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Abstract

One of the main problems of interval computations is to find an enclo-
sure Y ⊇ f(X1, . . . , Xn) for a range of a given function f(x1, . . . , xn) over
given intervals X1, . . . , Xn. Most of the techniques for estimating this
range are based on propagating the range through computations. Specif-
ically, we follow the computations of f(x1, . . . , xn) step-by-step: we start
with ranges X1, . . . , Xn of the inputs, and then we sequentially compute
the enclosures for the ranges of all intermediate results, until, on the last
computation step, we get the desired enclosure Y . A similar propagation
of “decorations” – information about continuity – enables us to make con-
clusions about the continuity of the resulting function f(x1, . . . , xn). In
this paper, we show that the interval propagation results can be naturally
extended to the general case of arbitrary sets. For this general case, we
provide necessary and sufficient conditions for such a propagation.

1 Computations: From Real Values to General
Sets

How to describe quantities. Usually, the values of physical quantities are
described by real numbers. However, some physical quantities require a more
complex description : e.g., some quantities are characterized by a vector (e.g.,
force or velocity), some by a function (e.g., a current value of a field) or by a
geometric shape. In view of this possibility, we will assume that the set S of
possible values of each quantity is not necessarily a set of real numbers, it can
be a general set.
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Functional dependencies are ubiquitous. In many practical situations,
quantities are dependent on each other. Often, we know a function y =
f(x1, . . . , xn) that relates quantities x1, . . . , xn with a quantity y. Once we
know this function and we know the values of x1, . . . , xn, we can therefore find
the corresponding value of y.

Functional dependencies can be complex. In simple cases, we know an
explicit relation between xi and y. In more complex situations, the relation is
more complex: instead of a single explicit expression of y in terms of x1, . . . , xn,
we have a sequence of such expressions in which we first determine some inter-
mediate quantities zj in terms of xi, then other intermediate quantities zk in
terms of zj , and finally, y in terms of the the intermediate quantities zj (and
maybe also in terms of the original quantities xi).

We start with the values x1, . . . , xn; for convenience, let us denote the first
intermediate value by xn+1, the second by xn+2, etc., until we reach the desired
value y = xn+N . Thus, we arrive at the following definition.

Definition 1. Let n and N be natural numbers, and let S1, . . . , Sn be sets.
By a computation scheme f of length N with n inputs, we means a sequence of
tuples tn+j (j = 1, . . . , N) each of which consists of:

• a set Sn+j;

• a finite sequence of positive integers a(j, 1) < . . . < a(j, k(j)) < n+ j; and

• a function fn+j : Sa(j,1) × . . .× Sa(j,k(j)) → Sn+j .

For each sequence of elements x1 ∈ S1, . . . , xn ∈ Sn, the result f(x1, . . . , xn) of
applying the computation scheme f to these values is defined as xn+N , where,
once the values x1, . . . , xn+j−1 are defined, the next value xn+j is defined as
fn+j(xa(j,1), . . . , xa(j,k(j))).

Example. The expression f(x1) = x1 · (1 − x1) can be described by the fol-
lowing computation scheme: first, we compute x2 = 1 − x1, then we compute
y = x3 = x1 · x2. In this case:

• S1 = S2 = S3 = IR,

• on the first intermediate step, we have a function of one variable, i.e.,
k(2) = 1; here, a(2, 1) = 1, and the corresponding function has the form
f2(a) = 1− a;

• on the second computation step, we have a function of two variables k(3) =
2; here, a(2, 1) = 1, a(2, 2) = 2, and the corresponding function has the
form f3(a, b) = a · b.
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Intermediate results as functions of the input. For each N -step com-
putation scheme and for each i < N , the value xn+j computed on the j-th
step is a function of the inputs x1, . . . , xn. Let us denote this function by
gn+j(x1, . . . , xn); then gn+N (x1, . . . , xn) = f(x1, . . . , xn). The function gn+j

appears if we “truncate” the original computation scheme on the j-th step.
The original values x1, . . . , xn can also be viewed as functions

of the n input variables x1, . . . , xn, namely, as projection functions
gi(x1, . . . , xi−1, xi, xi+1, . . . , xn) = xi.

In terms of these functions, each computation step takes the form

xn+j = gn+j(x1, . . . , xn) = fn+j(ga(j,1)(x1, . . . , xn), . . . , ga(j,k(j))(x1, . . . , xn)).

2 Propagating Range (Uncertainty) Through
Computations: From Real-Valued Intervals to
General Sets

Need to take uncertainty into account. In practice, we rarely know the
exact values of the quantities x1, . . . , xn. Usually, we only have partial informa-
tion about these values – in the sense that we may have several different values
which are consistent with the available information. For each i, let Xi ⊆ Si

denote the set of possible values of xi which are consistent with the known
information about xi.

In interval computations (see, e.g., [1]), we usually assume that the set Si is
the set of real numbers, and the set Xi is an interval; however, it is also possible
that the set Xi is more general, e.g., it may be a multi-interval: a union of
finitely many intervals. When Si is a multi-dimensional Euclidean space, the
set Xi can be a box, an ellipsoid, or a more general (convex or non-convex) set.

In general, different values xi ∈ Xi lead to different values y = f(x1, . . . , xn).
It is therefore desirable to find the range of possible values, i.e., the set

f(X1, . . . , Xn)
def
= {f(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn},

or at least an enclosure Y ⊇ f(X1, . . . , Xn) for this range.

Propagating range through computations: main idea. Most of the
techniques for estimating the desired range are based on propagating the range
through computations. Specifically, we follow the computations of f(x1, . . . , xn)
step-by-step:

• we start with ranges X1, . . . , Xn of the inputs,

• we sequentially compute the enclosures Xn+j for the ranges of all inter-
mediate results,

• finally, on the last computation step, we get the desired enclosure Y =
Xn+N .
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On each intermediate step j of the original computation procedure, we apply
a function fn+j to the results ga(j,k)(x1, . . . , xn) of the previous steps. For
the above procedure to work, we need to make sure that on each such inter-
mediate step, we have a procedure that transforms enclosures for the ranges
ga(j,k)(X1, . . . , Xn) into an enclosure for the range of the result. Let us formu-
late the desired property in precise terms.

Sets of a certain type. In practice, not all sets correspond to uncertainty.
Let us consider a class C of sets – e.g., intervals, boxes, ellipsoids, multi-intervals
(finite unions of boxes), etc., and let us only consider sets X1, . . . , Xn from this
class.

Definition 2. Let C be a class of sets. Sets from the class C will be called
C-sets. For each set X, the class of all subsets of X which are C-sets will be
denoted by 2XC .

Definition 3. Let g : T1×. . .×Tm → Y be a function. We say that a mapping
G : 2T1

C × . . .× 2Tm

C → 2YC is a C-set extension of the function g if for every set
Z and for every sequence of functions h1 : Z → T1, . . . , hm : Z → Tm, if sets
X1, . . . , Xm are enclosures for h1(Z), . . . , hm(Z), then G(X1, . . . , Xm) is an

enclosure for the range h(Z) of the function h(z)
def
= g(h1(z), . . . , hm(z)).

Discussion. In other words, if X1 ⊇ h1(Z), . . . , Xm ⊇ hm(Z), then

G(X1, . . . , Xm) ⊇ h(Z).

Straightforward set computations: propagating uncertainty via com-
putations. We can now use the idea explored in interval computations.
Namely, for each computation scheme f and for all inputs sets X1, . . . , Xn, once
we know set enclosures Fn+j for all the functions fn+j , we can replace each
computation fn+j(xa(j,1), . . . , xa(j,k(j)) with elements xk by the corresponding
computation with sets. As a result, we get the desired enclosure for the range
f(X1, . . . , Xn).

Definition 4. Let f be a computation scheme and let X1, . . . , Xn be C-
sets. For each j, let Fn+j be a C-set extension of the corresponding func-
tion fn+j. We can then sequentially define the sets Xn+1, . . . , Xn+N as fol-
lows: once the sets X1, . . . , Xn+j−1 are defined, the next set Xn+j is defined
as Xn+j = Fn+j(Xa(j,1), . . . , Xa(j,k(j))). The last set Xn+N is called the re-
sult of propagating uncertainty via the computation scheme and denoted by
F (X1, . . . , Xn).
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Proposition 1. The result F (X1, . . . , Xn) of propagating uncertainty via the
computation scheme is an enclosure for the range f(X1, . . . , Xn):

F (X1, . . . , Xn) ⊇ f(X1, . . . , Xn).

Proof. The proof is by induction over j. For j = 1, . . . , n, the sets Xj actually
coincide with the corresponding ranges. Once we prove the enclosure result for
all the steps 1, . . . , j − 1, the enclosure for j directly follows from Definition 3.

Necessary and sufficient conditions for range propagation. Our de-
scription of a C-enclosure (Definition 3) involves quantifiers over all possible
functions; checking that some property holds for all possible functions may be
difficult. It is therefore desirable to come up with a simpler equivalent definition.
This equivalent definition is provided by the following result.

Proposition 2. A mapping G : 2T1

C × . . .×2Tm

C → 2YC is a C-set extension of a
function g : T1 × . . .× Tm → Y if and only if for every every sequence of C-sets
Xi ⊆ Si and for each sequence of elements xi ∈ Xi, the value g(x1, . . . , xm) is
contained in G(X1, . . . , Xm).

Proof. Let us first prove that if the containment property is satisfied, then
G is a C-set extension. Let us assume that the sets X1, . . . , Xm are enclo-
sures for the ranges h1(Z), . . . , hm(Z). We want to prove that in this case,
the set G(X1, . . . , Xm) is an enclosure for the range h(Z) of the function

h(z)
def
= g(h1(z), . . . , hm(z)), i.e., that for every z ∈ Z, we have h(z) =

g(h1(z), . . . , hm(z)) ∈ G(X1, . . . , Xn).
Indeed, since each set Xi is an enclosure for the range hi(Z), we have

hi(z) ∈ hi(Z) ⊆ Xi and thus, hi(z) ∈ Xi. Since xi
def
= hi(z) ∈ Xi for all i,

the containment property implies that g(x1, . . . , xm) ∈ G(X1, . . . , Xn). Since
xi = hi(z), this means that g(h1(z), . . . , hm(z)) ∈ G(X1, . . . , Xn) – exactly what
we wanted to prove. The implication is proven.

Vice versa, let us prove that every C-set extension has a containment prop-
erty. Indeed, let Xi be C-sets and let xi ∈ Xi. In this case, we need to
prove that g(x1, . . . , xm) ∈ G(X1, . . . , Xm). To prove this containment, let
us take Z = X1 × . . . × Xm and hi(x1, . . . , xi−1, xi, xi+1, . . . , xm) = xi. In
this case, hi(Z) = Xi, so Xi is an enclosure for hi(z) and thus, since G
is a C-set extension, we conclude that G(X1, . . . , Xn) is an enclosure for the
range h(Z) of the function h(z) = g(h1(z), . . . , hm(z)). Enclosure means that
h(z) = g(h1(z), . . . , hm(z)) ∈ G(X1, . . . , Xn) for all z. Substituting hi(z) = xi

into this formula, we conclude that h(x1, . . . , xn) ∈ G(X1, . . . , Xn). The state-
ment is proven.
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Corollary. Let a class C be such that for all C-sets X1, . . . , Xm, the range
g(X1, . . . , Xm) is also a C-set. In this case, the function G generating such a
range is the narrowest of all possible C-set extensions.

Discussion. In other words, if we want to get the narrowest possible enclo-
sures for the range, we should use the range G(X1, . . . , Xm) = g(X1, . . . , Xm).
The condition that the range is always a C-set is satisfied, e.g., if we consider
continuous functions over intervals: the range of every such function is also an
interval.

3 Propagating Continuity Information Through
Computations

Importance of continuity information. In some cases, it is important to
check whether a function f(x1, . . . , xn) is continuous. For example, it is useful
to determine when the system of equations has a solution: when each range Si

is an interval, then Brouwer’s fixed point theorem says that if f is a continuous
function and f(S1 × . . . × Sn) ⊆ S1 × . . . × Sn, then there exists a point x =
(x1, . . . , xn) ∈ S1 × . . .× Sn for which x = f(x); see, e.g., [1].

In other cases, it may be beneficial to know that a function is not continu-
ous. For example, in physical applications, discontinuity may be an indication
of a phase transition. Such a discontinuity is not always easy to detect by sim-
ply looking at the formulas, since the formulas used in computations may use
discontinuous functions like the sign sign(x), arctan(x), etc., and still lead to a
continuous expression.

Comment. In the following text, we will consider non-trivial Hausdorff spaces,
i.e., topological spaces that have at least two different points and in which every
two points can be separated by open neighborhoods.

Continuity information can also be propagated. The possibility to prop-
agate continuity information follows from the fact that a composition of contin-
uous functions is always continuous; see, e.g., [2].

For such a propagation, on each intermediate step j, we need to keep not
only the enclosure Xj for the corresponding function gn+j(x1, . . . , xn), but also
an information re whether this intermediate function is continuous or not. For
each function g : T1× . . .×Tm → Y , let a value c mean that f is continuous, and
d means that f is discontinuous. The corresponding variable will be called the
continuity of the given function. The set of all continuity values will be denoted
by C∗ = {c, d}.

For some functions, we know whether they are continuous or not; for other
functions, we do not have this information, so a function can be either continuous
or discontinuous. In general, our information about the function’s continuity
can be described by a non-empty set C ⊆ C∗ of values c or d which are consistent
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with our knowledge. For each function g and each sequence of sets T1, . . . , Tm,
there are only three options:

• the first option is that we know that the function is continuous; in this
case, C = {c};

• the second option is that we know that the function is discontinuous; in
this case, C = {d};

• the third option is that we do not know whether the function is continuous
or not; in this case, C = {c, d}.

The class consisting of these three non-empty sets is {{c}, {d}, {c, d}}.
The original projection functions h1(x1, . . . , xn), . . . , hn(x1, . . . , xn) are con-

tinuous, i.e., C1 = . . . = Cn = {c}. On each intermediate step j, in addition
to computing the range Xn+j , we should also compute the corresponding set
Cn+j . Finally, on the last computation step, we get the set Cn+N . If this set
consists of only c, we conclude that the function f is continuous; if the set Cn+N

consists of only d, we conclude that the function f is discontinuous.
For the above procedure to work, we need to make sure that on each such

intermediate step j, we have a procedure that transforms enclosures and continu-
ity information of all relevant previous intermediate functions into a continuity
information for the current function gn+j . Let us formulate the desired property
in precise terms.

Definition 5. Let T1, . . . , Tm, Y be topological spaces, and let

g : T1 × . . .× Tm → Y

be a function. We say that a mapping

p : 2T1

C × C∗ × . . .× 2Tm

C × C∗ → {{c}, {d}, {c, d}}

is a continuity propagator corresponding to g if for every topological space Z
and for every sequence of functions h1 : Z → T1, . . . , hm : Z → Tm, once sets
X1, . . . , Xm are enclosures for h1(Z), . . . , hm(Z), and ci are continuities of the

functions hi, then the continuity ch of the function h(z)
def
= g(h1(z), . . . , hm(z))

is contained in the set p(X1, c1, . . . , Xm, cm).

Discussion. In other words, if for every i, we have Xi ⊇ hi(Z), then ch ∈
p(X1, c1, . . . , Xm, cm). If we do not know the continuity of some of the inputs,
then we have to consider all possible values of this continuity. In other words,
if we only know the sets Ci that contain the actual (unknown) values ci, then
we can conclude that ch ∈ p(X1, C1, . . . , Xm, Cm), where we denoted

p(X1, C1, . . . , Xm, Cm)
def
=

∪
ci∈Ci

p(X1, c1, . . . , Xm, cm),

where the union is taken over all possible combinations ci ∈ Ci.
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Propagating continuity information via computations. We can now
use the same idea as for finding the enclosure for the range. Namely, for each
computation scheme f and for all inputs sets X1, . . . , Xn, once we know set
enclosures Fn+j for all the functions fn+j , we can replace each computation
fn+j(xa(j,1), . . . , xa(j,k(j)) with elements xk by the corresponding computation
with sets – and simultaneously compute the set Cn+j . As a result, we get not
only the desired enclosure for the range f(X1, . . . , Xn), we also get the continuity
information about the function f(x1, . . . , xn).

Definition 6. Let f be a computation scheme and let X1, . . . , Xn be topo-
logical spaces which are C-sets. For each j, let Fn+j be a C-set exten-
sion of the corresponding function fn+j, and let pn+j be a continuity prop-
agator for this function. Let us define C1 = . . . = Cn = {c}. We
can then sequentially define the sets Xn+1, Cn+1, . . . , Xn+N , Cn+N as follows:
once the sets X1, C1, . . . , Xn+j−1, Cn+j−1 are defined, the next set Xn+j is
defined as Xn+j = Fn+j(Xa(j,1), . . . , Xa(j,k(j))), and the next set Cn+j as
pn+j(Xa(j,1), Ca(j,1), . . . , Xa(j,k(j)), Ca(j,k(j))). The last set Cn+N is called the
result of propagating continuity information via the computation scheme and
denoted by Cf .

Proposition 3. For each computation scheme, the continuity cf of the corre-
sponding function is contained in the result Cf of propagating continuity infor-
mation via the computation scheme: cf ∈ Cf .

Comment. In other words, if Cf = {c}, this means that the function
f(x1, . . . , xn) is continuous. Similarly, if Cf = {d}, this means that the function
f(x1, . . . , xn) is discontinuous.

Proof. The proof is by induction over j. For j = 1, . . . , n, the sets Xj actually
coincide with the corresponding ranges. Once we prove the continuity result
for all the steps 1, . . . , j − 1, the continuity result for j directly follows from
Definition 5.

Necessary and sufficient conditions for range propagation. Our de-
scription of a continuity propagator (Definition 5) involves quantifiers over all
possible functions; checking that some property holds for all possible functions
may be difficult. It is therefore desirable to come up with a simpler equivalent
definition. This equivalent definition is provided by the following result.

Definition 7. For a function g : X1 × . . . × Xm → Y , we say that the i-th
variable is a dummy variable if the function does not depend on this variable,
i.e., that for all possible values x1 ∈ X1, . . . , xi−1 ∈ Xi−1, xi, x

′
i ∈ Xi, xi+1 ∈

Xi+1, . . . , xm ∈ Xm, we have

g(x1, . . . , xi−1, xi, xi+1, . . . , xm) = g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm).
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Examples. For a constant function, all inputs are dummy variables. For a
function g(x1, x2, x3) = x2

1 + x2, the variable x3 is a dummy variable.

Definition 8. For a function g : X1 × . . . × Xm → Y , the i-th variable is
called essential if it is not a dummy variable.

Definition 9. We say that a function g(x1, . . . , xm) is continuously reversible
from variables xi1 , . . . , xik to a variable xj if:

• given the value of y = f(x1, . . . , xn) and the values of these variables
xi1 , . . ., we can uniquely reconstruct the value of xj, and

• the corresponding dependence xj = H(y, xi1 , . . . , xik) is continuous.

Example. The function f(x1, x2) = x1 + x2 is continuously reversible with
respect to each of the variables: e.g., if we know y = x1 + x2 and we know x1,
we can uniquely reconstruct x2 as y − x1, and the corresponding dependence
x2 = y − x1 is a continuous function of the variables y and x1.

Proposition 4. A mapping

p : 2T1

C × C∗ × . . .× 2Tm

C × C∗ → {{c}, {d}, {c, d}}

corresponding to the function g : T1 × . . .× Tm → Y is a continuity propagator
if and only if it satisfies the following three properties for all C-sets Xi ⊆ Ti and
for all values ci ∈ C∗:

• if the function g : X1 × . . .×Xm → Y is continuous, then

c ∈ p(X1, c, . . . , Xm, c);

• if the function g is continuously reversible from all the variables for which
ci = c to one of the variables for which cj = d, then

d ∈ p(X1, c1, . . . , Xm, cm);

• in all other cases, p(X1, c1, . . . , Xm, cm) = {c, d}.

Comment. So, if we want to get the narrowest possible enclosures for the actual
continuity, we should take:

• p(X1, c, . . . , Xm, c) = {c} if the function g : X1 × . . .×Xm → Y is contin-
uous;

• p(X1, c1, . . . , Xm, cm) = {d} if the function g is continuously reversible
from all the variables for which ci = c to one of the variables for which
cj = d; and

• p(X1, c1, . . . , Xm, cm) = {c, d} in all other cases.
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Proof.

1◦. Let us first prove that if the mapping g satisfies the above three properties,
then it is a continuity propagator. According to the definition of a continuity
propagator, this means that if we havem functions hi : Z → Ti with continuities
ci and m enclosures Xi ⊇ hi(Z), then the continuity ch of the function h(z) =
g(h1(z), . . . , hm(z)) is contained in the set p(X1, c1, . . . , Xm, cm).

1.1◦. In the first case, ci = c means that all functions hi(z) are continuous.
Since the function g(x1, . . . , xn) is also continuous, this means that their com-
position h(z) = g(h1(z), . . . , hm(z)) is continuous as well, i.e., ch = c. Thus,
c ∈ p(X1, c1, . . . , Xm, cm) implies that ch ∈ p(X1, c1, . . . , Xm, cm).

1.2◦. In the second case, the functions hi1 , . . . , hik are all continuous, while the
function hj is discontinuous. We assume that hj(z) is a continuous function of
the value h(z) and the values hi1 , . . . , hik . Thus, h(z) cannot be continuous
– otherwise, hj(z) would also be continuous, as a composition of continuous
functions. Hence, the function h(z) is discontinuous: ch = d. So, in this case,
d ∈ p(X1, c1, . . . , Xm, cm) implies that ch ∈ p(X1, c1, . . . , Xm, cm).

1.3◦. In the third case, when p(X1, c1, . . . , Xm, cm) = {c, d}, the property ch ∈
p(X1, c1, . . . , Xm, cm) automatically holds.

2◦. Let us now prove that if the mapping g is a continuity propagator, then it
must satisfy the above three properties. In other words:

• unless we are in the first case, the result p of the mapping must contain
d, and

• unless we are in the second case, the result of the mapping must contain
c.

2.1◦. Let us first consider the case when the condition of the first property is
not satisfied, i.e., when:

• either the function g is discontinuous,

• or it is continuous but ci = d for some essential variable xi.

Let us show that in both subcases, it is possible to have a situation in which
the resulting function h(z) is discontinuous.

If the function g(x1, . . . , xn) itself is discontinuous, then we take Z =
X1 × . . .×Xm and projections hi(x1, . . . , xi, . . . , xm) = xi. Then, the resulting
function h is simply the original discontinuous function g(x1, . . . , xm).

Let us now assume that we have a sequence c1, . . . , cn for which ci = d for
some essential variable xi. By definition of an essential variable, there are values
x1, . . . , xi−1, xi, x

′
i, xi+1, . . . , xm for which

g(x1, . . . , xi−1, xi, xi+1, . . . , xm) ̸= g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm).

Let us now take Z = [0, 2] with the usual topology, and for values z ∈ [0, 1],
define:
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• hj(z) = xj for all j ̸= i and

• hi(z) = xi for z ∈ [0, 0.5] and hi(z) = x′
i for x ∈ (0.5, 1].

On the remaining part of the interval [0, 2], we take:

• hj(z) = xj when cj = c and

• hj(z) = const ̸= xj when cj = d.

In this case, all the functions hj have the desired continuity, while
their composition h(z) jumps from g(x1, . . . , xi−1, xi, xi+1, . . . , xm) to
g(x1, . . . , xi−1, x

′
i, xi+1, . . . , xm) ̸= g(x1, . . . , xi−1, xi, xi+1, . . . , xm) when z is

close to 0.5, so the function h(z) is discontinuous.

2.2◦. Let us now consider the case when the condition of the second property
is not satisfied, i.e., if for some sequence ci, the function g is not continuously
reversible from all the variables for which ci = c to each of the variable xj for
which cj = d. Let us show that in this case, it is possible that the function h(z)
is continuous.

Without losing generality, we can assume that the “continuous” variables
(for which ci = c) are numbered first, i.e., that these variables are x1, . . . , xk,
and that, therefore, the “discontinuous” variables (for which ci = d) are
xk+1, . . . , xm. In this case, as Z, we will get a disjoint union of components
Zk+1, . . . , Zm corresponding to all discontinuous variables. For each discontinu-
ous variable xj , the function g is not continuously reversible from the continuous
variables x1, . . . , xk to this variable xj . By definition of continuous reversibility,
this means:

• either than we cannot always uniquely reconstruct the value xj based
on the values of all continuous variables x1, . . . , xk and the value y =
g(x1, . . . , xm),

• or that we can uniquely reconstruct xj , but the corresponding reconstruc-
tion mapping is not continuous.

Let us consider these two possibilities one by one.
The first possibility – non-uniqueness – means that there exist values

x1, . . . , xk and values xk+1, . . . , xm and x′
k+1, . . . , x

′
m for which xj ̸= x′

j but
g(x1, . . . , xk, xk+1, . . . , xm) = g(x1, . . . , xk, x

′
k+1, . . . , x

′
m). We therefore take

Zj = [2j, 2j + 1], and define:

• hi(z) = xi for i ≤ k and

• for i > k, we take hi(z) = xi for x ≤ 2j+0.5 and hi(z) = x′
i for x > 2j+0.5.

For this choice, the functions h1(z), . . . , hk(z) are constant and hence continu-
ous, the function hj(z) is discontinuous, but the composition h(z) is constant
and hence continuous on Zj .
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The second possibility – uniqueness but discontinuity – means that the cor-
responding mapping H(y, x1, . . . , xk) is discontinuous. In this case, we take

Z = {(g(x1, . . . , xm), x1, . . . , xk) |xi ∈ Xi} ⊆ Y ×X1 . . .×Xk,

with hi(z) = xi (continuous projections) for i ≤ k, hj(z) = H(y, x1, . . . , xk),
and hi(z) appropriate values for all other i – values for which g(x1, . . . , xm) = y.
Here, hj is discontinuous, but the composition h(z) is simply equal to y and is,
therefore, continuous.

Once we combine these pieces Zi into a single disjoint set Z, we conclude
that each of the functions h1(z), . . . , hk(z), h(z) is continuous on each of the
disjoint pieces and thus, continuous on their union. On the other hand, each of
the functions hi(z) (i = k + 1, . . . ,m) is discontinuous on at least one piece –
namely, on the corresponding piece Zi, and is, therefore, not continuous on the
union. So, we have the desired case when c1 = . . . = ck = c, ck+1 = . . . = cm = d
and ch = d. The proposition is proven.

Discussion. In other words, on each computation step j, if we want to make
the most informative conclusion about the continuity of the function

xn+j = gn+j(x1, . . . , xn) = fn+j(ga(j,1)(x1, . . . , xn), . . . , ga(j,k(j))(x1, . . . , xn)),

then we should do the following:

• if the function fn+j is known to be continuous on the corresponding range,
and all the functions ga(j,k)(x1, . . . , xn) corresponding to its essential (non-
dummy) variables are known to be continuous, we conclude that the re-
sulting composition function gn+j(x1, . . . , xn) is also continuous;

• if the function is continuously reversible from the set of all continuous vari-
ables to one of the discontinuous variables, then the resulting composition
function gn+j(x1, . . . , xn) is discontinuous;

• in all other cases, we report the set Cn+j = {c, d} meaning that we cannot
tell whether the corresponding function gn+j(x1, . . . , xn) is continuous or
not.

Comment. The fact that the composition of continuous functions is continuous
is well known. What we show is that in all other situations – with the exception
of continuously reversible functions – no conclusion can be made because in
principle, the resulting composition can be both continuous and discontinuous.

4 What If We Are Only Interested in Detecting
Continuity?

In many practical situations, we are only interested in knowing whether conti-
nuity can be confirmed or not; in such situations, when the continuity cannot be
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confirmed, we are not interested in spending time on confirming discontinuity.
In terms of our symbols c and d, this means that we are interested only in two
cases:

• when the continuity is confirmed, i.e., when C = {c}; and

• when the continuity has not been confirmed – but could still be, in which
case C = {c, d}.

In terms of Definition 5, this means that we are interested in continuity prop-
agators whose possible values are {c} or {c, d}. In such situations, from the
above Proposition 4, we can deduce the following simplified version:

Proposition 5. A mapping

p : 2T1

C × C∗ × . . .× 2Tm

C × C∗ → {{c}, {c, d}}

corresponding to the function g : T1 × . . .× Tm → Y is a continuity propagator
if and only if it satisfies the following three properties for all C-sets Xi ⊆ Ti and
for all values ci ∈ C∗:

• if the function g : X1 × . . .×Xm → Y is continuous, then

c ∈ p(X1, c, . . . , Xm, c);

• in all other cases, p(X1, c1, . . . , Xm, cm) = {c, d}.

Comment 1. So, if we want to get the narrowest possible {c}, {c, d}-valued
enclosures for the actual continuity, we should take:

• p(X1, c, . . . , Xm, c) = {c} if the function g : X1 × . . .×Xm → Y is contin-
uous; and

• p(X1, c1, . . . , Xm, cm) = {c, d} in all other cases.

Comment 2. In other words, in such situations, on each computation step j,
if we want to make the most informative conclusion about the continuity of the
function

xn+j = gn+j(x1, . . . , xn) = fn+j(ga(j,1)(x1, . . . , xn), . . . , ga(j,k(j))(x1, . . . , xn)),

then we should do the following:

• if the function fn+j is known to be continuous on the corresponding range,
and all the functions ga(j,k)(x1, . . . , xn) corresponding to its essential (non-
dummy) variables are known to be continuous, we conclude that the re-
sulting composition function gn+j(x1, . . . , xn) is also continuous;

• in all other cases, we report the set Cn+j = {c, d} meaning that we cannot
tell whether the corresponding function gn+j(x1, . . . , xn) is continuous or
not.
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