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Abstract

In many engineering situations, we are interested in finding the corre-
lation ρ between different quantities x and y based on the values xi and
yi of these quantities measured in different situations i. Measurements
are never absolutely accurate; it is therefore necessary to take this inaccu-
racy into account when estimating the correlation ρ. Sometimes, we know
the probabilities of different values of measurement errors, but in many
cases, we only know the upper bounds ∆xi and ∆yi on the corresponding
measurement errors. In such situations, after we get the measurement
results x̃i and ỹi, the only information that we have about the actual (un-
known) values xi and yi is that they belong to the corresponding intervals
[x̃i −∆xi, x̃i +∆xi] and [ỹi −∆yi, ỹi +∆yi]. Different values from these
intervals lead, in general, to different values of the correlation ρ. It is
therefore desirable to find the range

[
ρ, ρ
]
of possible values of the cor-

relation when xi and yi take values from the corresponding intervals. In
general, the problem of computing this range is NP-hard. In this paper,
we provide a feasible (= polynomial-time) algorithm for computing at
least one of the endpoints of this interval: for computing ρ when ρ > 0
and for computing ρ when ρ < 0.
Keywords: imprecise probabilities, correlation, interval uncertainty

1 Introduction

Need for correlation. In engineering, we design systems for real-world ap-
plications. To make sure that the system functions correctly, we need to take
into account all possible situations in which these systems will function. Each
such situation can be characterized by the values of different quantities. To de-
scribe which combinations of these values are more probable and which are less
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probable, it is necessary to know which quantities are independent and which
are correlated – positively or negatively.

To estimate the correlation between the quantities x and y, we repeatedly
measure the values xi and yi of both quantities in different situations i. The
correlation ρ is then estimated as the ratio

ρ =
C

σx · σy
,

of the covariance C to the product of standard deviations σx =
√
Vx and σy =√

Vy. Covariance and standard deviations, in their turn, are defined as follows:

C =
1

n
·

n∑
i=1

(xi − Ex) · (yi − Ey) =
1

n
·

n∑
i=1

xi · yi − Ex · Ey,

Vx =
1

n
·

n∑
i=1

(xi − Ex)
2, Vy =

1

n
·

n∑
i=1

(yi − Ey)
2,

and the means Ex and Ey are estimates as follows:

Ex =
1

n
·

n∑
i=1

xi, Ey =
1

n
·

n∑
i=1

yi.

Comment. In the above formulas, we use the estimates for C, Vx, and Vy

which are known to be biased. Usually, correlation is defined by using unbiased
definitions

C =
1

n− 1
·

n∑
i=1

(xi − Ex) · (yi − Ey) =
1

n− 1
·

n∑
i=1

xi · yi − Ex · Ey,

Vx =
1

n− 1
·

n∑
i=1

(xi − Ex)
2, Vy =

1

n− 1
·

n∑
i=1

(yi − Ey)
2.

One can easily check that the resulting expression for ρ is the same whether we
use biased or unbiased estimates; we use biased estimates because they make
the computations slightly simpler.

Known facts about correlation: brief reminder. It is known that the
value of this correlation coefficient ρ is always between−1 and 1. The correlation
is equal to 1 if and only if the values are positively linearly dependent, i.e.,
when for some coefficient kx > 0, we have yi = Ey + kx · (xi − Ex) for every i.
The correlation is equal to −1 if and only if the values are negatively linearly
dependent, i.e., when for some coefficient kx < 0, we have yi = Ey+kx ·(xi−Ex)
for every i.
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Need to take into account interval uncertainty. The values xi and yi
used to estimate correlation come from measurements, and measurements are
never absolutely accurate: the measurement results x̃i and ỹi are, in general,
different from the actual (unknown) values xi and yi of the corresponding quan-
tities. As a result, the value ρ̃ estimated based on these measurement results is,
in general, different from the ideal value ρ which we would get if we could use
the actual values xi and yi. It is therefore desirable to determine how accurate
is the resulting estimate.

Sometimes, we know the probabilities of different values of measurement
errors x̃i − xi and ỹi − yi. However, in many cases, we do not know these
probabilities, we only know the upper bounds ∆xi and ∆yi on the corresponding
measurement errors: |x̃i − xi| ≤ ∆xi and |ỹi − yi| ≤ ∆yi; see, e.g., [15]. In this
case, the only information that we have about the actual values xi and yi is
that they belong to the corresponding intervals [xi, xi] = [x̃i −∆xi, x̃i +∆xi]

and
[
y
i
, yi

]
= [ỹi −∆yi, ỹi +∆yi]. Different values xi ∈ [xi, xi] and yi ∈

[
y
i
, yi

]
lead, in general, to different values of the covariance. It is therefore desirable to
find the range of all possible values of the covariance ρ:[

ρ, ρ
]
=
{
ρ(x1, . . . , xn, y1, . . . , yn) : xi ∈ [xi, xi] , yi ∈

[
y
i
, yi

]}
.

The problem of computing the range of correlation under interval uncertainty
is a particular case of the general problem of interval computations (see, e.g.,
[8, 12]): computing the range of a given function f(x1, . . . , xn) under the interval
uncertainty x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]. Interval computations – in particu-
lar, interval computations of statistical characteristics – have many applications,
in particular, engineering applications; see, e.g., [2, 7, 8, 10, 11, 12, 13, 14, 16].

For example, if we perform a statistical analysis of the measurement results,
then, for each statistical characteristic S(x1, . . . , xn), we need to find its range

S = {S(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn} .

For the mean Ex, the situation is simple: the mean is an increasing function
of all its variables. So, its smallest value Ex is attained when each of the
variables xi attains its smallest value xi, and its largest value Ex is attained
when each of the variables attains its largest value xi:

Ex =
1

n
·

n∑
i=1

xi, Ex =
1

n
·

n∑
i=1

xi.

Estimating correlation under interval uncertainty is NP-hard. In con-
trast to the mean – which is always monotonic – variance, covariance, and
correlation are sometimes non-monotonic. It turns out that, in general, com-
puting the values of these characteristics under interval uncertainty is NP-hard
[3, 4, 13, 14]. This means, crudely speaking, that unless P=NP (which most
computable scientists believe to be wrong), no feasible (i.e., no polynomial-time)
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algorithm is possible that would always compute the range of the corresponding
characteristic under interval uncertainty.

The problem of estimating correlation under interval uncertainty is formu-
lated and analyzed in [16]; in that paper, this problem is formulated and solved
as an optimization problem. For reasonably small n, the corresponding opti-
mization algorithms work well [16]. However, since the problem is NP-hard, the
computation time becomes infeasible when n is large.

What we do in this paper. We show that while we cannot have an efficient
algorithm for computing both bounds ρ and ρ, we can effectively compute (at
least) one of the bounds. Specifically, we show that we can compute ρ when
ρ > 0 and we can compute ρ when ρ < 0. This means that, in the case of a

non-degenerate interval
[
ρ, ρ
]
(i.e., ρ < ρ):

• when ρ ≤ 0, we compute the lower endpoint ρ;

• when 0 ≤ ρ, we compute the upper endpoint ρ;

• in all remaining cases, when ρ < 0 < ρ, we compute both lower endpoint
ρ and ρ.

2 Main Result and the Corresponding Algorithm

Main result. There exists a polynomial-time algorithm that, given n pairs of

intervals [xi, xi] and
[
y
i
, yi

]
, computes (at least) one of the endpoints of the

interval
[
ρ, ρ
]
of possible values of the correlation ρ:

• it computes ρ if ρ > 0, and

• it computes ρ if ρ < 0.

Reducing minimum to maximum. When we change the sign of yi, the
correlation changes sign as well:

ρ(x1, . . . , xn,−y1, . . . ,−yn) = −ρ(x1, . . . , xn, y1, . . . , yn).

Since the function z → −z is decreasing, its smallest value is attained when z
is the largest, and its largest value is attained when z is the smallest. Thus, if
z goes from z to z, the range of −z is [−z,−z]. So, for the endpoints of the
ranges, we get

ρ
(
[x1, x1] , . . . , [xn, xn] ,−

[
y
1
, y1

]
, . . . ,−

[
y
n
, yn

])
=

−ρ
(
[x1, x1] , . . . , [xn, xn] ,

[
y
1
, y1

]
, . . . ,

[
y
n
, yn

])
,

where
−
[
y
i
, yi

]
=
{
−yi : yi ∈

[
y
i
, yi

]}
=
[
−yi,−y

i

]
.
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So, if we know how to compute the largest value ρ when this value is positive,
we can then compute the smallest value ρ when this value is negative, as

ρ
(
[x1, x1] , . . . , [xn, xn] ,

[
y
1
, y1

]
, . . . ,

[
y
n
, yn

])
=

−ρ
(
[x1, x1] , . . . , [xn, xn] ,

[
−y1,−y

1

]
, . . . ,

[
−yn,−y

n

])
.

Because of this reduction, in the following text, we will concentrate on com-
puting the largest value ρ.

Algorithm: preliminary definitions. To describe the algorithm, we need
to introduce an auxiliary notion of a 4-tuple. This notion is related to the

vertices of the input boxes [xi, xi]×
[
y
i
, yi

]
.

For each i from 1 to n, the corresponding box [xi, xi] ×
[
y
i
, yi

]
has four

vertices:
(
xi, yi

)
, (xi, yi),

(
xi, yi

)
, and (xi, yi). So, totally, we have 4n vertices.

In our algorithm, we will combine these vertices with “signs”. A sign is
defined as one of the three possible symbols: +, −, and 0. A 4-tuple is then
defined as a tuple consisting of two vertices and two signs. In this algorithm,
we will consider all possible 4-tuples.

Out of 4n vertices, we can form
4n · (4n− 1)

2
pairs; there are 9 = 32 possible

combinations of signs: (−,−), (−, 0), (−,+), (0,−), (0, 0), (0,+), (+,−), (+, 0),

and (+,+). So, totally, we will consider 9 · 4n · (4n− 1)

2
different 4-tuples.

Algorithm: general structure. Our algorithm consists of three stages:

• on the first (preliminary) stage, we consider all 4-tuples one by one, and
perform computations on each of these 4-tuples;

• on the second (main) stage, we consider, one by one, all possible pairs of
4-tuples, and perform computations on each of these pairs; for some of
these pairs, we compute a correlation value;

• on the third stage, we compute the largest of all the correlation values
computed on the second stage, and return this largest correlation value
as ρ.

These stages, in their turn, consist of steps. Let us describe these stages and
corresponding steps one by one.

Algorithm: first stage. As we have mentioned, on the first (preliminary)
stage, we consider all 4-tuples one by one, and perform computations on each
of these 4-tuples.

By definition, a 4-tuple consists of two vertices and two signs. For this
4-tuple, we perform the following three steps:
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• on the first step, we create a point which is close to the first vertex;

• on the second step, we create a point which is close to the second vertex;

• in the third operation, we form a straight line.

Let us describe these three steps one by one.

First step. On the first step, if the first sign is 0, we select the first vertex
itself as the desired point-close-to-the-first-vertex.

If the first sign is not 0, we create the desired point by moving the first
vertex “slightly” along the x axis in the direction determined by the first sign,
i.e.:

• slightly increase x if the sign is + and

• slightly decrease x if the sign is −.

Here, “slightly” means that the change is smaller than the smallest difference
between distinct values xi and yi.

Second step. On the second step, if the first sign is 0, we select the second
vertex itself as the desired point-close-to-the-second-vertex.

If the second sign is not 0, we create the desired point by moving the second
vertex “slightly” along the x axis in the direction determined by the second
sign, i.e.:

• slightly increase x if the sign is + and

• slightly decrease x if the sign is −.

Here, “slightly” means the same as for the first operation.

Third step. As a result of performing the first two steps, we have created
two points on the (x, y) plane:

• a point close to the first vertex, and

• a point close to the second vertex.

On the third step, we form a straight line going through these two created
points.

Comment. The purpose of the small shifts is to make sure that the result-
ing lines represent all possible location of the vertices with respect to the two
vertices:

• the line corresponding to (0, 0) passes through the two vertices;

• the line corresponding to (+,+) passes to the right of both vertices;
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• the line corresponding to (−,+) passes to the left of the first vertex and
to the right of the second vertex, etc.

This is necessary to make sure that we consider all possible locations of the
corresponding lines.

Algorithm: second stage. As we mentioned, on the second stage, we con-
sider, one by one, all possible pairs of 4-tuples, and perform computations on
each of these pairs.

Let us consider a pair of 4-tuples. For each of these 4-tuples, on the first
stage (to be more precise, on the third step of the first stage), we constructed a
straight line. In the description of the algorithm,

• the line constructed based on the first 4-tuple will be called the represen-
tative x-line, and

• the line constructed based on the second 4-tuple will be called the repre-
sentative y-line.

If the representative x-line is vertical and/or the representative y-line is
horizontal, we dismiss the corresponding pair of 4-tuples. (The justification for
this dismissal is given in the proof.)

Comment. These lines are called “representative” because they will serve as
“representatives” on the “actual” x- and y-lines that we will be using – repre-
sentatives in the following sense:

• each actual x-line has the same relation to each of the n boxes as the
corresponding representative x-line, and

• each actual y-line has the same relation to each of the n boxes as the
corresponding representative y-line.

0-th step of the second stage. Once we have computed the representative x-
line and the representative y-line, we first check whether these two lines coincide.
Let us consider the two possible results of this checking one by one.

What we do when the representative lines coincide. If the representa-
tive x-line and the representative y-line coincide, we check whether this repre-
sentative x-line (which, in this case, is the same line as the representative y-line)
intersects with each of the n boxes.

• If the representative x-lines does not intersect with at least one of the
n input boxes, then we end the analysis of this pair of 4-tuples without
returning any correlation value; after that:

– if have not yet completed the analysis of all pairs of 4-tuples, then we
start analyzing the next tuple;
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– if we have already completed the analysis of all pairs of 4-tuples, the
we move on to the third stage of our algorithm.

• If the representative x-line intersects with each of n input boxes, then we
stop the algorithm and return the value ρ = 1.

Comment. In the last case, when we compute the correlation value equal to 1,
this will clearly be the largest possible value of the correlation – since correlation
cannot be larger than 1. Thus, if we know that one of the correlations is 1, there
is no need to continue our second-stage analysis and then, on the third stage,
compute the largest of the correlation values – we already know that this largest
correlation value is 1.

What we do when the representative lines differ: terminology. Let
us now consider the case when the representative x-line is different from the
representative y-line.

When we constructed the representative lines, we dismissed the cases when
the representative x-line is vertical and/or when the representative y-line is
horizontal. In all remaining cases, the representative x-line divides the plane
into two semi-planes:

• the points above this line, i.e., the points (x, y) for which the y coordinate
is larger than the y-value of the point on the x-line with the same x
coordinate, and

• the points below this line, i.e., the points (x, y) for which the y coordinate
is smaller than the y-value of the point on the x-line with the same x
coordinate.

The representative y-line similarly divides the plane into two semi-planes:

• the points to the right of this line, i.e., the points (x, y) for which the x
coordinate is larger than the x-value of the point on the x-line with the
same y coordinate, and

• the points to the left of this line, i.e., the points (x, y) for which the x
coordinate is smaller than the x-value of the point on the y-line with the
same y coordinate.

What we do when the representative lines differ: notations. For
each pair of the 4-tuples for which the representative x-line differs from the
representative y-line, we will use four to-be-determined parameters Ex, Ey,
kx, and ky. The meaning of this parameters is related to the optimal values
x1, . . . , xn, y1, . . . , yn, i.e., to the values xi and yi for which the correlation at-
tains its largest possible value:

• the parameter Ex is the average of the optimal values xi;
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• the parameter Ey is the average of the optimal values yi;

• the parameter kx is the ratio
C

Vx
, where C is the correlation of the values

xi and yi and Vx is the sample variance of the values xi; and

• the parameter ky is the ratio
C

Vy
, where C is the correlation of the values

xi and yi and Vy is the sample variance of the values yi.

In precise terms:

Ex =
1

n
·

n∑
i=1

xi; Ey =
1

n
·

n∑
i=1

yi;

1

n
·

n∑
i=1

xi · yi − Ex · Ey = kx ·

(
1

n
·

n∑
i=1

(xi − Ex)
2

)
;

1

n
·

n∑
i=1

xi · yi − Ex · Ey = ky ·

(
1

n
·

n∑
i=1

(yi − Ey)
2

)
.

What we do when the representative lines differ: general procedure.
The corresponding procedure consists of the following steps:

• on the first step, under the assumption that the “actual” x- and y-lines are
in the same relation with all n boxes as the representative x- and y-lines,
we form the expressions for the optimal points xi and yi in terms of the
parameters Ex, Ey, kx, and ky;

• on the second step, we use these expressions to form equations for deter-
mining the parameters Ex, Ey, kx, and ky, and use these equations to
determine the values of these four parameters; in general, we may have
several possible solution vectors (Ex, Ey, kx, ky);

• finally, on the third step, for each solution vector, we substitute the com-
puted values of these parameters and check whether the resulting actual
x- and y-lines are indeed in the same relation to all the boxes as the
corresponding representative x- and y-lines:

– if they are in the same relation, we compute the correlation between
the values xi and yi add this correlation to the list of correlation
values (to be considered on the third stage);

– if they are not in the same relation, do not compute any correlation,
and simply move on to the next solution.

Once we have exhausted all the solutions, we either go to the next pair of 4-
tuples or – if we have already exhausted all the pairs of 4-tuples – to the third
stage of the algorithm.

Let us describe these three steps in detail.
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First step. On the first step, we start by forming the actual lines as follows:

• the actual x-line has the form y = Ey + kx · (x− Ex), and

• the actual y-line has the form x = Ex + ky · (y − Ey),

where Ex, Ey, kx, and ky are to-be-determined real numbers.
The values of these numbers will be determined later; these values will be

selected in such a way that:

• the actual x-line has the same relation to each of the n boxes as the
representative x-line, and

• the actual y-line has the same relation to each of the n boxes as the
corresponding representative y-line.

Once the actual lines have been determined, then for each box [xi, xi] ×[
y
i
, yi

]
, based on the location of this box in comparison to the representative

x- and y-lines, we select the values xi and yi as follows:

• If the whole box is above the representative x-line, we take xi = xi. On the

resulting segment {xi} ×
[
y
i
, yi

]
, we select the point which is the closest

to the actual y-line; namely:

– if the whole segment is to the right of the representative y-line, we
select yi = y

i
;

– if the whole segment is to left of the representative y-line, we select
yi = yi;

– if the segment intersects with the representative y-line, we select the
value yi corresponding to the intersection point between the segment
and the actual y-line.

• If the whole box is below the representative x-line, we take xi = xi. On the

resulting segment {xi} ×
[
y
i
, yi

]
, we select the point which is the closest

to the actual y-line; namely:

– if the whole segment is to the right of the representative y-line, we
select yi = y

i
;

– if the whole segment is to left of the representative y-line, we select
yi = yi;

– if the segment intersects with the representative y-line, we select the
value yi corresponding to the intersection point between the segment
and the actual y-line.

• If the whole box is to the right of the representative y-line, we take yi = y
i
.

On the resulting segment [xi, xi]×
{
y
i

}
, we select the point which is the

closest to the actual x-line; namely:
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– if the whole segment is above the representative x-line, we select
xi = xi;

– if the whole segment is below the representative x-line, we select
xi = xi;

– if the segment intersects with the representative x-line, we select the
value xi corresponding to the intersection point between this segment
and the actual x-line.

• If the whole box is to the left of the representative y-line, we take yi = yi.
On the resulting segment [xi, xi] × {yi}, we select the point which is the
closest to the actual x-line; namely:

– if the whole segment is above the representative x-line, we select
xi = xi;

– if the whole segment is below the representative x-line, we select
xi = xi;

– if the segment intersects with the representative x-line, we select the
value xi corresponding to the intersection point between the segment
and the actual x-line.

• The only remaining case is when the box contains the intersection point
(Ex, Ey) of the actual x- and y-lines.

Comment. For each pair of lines, for each i, according to our algorithm, as the
appropriate value of xi, we make one of the following four selections:

• sometimes, we select a known value xi;

• sometimes, we select a know value xi;

• sometimes, we select the value xi = Ex (which is not a priori known, it is
one of the four variables that we need to determine), and

• sometimes, we select a value xi that lies on the x-line y = Ey+kx·(xi−Ex),

i.e., a value xi = Ex +Kx · (yi − Ey), where Kx
def
=

1

kx
=

Vx

C
.

In general, each expression xi is a linear combination of a constant and the
unknowns Ex, Kx, and Kx ·Ey. According to the algorithm, for each i, it takes
a finite number of computational steps to check the corresponding conditions
and, based on the results of this checking, to find the appropriate value xi.

Similarly, for each i, as the appropriate value of yi, we make one of the
following four selections:

• sometimes, we select a known value y
i
;

• sometimes, we select a know value yi;
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• sometimes, we select the value yi = Ey (which is not a priori known, it is
one of the four variables that we need to determine), and

• sometimes, we select a value yi that lies on the y-line x = Ex+ky ·(yi−Ey),

i.e., a value yi = Ey +Ky · (xi − Ex), where Ky
def
=

1

ky
=

Vy

C
.

In general, each expression yi is a linear combination of a constant and the
unknowns Ey, Ky, and Ky · Ex.

Second step. On the fist step, for each i, we get an explicit expression of
the values xi and yi in terms of the four parameters Ex, Ey, kx and ky (the
parameters that describe the actual x- and y- lines): xi = xi(Ex, Ey, kx, ky) and
yi = yi(Ex, Ey, kx, ky).

Now, we substitute these expressions for xi = xi(Ex, Ey, kx, ky) and yi =
yi(Ex, Ey, kx, ky) into the formulas that define Ex, Ey, kx, and ky in terms of
xi and yi, As a result, we get a system of four equations with four unknowns
Ex, Ey, kx and ky:

Ex =
1

n
·

n∑
i=1

xi(Ex, Ey, kx, ky); Ey =
1

n
·

n∑
i=1

yi(Ex, Ey, kx, ky);

1

n
·

n∑
i=1

xi(Ex, Ey, kx, ky) · yi(Ex, Ey, kx, ky)− Ex · Ey =

kx ·

(
1

n
·

n∑
i=1

(xi(Ex, Ey, kx, ky)− Ex)
2

)
;

1

n
·

n∑
i=1

xi(Ex, Ey, kx, ky) · yi(Ex, Ey, kx, ky)− Ex · Ey =

ky ·

(
1

n
·

n∑
i=1

(yi(Ex, Ey, kx, ky)− Ey)
2

)
.

Substituting the above expressions for xi and yi into the four equations for the
unknowns Ex, Ey, Kx, and Ky, we conclude that:

• the equation Ex =
1

n
·

n∑
i=1

xi is transformed into equating a linear combi-

nation of Ex, Kx, and Kx · Ey, to zero;

• the equation Ey =
1

n
·

n∑
i=1

yi is transformed into equating a linear combi-

nation of Ey, Ky, and Ky · Ex, to zero;
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• the equation Vx = Kx · C, i.e.,

Kx ·

(
1

n
·

n∑
i=1

xi · yi − Ex · Ey

)
=

1

n
·

n∑
i=1

(xi − Ex)
2

is transformed into equating a linear combination of terms of order ≤ 4 in
terms of the unknowns;

• we also get a similar transformation for the equation Vy ·Ky · C.

As a result, to find the four unknown Ex, Ey, Kx, and Ky, we get a system of
four polynomial equations of order ≤ 4.

Efficient algorithms for solving systems of polynomial equations are known;
see, e.g., [1, 5, 6]. The amount of computation time which is needed to solve
this system does not depend on the size n of the original sample, so in terms of
dependence on this size, we need O(1) time. We use the known algorithms to
solve the above system, and get one or several possible solutions, i.e., possible
combinations of the parameters Ex, Ey, kx, and ky.

Third step. On the third step, for each combination of values Ex, Ey, kx,
and ky that we obtained on the second step, we substitute these values into the
formulas for the x- and y-lines, and check whether the resulting lines are indeed
in the same relation to all the boxes (i.e., to all 4n vertices) as the corresponding
representative x- and y-lines:

In other words, we check, for each of 4n vertices,

• whether this vertex is above, below, or on the actual x-line if and only if it
is, correspondingly, above, below, or on the corresponding representative
x-line, and

• whether this vertex is to the left, to the right, or on the actual y-line
if and only if it is, correspondingly, to the left, to the right, or on the
corresponding representative y-line.

If at least one vertex is in a different relation, we dismiss this solution. Oth-
erwise, we compute the value of the correlation ρ based on the corresponding
values xi(Ex, Ey, kx, ky) and yi(Ex, Ey, kx, ky).

Algorithm: third stage. Once we have analyzed all possible pairs of 4-tuples
on the second stage of our algorithm, we move on to the final (third) stage.

On this third stage, we compute the largest of all the correlation values ρ
produced on the second stage, and return this largest value as the desired value
ρ. The largest of all the values ρ corresponding to all possible pairs of tuples is
then returned as the desired value ρ.
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3 Proof of the Main Result

Proof that the above algorithm is polynomial-time. Before we prove
that the algorithm is correct, let us first prove that it is indeed a polynomial
time algorithm.

We have 4n possible vertices, so we have O(n2) possible pairs of vertices –
and thus, O(n2) possible 4-tuples. Thus, we have O(n2) possible representa-
tive x-lines, and we also have O(n2) representative y-lines. In our algorithms,
we consider pairs consisting of a representative x-line and a representative y-
line. Since we have O(n2) x-lines and we have O(n2) y-lines, we therefore have
O(n2) ·O(n2) = O(n4) possible pairs consisting of a representative x-line and a
representative y-line.

For each pair of lines, we perform the following computations:

• First, we need a constant number of steps to find the expression for each
of n values xi and each of n values yi in terms of the parameters Ex, Ey,
Kx, and Ky. So, we need O(n) steps to find these expressions for all i.

• Then, we need linear time O(n) to form the corresponding systems of
four equations with four unknowns and constant time O(1) to solve this
system.

• Once this system is solved, and we know the corresponding values Ex, Ey,
kx, and ky, we need:

– linear time O(n) to check whether each of 4n = O(n) vertices is in
the right position with respect to the corresponding lines, and,

– if needed, linear time O(n) to compute the corresponding value of
the correlation ρ – by using the above explicit formula describing
how the correlation ρ depends on xi and yi.

Totally, for each pair of lines, we need

O(n) +O(n) +O(1) +O(n) +O(n) = O(n)

computational steps.
We need O(n) steps for each of O(n4) pairs of lines. Thus, the total computa-

tion time of this algorithm is O(n4) ·O(n) = O(n5) – which is indeed polynomial
in the size n of the problem.

Case when the representative x-line coincides with the representative

y-line. If this common line intersects with all n boxes [xi, xi]×
[
y
i
, yi

]
, then,

for each box, we can select values xi and yi for which the corresponding point
(xi, yi) belongs to this line. Then, all selected values (xi, yi) follow the same
linear dependence yi = Ey + kx · (xi −Ex) (as described by the common lines).
Therefore, for this selection, the correlation is 1. Since ρ ≤ 1, this means that
in this case, ρ = 1.
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Remaining cases. Let us now prove that our algorithm is correct for all other
cases, when the x- and the y-lines are different.

When a differentiable function attains maximum on the interval:
known facts from calculus. A function f(x) defined on an interval [x, x]
attains its maximum either at one of its endpoints, or in some internal point of
the interval. If a differentiable function attains is maximum at a point x ∈ (a, b),

then its derivative at this point is 0:
df

dx
= 0.

If it attains its maximum at the point x = x, then we cannot have
df

dx
> 0,

because then, for some point x + ∆x ∈ [x, x], we would have a larger value of

f(x). Thus, in this case, we must have
df

dx
≤ 0.

Similarly, if a function f(x) attains its maximum at the point x = x, then

we must have
df

dx
≥ 0.

Comment. In this proof, we only use the relation between the maximum and
the first derivatives. It is known that we can distinguish between maxima and
minima (and saddle points) is we also use second derivatives. It would great to
see if taking second derivatives into account could lead to faster algorithms.

Computing the corresponding derivatives. We are interested in the val-
ues xi and yi for which the correlation ρ attains maximum. To use the above
facts, let us find the partial derivatives of ρ with respect to xi and yi.

The correlation is defined as the ratio of the covariance C and the product of
the standard deviations σx and σy. These quantities, in their turn, are described
in terms of Vx, Vy, Ex, and Ey. To compute the corresponding partial derivative,
let us first compute the partial derivatives of Ex and Ey, then of Vx, Vy, and C,
and then finally, of the correlation ρ.

Based on the above expression for Ex, we conclude that
∂Ex

∂xi
=

1

n
and

similarly
∂Ey

∂yi
=

1

n
. Since the variance Vx can be described in an equivalent

form Vx =
1

n
·

n∑
i=1

x2
i − E2

x, we get

∂Vx

∂xi
=

2

n
· xi − 2 · Ex · ∂Ex

∂xi
=

2

n
· (xi − Ex).

Similarly,
∂Vy

∂yi
=

2

n
· (yi − Ey).

Now, since σx =
√
Vx, we have

∂σx

∂xi
=

1

2
· 1√

Vx

· ∂Vx

∂xi
=

1

2
· 1

σx
· ∂Vx

∂xi
.
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Substituting the above formula for the derivative of Vx, we get
∂σx

∂xi
=

xi − Ex

n · σx

and similarly,
∂σy

∂yi
=

yi − Ey

n · σy
.

Now, since C =
1

n
·

n∑
i=1

xi · yi − Ex · Ey, we get

∂C

∂xi
=

1

n
· yi −

∂Ex

∂xi
· Ey =

yi − Ey

n
.

Thus, for ρ =
C

σx · σy
, since σy does not depend on xi, we get

∂ρ

∂xi
=

1

σy
· ∂

∂xi

(
C

σx

)
=

1

σy
·

∂C

∂xi
· σx − C · ∂σx

∂xi

σ2
x

=

1

σy · σ2
x · n

·
[
(yi − Ey) · σx − C · xi − Ex

σx

]
.

Since the standard deviations are always non-negative, the sign of this derivative

coincides with the sign of the value (yi − Ey) · σx − C · xi − Ex

σx
. Dividing this

expression by a positive value σx, we conclude that the sign of the derivative
∂ρ

∂xi
coincides with the sign of the expression (yi − Ey)− kx · (xi − Ex), where

we denoted kx
def
=

C

Vx
.

Similarly, the sign of the derivative
∂ρ

∂yi
coincides with the sign of the ex-

pression (xi − Ex)− ky · (yi − Ey), where we denoted ky
def
=

C

Vy
.

It is worth mentioning since the standard deviations and variances are non-

negative, the sign of both coefficients kx =
C

Vx
and ky =

C

Vy
coincides with the

sign of the correlation ρ =
C

σx · σy
.

Let us apply the known facts from calculus to this situation. Let xi

and yi be the values from the corresponding boxes for which the correlation ρ
attains its largest possible value ρ > 0. Then, according to the above facts from
calculus, we have one of the three possible situations:

• xi ∈ (xi, xi) and
∂ρ

∂xi
= 0, i.e., yi = Ey + kx · (xi − Ex);

• xi = xi and
∂ρ

∂xi
≤ 0, i.e., yi ≤ Ey + kx · (xi − Ex);
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• xi = xi and
∂ρ

∂xi
≥ 0, i.e., yi ≥ Ey + kx · (xi − Ex).

Here, kx has the same sign as the correlation, so kx > 0. Let us now consider

possible locations of the box [xi, xi] ×
[
y
i
, yi

]
with respect to the x-line yi =

Ey + kx · (xi − Ex).

1◦. The first case is when the whole box [xi, xi] ×
[
y
i
, yi

]
is above the x-line

yi = Ey + kx · (xi − Ex), i.e., when yi > Ey + kx · (xi − Ex) for all yi ∈
[
y
i
, yi

]
and xi ∈ [xi, xi]. In this case, we cannot have xi ∈ (xi, xi) and xi = xi, so we
must have xi = xi.

On the segment xi = xi, we can apply the same argument about the depen-
dence on yi and conclude that we can have one of the three possible situations:

• yi ∈ (y
i
, yi) and

∂ρ

∂yi
= 0, i.e., xi = Ex + ky · (yi − Ey);

• yi = y
i
and

∂ρ

∂yi
≤ 0, i.e., xi ≤ Ex + ky · (yi − Ey);

• yi = yi and
∂ρ

∂yi
≥ 0, i.e., xi ≥ Ex + ky · (yi − Ey).

Here, ky has the same sign as the correlation, so ky > 0. Let us now consider

possible locations of the segment {xi} ×
[
y
i
, yi

]
in relation to the y-line xi =

Ex + ky · (yi − Ey).

1.1◦. The first subcase is when the whole segment is to the left of the y-line,

i.e., when xi < Ex + ky · (yi − Ey) for all yi ∈
[
y
i
, yi

]
. In this case, we cannot

have yi ∈ (y
i
, yi) and we cannot have yi = yi, so we must have yi = y

i
.

1.2◦. The second subcase is when the whole segment is to the right of the y-line,

i.e., when xi > Ex + ky · (yi − Ey) for all yi ∈
[
y
i
, yi

]
. In this case, we cannot

have yi ∈ (y
i
, yi) and we cannot have yi = y

i
, so we must have yi = yi.

1.3◦. The third subcase is when the segment intersects the y-line, i.e., when

xi = Ex + ky · (y′i −Ey) for some y′i ∈
[
y
i
, yi

]
. As we have mentioned, there are

three possibilities for the value yi at which the correlation attains its maximum:
the value for which xi = Ex + ky · (yi − Ey), the value y

i
, and the value yi.

1.3.1◦. In the first case (when xi = Ex + ky · (yi − Ey)), since ky > 0, there is
only one value yi = y′i.

1.3.2◦. If y
i
̸= y′i, then y

i
< y′i, and thus,

Ex + ky · (yi − Ey) < Ex + ky · (y′i − Ey) = xi.

Thus, we have xi > Ex+ky ·(yi−Ey), so we cannot have xi ≤ Ex+ky ·(yi−Ey),
and therefore, the maximum cannot be attained for yi = y

i
.
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1.3.3◦. If yi ̸= y′i, then y′i < yi, and thus,

xi = Ex + ky · (y′i − Ey) < Ex + ky · (yi − Ey) = xi.

Thus, we have xi < Ex+ky ·(yi−Ey), so we cannot have xi ≤ Ex+ky ·(yi−Ey),
and therefore, the maximum cannot be attained for yi = yi.

1.3.4◦. Therefore, in this third subcase, maximum can only be attained at the
point on the y-line.

2◦. The second case is when the whole box [xi, xi]×
[
y
i
, yi

]
is below the x-line

yi = Ey + kx · (xi − Ex), i.e., when yi < Ey + kx · (xi − Ex) for all yi ∈
[
y
i
, yi

]
and xi ∈ [xi, xi]. In this case, we cannot have xi ∈ (xi, xi) and we cannot have
xi = xi, so we must have xi = xi.

On the segment xi = xi, we can apply the same argument about the de-
pendence on yi as in Part 1 of this proof and come with the same conclusions.

3◦. Same arguments apply if the whole box is fully to the left or to the right of
the y-line. In this case, we have yi = yi or yi = y

i
.

4◦. The only remaining case is when the box intersects both with the x-line and
with the y-line. In this case, similar to Part 1.3 of this proof, we conclude that
the point (xi, yi) corresponding to the optimal tuple belongs both to the x-line
and to the y-line. Thus, this point coincides with the intersection of these two
lines.

In general, the x-line has the form y−Ey = kx · (x−Ex). The y-line has the

form x−Ex = ky · (y−Ey), i.e., equivalently, y−Ey =
1

ky
· (x−Ex). Both lines

pass through the same point (Ex, Ey), but their slopes are, in general, different:

kx for the x-line and
1

ky
for the y-line. Thus, these lines coincide if and only if

kx =
1

ky
, i.e., if and only if kx · ky = 1.

In general, ρ ≤ 1. Here, ρ =
C

σx · σy
=

C√
Vx ·

√
Vy

; thus, ρ =
√

kx · ky, so

kx · ky ≤ 1. If kx · ky < 1, then kx · ky ̸= 1 and thus, the x-line and the y-line
are different. So, the intersection of these two lines is a single point (Ex, Ey).
If kx · ky = 1, this means that ρ = 1, and all the points (xi, yi) are on the same
straight line – this is the case we have considered above.

5◦. We enumerated all the cases described in the algorithm and showed that in
all these cases, we should produce exactly the values xi and yi described in the
algorithm. Thus, we have justified the algorithm – provided that we enumerate
all possible locations of the vertices with respect to x- and y-lines.

To complete the proof, we need to show that all possible locations are cap-
tured by what we called representative x- and y-lines. Indeed, let us start with
any x-line, and let us show that there exists a representative x-line that has
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exactly the same location with respect to all the vertices – i.e., that each ver-
tex is above, below, or on the representative x-line if and only if this vertex is,
correspondingly, above, below, or on the actual x-line.

Let us take the actual x-line. If it contains one of the vertices, mark this
vertex. If the original x-line does not contain any of the vertices, let us move the
line (parallel to itself) along the x-axis – until the line hits a vertex. Then, we
move the line back by a small amount, and we mark this almost-vertex point.

Once the marked vertex is fixed, we check if the line contains another vertex.
If it does, we mark that vertex, and so we have the desired representative x-line.
If it does not, we rotate the line around the already marked vertex (or almost-
vertex) until the line starts containing another vertex. We similarly move the
line back by a small amount, and we get the desired representative x-line that
is in exactly same relation to all the vertices as the actual x-line.

We can perform the same procedure with the y-line. Correctness is proven.

4 Conclusion

In many practical situations, it is important to find the correlation between
the two quantities x and y. Usually, the correlation is estimated based on the
sample values x1, . . . , xn and y1, . . . , yn. Traditional statistical methods assume
that we know the exact values of xi and yi. In practice, the sample values of
x and y come from measurements; measurements are never absolutely accu-
rate, so the measured values x̃i and ỹi are, in general, different from the actual
(unknown) values xi and yi of the corresponding quantities. Often, the only

information that we have about the measurement inaccuracy ∆xi
def
= x̃i − xi

and ∆yi
def
= ỹi − yi of each measurement is the upper bound (∆xi or ∆yi) for

which |∆xi| ≤ ∆xi and |∆yi| ≤ ∆yi. In this case, we only know the intervals
[x̃i −∆xi, x̃i +∆xi] and [ỹi −∆yi, ỹi +∆yi] of possible values of each sample
point xi and yi. Different values xi and yi from these intervals lead, in general,
to different values of the correlation ρ. It is therefore desirable to find the range[
ρ, ρ
]
of possible values of ρ. In general, the problem of computing both end-

points of this range is known to be NP-hard. In this paper, we describe a feasible
algorithms for computing one of the endpoints – the one that corresponds to
the largest absolute value |ρ|.
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