9



where we denoted g(λ)
def
=

λ

µ(λ)
.

Solving the corresponding problem. If we first apply the transformation
with λ2 and then with λ1, we get

f(λ1 · λ2 · s) = g(λ1) · f(λ2 · s) = g(λ1) · g(λ2) · f(s).

On the other hand, if we apply the above formula directly to λ = λ1 ·λ2, we get

f(λ1 · λ2 · s) = g(λ1 · λ2) · f(s).

By comparing these two formulas, we conclude that g(λ1 · λ2) = g(λ1) · g(λ2).
It is well known that every continuous solution to this functional equation has
the form g(λ) = λr for some real number r; see, e.g., [1]. Thus, the equation
f(λ · s) = g(λ) · f(s) takes the form f(λ · s) = λr · f(s)

From this equation, for s = 1, we conclude that f(λ) = λr · const, i.e., that
f(s) = c · sr for some constants c and r. As a result, we get a differential

equation
ds

dt
= f(s) = c · sr. If we move all the terms containing the unknown

function s to one side of this equation and all the other terms to the other side,
we conclude that

ds

sr
= c · dt.

We have already considered the case r = 1. For r ̸= 1, integrating both sides of
this equation, we conclude that s1−r = c · t+A for some integration constant A.
Thus, we get s = C · (t+ t0)

b for some constants C and b (with b = 1/(r − 1)).
In particular, if we start the time with the moment when there was no cloud,
when we hade s(t) = 0, then this formula takes the simpler form s(t) = C · tb.

This growth model is known as the power function model; see, e.g., [7, 13, 16].

Discussion. The power function model is a better description of growth than
the exponential model – for example, because it contains an additional parame-
ter that enables us to get a better fit with the observed values s(t). However, as
mentioned in [13, 16], this model is relatively rarely used to describe the growth
rate, since it is viewed as a empirical model, a model that lacks theoretical foun-
dations – and is, therefore, less reliable: we tend to more trust models which are
not only empirically valid but also follow from some reasonable assumptions.

In the above text, we have just provided a theoretical foundation for the
power function model – namely, we have shown that this model naturally fol-
lows from the reasonable assumption of unit-independence. We therefore hope
that with such a theoretical explanation, the empirically successful power func-
tion model will be perceived as more reliable – and thus, it will be used more
frequently.

10



Limitations of the power function model. While the power function
model provides a reasonable description for the actual growth rate – usually
a much more accurate description than the exponential model – this description
is still not perfect. For example, in this model, the growth continues indefi-
nitely, while in real life, the growth often slows down and starts asymptotically
reaching a certain threshold level.

8 Predicting Cloud Growth: Third Approxima-
tion

Third approximation: main idea. To achieve a more description of the
actual growth, we need to have growth models with larger number of parameters
that can be adjusted to observations. A reasonable idea is to consider, instead
of a single growth function f(s), a linear space of such functions, i.e., to consider
functions of the type f(s) = c1 · f1(s) + c2 · f2(s) + . . .+ cn · fn(s), where f1(s),
. . . , fn(s) are given functions and c1, . . . , cn are parameters that can be adjusted
based on the observations.

Which functions fi(s) should be choose? Our idea is the same as before: let
us use the functions fi(s) for which the change in the measuring unit does not
change the class of the corresponding functions. In other words, if we have a
function f(s) from the original class, then, for every λ, the function f(λ · s) also
belongs to the same class. Since the functions f(s) are linear combinations of
the basic functions fi(s), it is sufficient to require that this property be satisfied
for the functions fi(s), i.e., that we have

fi(λ · s) = ci1(λ) · f1(s) + . . .+ cin(λ) · fn(s)

for appropriate values cij(λ) depending on λ.

Solving the corresponding problem. It is reasonable to require that the
functions fi(s) be smooth (differentiable). In this case, for each i, if we select
n different values s1, . . . , sn, then for n unknowns ci1(λ), . . . , cin(λ), we get a
system of n linear equations

fi(λ · s1) = ci1(λ) · f1(s1) + . . .+ cin(λ) · fn(s1);

. . .

fi(λ · sn) = ci1(λ) · f1(sn) + . . .+ cin(λ) · fn(sn).

By using the Cramer’s rule, we can describe the solutions cij(λ) of this system
of equations as a differentiable function in terms of fi(λ · sj) and fi(sj). Since
the functions fi are differentiable, we conclude that the functions cij(λ) are
differentiable as well. Differentiating both sides of the equation

fi(λ · s) = ci1(λ) · f1(s) + . . .+ cin(λ) · fn(s)

11



with respect to λ, we get

s · f ′
i(λ · s) = c′i1(λ) · f1(s) + . . .+ c′in(λ) · fn(s),

where g′ denotes the derivative of the function g. In particular, for λ = 1, we
get

s · dfi
ds

= c′i1 · f1(s) + . . .+ c′in · fn(s),

where we denoted cij
def
= c′ij(1). This system of differential equations can be

further simplified if we take into account that
ds

s
= dS, where S

def
= ln(s). Thus,

if we take a new variable S = ln(s) for which s = exp(S) and new unknowns

Fi(S)
def
= fi(exp(S)), the above equations take a simplified form

dFi

dS
= c′i1 · F1(S) + . . .+ c′in · Fn(S).

This is a system of linear differential equations with constant coefficients. A
general solution of such a system is well known: it is a linear combination of
functions of the type exp(a · S), Sk · exp(a · S), exp(a · S) · cos(b · S + φ), and
Sk · exp(a · S) · cos(b · S + φ).

To represent these expressions in terms of s, we need to substitute S = ln(s)
into the above formulas. Here,

exp(a · S) = exp(a · ln(s)) = (exp(ln(s))a = sa.

Thus, we conclude that the basic functions fi(s) have the form sa, sa · (ln(s))k,
sa · cos(b · ln(s) + φ), and sa · cos(b · ln(s) + φ) · (ln(s))k.

Discussion. Models corresponding to fi(s) = sai have indeed been used to
describe the growth; see, e.g., [13, 16]. In particular, if we require that the
functions fi(s) be not only differentiable, but also analytical, we then conclude
that the only remaining functions are monomials fi(s) = si. In particular, if we
restrict ourselves to monomials of second order, we thus get growth functions
f(s) = c0 + c1 · s + c2 · s2. Such a growth model is known as the Bass model
[2, 13, 16]. This model describes both the almost-exponential initial growth
stage and the following saturation stage.

Oscillatory terms sa · cos(b · ln(s) + φ), and sa · cos(b · ln(s) + φ) · (ln(s))k
can be then used to describe the fact that in practice, growth is not always
persistent, periods of faster growth can be followed by periods of slower growth
and vice versa.

Comments. In the above description, we assumed that at each moment of time
t, the state of the cloud can be described by a single parameter – its size s(t). In
practice, we may need several related parameters s(1)(t), . . . , s(k)(t), to describe
the size of the cloud: the number of nodes, the number of users, the amount of

12



data processing, etc. Similar models can be used to describe the growth of two
or more dependent growth parameters

ds(i)(t)

dt
= f (i)(s(1)(t), . . . , s(k)(t)).

For example, in the analytical case, the rate of change of each of these parame-
ters is a quadratic function of the current values of these parameters:

ds(i)(t)

dt
= a(i) +

k∑
j=1

a
(i)
j · s(j)(t) +

k∑
j=1

k∑
ℓ=1

a
(i)
jℓ · s(j)(t) · s(ℓ)(t).

For k = 2, such a model was proposed by Givon et al. [5, 16].
Similar models can be used to describe expenses related to cloud computing;

see Appendix.

Acknowledgments

This work was supported in part by the National Center for Border Security
and Immigration, by the National Science Foundation grants HRD-0734825 and
DUE-0926721, and by Grant 1 T36 GM078000-01 from the National Institutes
of Health.

References

[1] J. Aczel, Lectures on Functional Differential Equations and their Applica-
tions, Dover, New York, 2006.

[2] F. M. Bass, “A new product growth for model consumer durables”, Man-
agement Science, 2004, Vol. 50, Suppl. 12, pp. 1825–1832.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[4] A. Gates, V. Kreinovich, L. Longpré, P. Pinheiro da Silva, and G. R. Keller,
“Towards secure cyberinfrastructure for sharing border information”, In:
Proceedings of the Lineae Terrarum: International Border Conference, El
Paso, Las Cruces, and Cd. Juarez, March 27–30, 2006.

[5] M. Givon, V. Mahajan, and E. Muller, “Software piracy: estimation of lost
sales and the impact of software diffusion”, Journal of Marketing, 1995,
Vol. 59, No. 1, pp. 29–37.

[6] G. R. Keller, T. G. Hildenbrand, R. Kucks, M. Webring, A. Briesacher,
K. Rujawitz, A. M. Hittleman, D. J. Roman, D. Winester, R. Aldouri,
J. Seeley, J. Rasillo, T. Torres, W. J. Hinze, A. Gates, V. Kreinovich, and
L. Salayandia, “A community effort to construct a gravity database for

13



the United States and an associated Web portal”, In: A. K. Sinha (ed),
Geoinformatics: Data to Knowledge, Geological Society of America Publ.,
Boulder, Colorado, 2006, pp. 21–34.

[7] G. Kenny, “Estimating defects in commerical software during operational
use”, IEEE Transactions on Reliability, 1993, Vol. 42, No. 1.

[8] R. Kershner, “The number of circles covering a set”, American Journal of
Mathematics, 1939, Vol. 61, No. 3, pp. 665–671.

[9] C. Kiekintveld and O. Lerma, “Towards optimal placement of bio-weapon
detectors”, Proceedings of the 30th Annual Conference of the North Amer-
ican Fuzzy Information Processing Society NAFIPS’2011, El Paso, Texas,
March 18–20, 2011.

[10] O. Lerma, E. Gutierrez, C. Kiekintveld, and V. Kreinovich, “Towards Op-
timal Knowledge Processing: From Centralization Through Cyberinsfras-
tructure to Cloud Computing”, International Journal of Innovative Man-
agement, Information & Production (IJIMIP), 2011, Vol. 2, No. 2, pp. 67–
72.

[11] H. Li and D. Scheibli, “On cost modeling for hosetd enterprise applica-
tions”, In: D. R. Avresky (ed.), Cloudcomp 2009, Lecture Notes of the In-
stitute of Computer Sciences, Social-Informatics, and Telecommunications
Engineering, Springer Verlag, 2010, Vol. 34, pp. 261–269.

[12] L. Longpré and V. Kreinovich, “How to Efficiently Process Uncertainty
within a Cyberinfrastructure without Sacrificing Privacy and Confidential-
ity”, In: N. Nedjah, A. Abraham, and L. de Macedo Mourelle (Eds.), Com-
putational Intelligence in Information Assurance and Security, Springer-
Verlag, 2007, pp. 155–173.

[13] H. Pham, Handbook of Engineering Statistics, Springer Verlag, London,
2006.

[14] P. Pinheiro da Silva, A, Velasco, M. Ceberio, C. Servin, M. G. Averill,
N. Del Rio, L. Longpré, and V. Kreinovich, “Propagation and Provenance
of Probabilistic and Interval Uncertainty in Cyberinfrastructure-Related
Data Processing and Data Fusion”, In: R. L. Muhanna and R. L. Mullen
(eds.), Proceedings of the International Workshop on Reliable Engineering
Computing REC’08, Savannah, Georgia, February 20–22, 2008, pp. 199–
234.

[15] A. K. Sinha (ed), Geoinformatics: Data to Knowledge, Geological Society
of America Publ., Boulder, Colorado, 2006.

[16] G. Zhao, J. Liu, Y. Tang, W. Sun, F. Zhang, X. Ye, and N. Tang, “Cloud
computing: a statistics aspect of users”, In: M. G. Jattun, G. Zhao, and
C. Rong (eds.), CloudCom’2009, Springer Lecture Notes in Computer Sci-
ence, 2009, Vol. 5931, pp. 347–358.

14



A ADescribing Expenses Related to Cloud Com-
puting

Analysis of the problem. The paper [11] analyzes how the price per core
Ccore depends on the per-core throughput Tcore and on the number of cores
Ncore.

Some expenses are needed simply to maintain the system, when no compu-
tations are performed and Tcore = 0. In other words, in general, Ccore(0) ̸= 0.

It is therefore desirable to describe the additional expenses ∆Ccore(Tcore)
def
=

Ccore(Tcore) − Ccore(0) caused by computations as a function of these com-
putations intensity. Thus, we would like to find a function f(s) for which
∆Ccore ≈ f(Tcore).

Main idea. Similar to the growth case, we can use the uncertainty to require
that the shape of this dependence f(s) does not depend on the choice of a unit
for measuring the throughput – provided that we correspondingly change the
unit for measuring expenses.

Resulting formula. As a result, we get a power law ∆Ccore ≈ cT · (Tcore)
b,

i.e., in other words, Ccore ≈ a+ cT · (Tcore)
b, where we denoted a

def
= Ccore(0).

Discussion. Empirically, the above formula turned out to be the best ap-
proximation for the observed expenses [11]. Our analysis provides a theoretical
justification for this empirical success.

Dependence on the number of cores in a multi-core computer. A
similar formula Ccore ≈ a + cN · (Ncore)

d can be derived for describing how
the cost per-core depends on the number of cores Ncore. This dependence is
also empirically the best [11]. Thus, our uncertainty-based analysis provides a
justification for this empirical dependence as well.

15


