
VisKo: Semantic Web Support for Information
and Science Visualization

Nicholas Del Rio and Paulo Pinheiro da Silva

The University of Texas at El Paso, Computer Science,
500 W. University Ave. El Paso TX 79968 USA

Abstract. Specialized knowledge in visualization software packages such
as Visualization Toolkit (VTK), Generic Mapping Tools (GMT), and
NCAR Command Language (NCL) is almost always a requisite for writ-
ing applications that visualize datasets or information. Technical under-
standing of visualization packages including rendering capabilities and
data format ingestion is needed before it can be determined whether a
package can satisfy some set of visualization requirements. Even after
identification of satisfactory visualization packages, an application must
still be built on packages that generate the required visualizations.
Visualization Knowledge (VisKo) modularized ontology set encodes knowl-
edge about visualization software packages using semantic Web technolo-
gies (e.g., RDF, OWL, and Pellet) in order to facilitate the scientist task
of visualizing data and information. In the presence of VisKo, users may
move away from writing visualization applications and move towards
an environment where they can request for visualizations declaratively
and without being fully aware of a wide range of visualization package
implementation details.
The use of VisKo ontologies is supported by a fully implemented envi-
ronment composed of a query language, a visualization knowledge base,
and a set of visualization services. The VisKo ontology and supporting
environment has been in use by many scientific initiatives including visu-
alizing artifacts associated with a seismic tomography, gravity anomalies,
and brightness temperature.

1 Introduction

Writing visualization applications requires a culmination of skills held by sci-
entists, visualization experts, and engineers. Scientists may know what views
(i.e., graphical analogues not relational database views) suit a particular data
whereas visualization experts may know about third party visualization packages
that generate and render required views. Once views are chosen and supporting
visualization packages targeted, engineers then need to understand how to inte-
grate visualization packages into custom applications that visualize datasets or
information. This visualization knowledge associated with scientists, visualiza-
tion experts, and engineers is what VisKo provides ontologies for encoding.

Applications built on existing visualization packages usually share some struc-
ture: data must be transformed into formats that can be ingested by the visu-
alization packages, renderers must be configured by arguments sets, and finally,



rendered views may be further transformed into formats suitable for viewers (i.e.,
applications that present the visualizations to users). Once users have researched
visualization software packages, experimented with prototype applications, and
finally matured the prototypes into useful visualization applications, the knowl-
edge gained from the experience of writing the application is either encoded into
the application itself in the form of imperative code, or locked inside the minds
of the users who developed the application. Although it can be useful to learn
how to write visualization applications through inspection of example code, ide-
ally the knowledge required to write visualization applications would be made
available in some canonical form separate from executable code. With access
to visualization knowledge encoded by VisKo ontologies, inferencing systems
might be able to reuse the knowledge to automate the development of similar
visualization applications or reconfigure existing applications for new purposes.

The paper highlights the VisKo ontology set in the context of a use case
for visualizing gravity datasets described in Section 2. Section 3 introduces the
concept of third party visualization packages known as a toolkits and describes
how toolkit functions are assembled into applications known as pipelines. Section
4 presents the VisKo ontology and how it serves as a grammar of a canonical
language used to describe different visualization toolkit pipelines. Section 5 dis-
cusses how we reason with toolkit descriptions encoded in VisKo language to
answer visualization queries, which provide a declarative alternative for writing
imperative code. Section 6 discusses some issues with our approach while Section
7 provides some related work. The paper concludes with Section 8.

2 Gravity Map Use Case

Gravitational anomalies or features are highlighted when data is visualized as a
contour map or colored contour map because users can quickly identify where
spikes exists by finding regions on the map containing a high diversity of colors
or contour lines close in proximity. A contour map visualization of gravity data
is presented in Figure 1 and a sequence of high level tasks in Figure 2 describes
how these kinds of contour maps can be generated.

Gravity data is sourced from the Pan American Center for Earth and Envi-
ronmental Science (PACES) data store [20], which provides access to datasets as
a collection of XYZ records plus some metadata related to stations. XYZ data
records can be broken down into two components: a 2D spatial coordinate (i.e.,
XY or longitude and latitude) and the associated scalar (i.e., Z) thus classifying
gravity data as 2D. Section 3 describes the different kinds of third party visu-
alization packages that render contour maps and describes how the high level
tasks in Figure 2 are implemented as pipelines using the toolkits.

3 Visualization Toolkits, Operators, and Pipelines

Visualization packages or toolkits as they are commonly referred to, provide
reusable sets of visualization functions referred to as operators [5]. Below is a list



Fig. 1. Gravity Contour Map

Fig. 2. Task description on how to build a gravity contour map

Task Description
1. Gather: Gather the raw gravity dataset readings for the specified region

of interest. The data provided by Pan American Center for Earth
and Environmental Sciences (PACES) [20] gravity database
is tabular and formatted in ASCII.

2. Filter: Filter the raw gravity dataset readings by removing unlikely and
duplicate point values. Unlikely values are those readings that
fall outside of some range specified by the scientists.

3. Grid: Create a uniformly distributed dataset by applying a gridding
algorithm. Typically, in order to generate contour lines, the
underlying data must be uniformly distributed (i.e., a surface).

4. Contour: Extract isolines from the uniformly distributed dataset and
possibly fill in areas with color associated with a color map

5. Annotate: This optional task includes adding a legend/color scale to the map.
For non colored contour maps (i.e. only isolines) contour labels
on the map may suffice. For color maps, color scales may be required.

of toolkit operators and their associated function.

– transforming: converting datasets from one format to another format. Meta-
data may be lost during transformations if the new format does not support
metadata.

– filtering: removing data points (if operating in value state) or removing vox-
els/pixels (if working in view state) [5]

– gridding: interpolating data points needed to create a grid structure. Many
operators that extract isolines and volumes require the input data to be
stored as a regular or irregular grid.

– mapping: extracting view geometries such as isolines, surfaces, and volumes
from datasets



– rendering: projecting geometries into pixels

– annotating: integrating metadata descriptions or legends into the view

– viewing: presenting rendered artifacts to the screen for viewing or further
manipulation (i.e., zoom, crop, rotate)

From the list, mapping, rendering, and viewing are most related to visualiza-
tion because they are responsible for extracting and processing required views.
Other operations such as transforming, filtering, and gridding may be common
among scientific processing in general but in the scope of visualization serve pri-
marily as a means for tailoring the input dataset into a form that can be mapped,
rendered, and viewed; this distinction is made in [5]. It is up to the user to be
able to distinguish between the different operator types and understand which
mappers and renderers can generate the desired view. To complicate matters,
most toolkits support large number of operators, from 60 supported by Generic
Mapping Tools (GMT) [24] to over well over 200 supported in Visualization
Toolkit (VTK) [21] and NCAR Command Language (NCL) [12]. Additionally,
the different classes of operators are not disjoint; many toolkits support compos-
ite operators, which are single modules that serve more than one function. GMT
for example has operators that perform both gridding and format transforma-
tions, while NCL contains operators that both extract geometries (i.e., mapping)
and incorporate annotations with legends and toolbars into these geometries.
Additionally, viewers like GhostScript can both render geometries specified in
PostScript files and present resultant images to the screen for further operations
such as zooming.

Finally, toolkits tend to provide sets of operators that serve only a specific
visualization goal such as 3d rendering (e.g., VTK) [21], 2d maps (e.g., GMT,
NCL) [24, 12], speed-up due to parallel processing (e.g., VTK) [15, 21], graphi-
cal user interface (GUI) composable (e.g., IBM Explorer, IRIS, and ParaView)
[17, 13, 15], or renderings specific to information (e.g., Visualization Spread-
sheet, Titan VTK, Prefuse) [6, 25, 14]. With such diversity of views, toolkits,
and operator sets, users may need to expend substantial effort researching each
toolkit through reading manuals, trial and error programming, or consultation
with a visualization expert.

Once a toolkit is finally selected, users are responsible for writing programs
that correctly interface with the toolkit operators. These programs need to or-
chestrate the sequential execution of operators into sequences known as visu-
alization pipelines. A property of visualization pipelines is that each operator
output feeds as input into the next operator specified in the sequence (i.e., unix
pipes). Although visualization pipelines can be supported by different toolkits,
commonalities between pipelines usually exist:

1. first stages of pipelines are usually responsible for transforming source data
into a common data model

2. pipeline stages usually consist of mappers and renderers and although the
rendering process itself can be described as a sub pipeline, most toolkits
abstract this process into a single operation



3. final pipelines stages may contain transform rendered data into a format
that viewers know how to present

Despite similarities among pipelines, these similarities are mainly found at a
conceptual level and it may be difficult to realize the pipeline similarities in
software because of implementation nuances such as:

– object instantiation code: if the orchestrating language is object oriented,
some code is required to manage object resources

– transformation code: if the source dataset cannot be directly ingested by the
renderer

– interfacing code: if the target toolkit operators are not accessible through
simple function or method calls by the orchestrating language

– argument setting: some arguments of toolkit operators are not simple scalars
but rather mathematical functions such as VTK opacity and color functions
that control rendering

– granularity of operators: a single operator may implement many different
tasks or a single task may be implemented by a set of operators

3.1 Generic Mapping Tools Pipeline

GMT supports a set of operators specific for visualizing 2D datasets (i.e., scalars
referenced by 2D spatial/temporal coordinates). A pipeline containing both
GMT and GhostScript executables is shown in Figure 3, which is generates
gravity map visualizations specified in Section 2. In Figure 3, gravity datasets

Fig. 3. GMT Pipeline that visualizes gravity data as a 2D contour map

Operator Associated Parameters Description
1. GNU awk columns filters metadata from XYZ columns
2. nearneighbor.exe spacing, radius generates uniform grid in netCDF
3. grdContour.exe interval, projection generates contour map
4. ps2pdf.exe none converts PostScript to PDF

are filtered by awk remove header information related to the gravity dataset.
The cleaned point data is then gridded by nearneighbor.exe, which generates a
uniform point distribution encoded in netCDF [19]. The parameter grid spacing
refers to spacing between points in the resultant grid while search radius spec-
ifies the circular area used for collocating points considered in interpolations.
grdContour extracts isolines from the grid and is configured by contour interval
that controls the number of generated contours and projection that specifies how
the contour lines are placed onto a curved surface in 2D space (i.e., the Earth);
valid arguments for a projection include Mercator and Lambert. The isoline ge-
ometric definitions are encoded in a postscript file, which is transformed into a
PDF document by the GhostScript operator ps2pdf.exe.



Figure 1 was actually generated by the GMT pipeline and it is important
to note that some properties of the map such as the labeling of the axes were
generated without being specified. In the case of underspecified arguments, GMT
rolls back to using default configurations. Although the Associated Parameters
column represents only a subset of the actual configurations available for each
operator, these parameter dont have any default arguments and must be specified
by users.

3.2 NCAR Command Language Pipeline

Like GMT, NCL provides many operators that support the visualization of 2D
data, although NCL provides renderings of 3D data as well. Figure 4 presents
an NCL pipeline that generates a gravity contour map. The pipeline is very

Fig. 4. NCL Pipeline that visualizes gravity data as a 2D contour map

Operator Associated Parameters Description
1. readAsciiTable dimensions, delimiter reads in ascii data
2. csa2 array of coordinates approximates cubic spline
3. gsn-csm-contour-map map/annotation configurations generates contour map
4. ps2pdf.exe none converts PostScript to PDF

similar to GMT: the ascii-tabular gravity data must be transformed to a format
that can be ingested by the gridding operator csa2. Once gridded, isolines can be
extracted and the output geometry encoded in PostScript. gsn-csm-contour-map
operator can be configured by over 30 different argument values to control the
contour map rendering and annotations, such as title and color bar orientation
and dimensions.

3.3 GMT vs NCL

Disparities in toolkit architectures are not evident in these different pipeline
examples. However, if we had added the requirement that a legend must accom-
pany the contour map, we would start to see different architecture philosophies:
to modularize or parameterize. GMT provides a relatively cohesive set of op-
erators compared to NCL, which provides more powerful functions that expose
highly configurable parameter sets. For example, GMT has separate operators
for generating raster images, contour maps, and map annotations such as ti-
tles, legends, and color scales. The single NCL operator gsn-csn-contour-map
supports all these functions and a possible limitation to this flexibility is that
users need to understand that although the operator label may indicate that
it can generate contour maps, it is actually capable of generating much more.
VisKo aims to describe the functionality provided operators to avoid this kind
of ambiguity.



4 Visualization Ontology

The Visualization Knowledge (VisKo) ontology defines a canonical visualiza-
tion language from which to describe different views, functionalities provided by
different visualization toolkit operators, and parameter sets. The collections of
views, operator, and parameter descriptions comprise our visualization knowl-
edge base, and are used by inferencing agents to automate visualization pipeline
composition. The ontology defines different graphical representations of data
and information such as isolines, isosurfaces, volumes, networks, and graphs.
The ontology also defines the different kinds of operators described in the pre-
vious Section 3 and what data they can operate on without defining any execu-
tion specific properties. Regarding execution, OWL-S [8] is used to supplement
the conceptual operator concepts with execution specific concepts and proper-
ties. To distinguish between different visualization concerns, the visualization
conceptual space is decomposed and defined by three ontologies: VisKo-View,
VisKo-Operator, and VisKo-Service.

The following describes the different VisKo ontologies and presents a UML-
like notation describing their structure, where boxes represent concepts, purple
arrows indicate ”isTypeOf” relationships between concepts, and black arrows
indicate relationships between concepts specified by a label.

4.1 VisKo-View

Figure 5 refers to different graphical embodiments of data or information such
as contour maps, volumes, charts, and networks. The ontology classifies these
views according to whether they are constructed from geometric primitives such
as points, lines, polygons, and grids or constructed from higher level graphi-
cal constructs such as boxes or other figures and connectors. The distinction
between view types is expressed in the ontology by the definition of two view
specializations: GeometricBased and LayoutBased, which have either hasGeom-
etry or hasLayout properties respectively. The range of the hasGeometry prop-
erty is geometric definitions defined in an ESIP datatype ontology [11]. Future
work includes further characterizing views according to the set of attributes they
support such as color, opacity, shadowing, orientation, position, and projection
[23, 2]. In order to allow users to request for visualizations without having any
regard for implementation details such as specific service parameters, we need
a link between view attributes and operator parameters that set or configure
those view properties. For example, VTK parameters such as xRotation, con-
trols the amount a view is rotated about on the X axis, but this parameter can
be associated with the more general concept orientation.

4.2 Operators

Figure 6 defines different classes of operators: viewers, mappers, and transform-
ers, and declares a common property, operatorsOn, which declares what data



Fig. 5. View Ontology

format an operator processes. Viewers are responsible for presenting a gener-
ated view and possibly rendering the view onto the screen and include a range
of applications such as Adobe PDF Viewer, Ghostscript, and Web browsers.
Other, more visualization centric viewers, include applications such as the VTK
ParaView [15]. The benefit of specialized 3D viewers such as ParaView is that
they support richer interactions by allowing users to rotate, scale, and even
change colors and opacity on the fly [7]. However, our current ontology does not
define the concept of an interactive viewer.

Mappers, such as grdContour identified in Figure 3, are responsible for ex-
tracting view geometries from data or formatting information into a layouts such
as networks and trees. Mappers are a specialized kind of Transformer, because
the extracted geometry or layout is usually encoded in specialized format dif-
ferent from the input data format. As the name implies, Transformers such as
ps2pdf.exe identified in Figure 3 are responsible for simply transforming datasets
form one format into another. The Format concept is reused from the Proof
Markup Language (PML-P) provenance ontology [18].

In VisKo, all operators are either atomic or composite, in which case a single
operator performs many different functions. This concept is needed especially
in the case of toolkits like NCL, in which single operators are responsible for
generating a variety of different visualizations and support various annotations
such as legends and color scales.

4.3 Services

The operator ontology presented does not define concepts related to execu-
tion. To compensate, the operator imports the Ontology Web Language Ser-
vice (OWL-S) ontology [8], which defines a comprehensive set of concepts and
properties needed for describing executable Web services. So long as our visual-
ization operators are exposed as Web services, OWL-S bridges the gap between
VisKo-Operator descriptions and their executable counter parts. Thus in order to



Fig. 6. Operator Ontology

effectively use the VisKo ontology to describe executable pipelines, all operators
must have at least one Web service implementation. For example, the operators
comprising the pipeline in Figure 3 and 4 would need to be implemented as Web
services. While OWL-S ontology defines the notion of a service, the VisKo service
ontology presented in Figure 7 extends the OWL-S service concept to include
a property implementsOperator and thus effectively links operators to services.
The separation between operators and service implementations presents an op-
portunity for a single operator to be implemented by many different services,
perhaps supported by different toolkits or services with different performance
profiles.

Other concepts defined in Figure 7 include toolkit, which represents the differ-
ent visualization toolkits such as GMT, NCL, and VTK. Services are supported
by a particular toolkit and this information is useful if users want to construct
pipelines supported by services of only a single toolkit. In general however, hy-
brid pipelines described in Section 6 are possible. Finally, the service ontology
also defines a Profile, which is a sort of default configuration for visualizing data
or information of a particular semantic type such as: Gravity, Magnetic, Veloc-
ity, etc. Profiles contain bindings of parameters with default argument values
and are useful when users are unsure of what arguments to assign to service
parameters.

4.4 Composition Rules

The VisKo ontologies described are only used to describe the different aspects
of a visualization pipeline but do not contain knowledge about how to compose
pipelines. VisKo relies on OWL rules to identify possible pipelines, given our
knowledge base. Consider our search space as a graph where nodes represent
formats and edges represent different operators. In order for an operator edge o
to exist between format nodes A and B, edge o must represent an operator that
operatesOn format A and trasformsTo format B. Thus our search graph contains



Fig. 7. Service Ontology

all possible combinations of transformations where only a subset of the paths
yield meaningful visualizations and the OWL rules make these paths explicit.

Provided we know what view a user wants their data projected as, what
viewer they want to use to interact with the view, and what format their current
dataset resides in, we can search for pipelines of operators that can generate the
view and transform it into a format that the viewer can present. Consider the
pseudo code below that identifies such pipelines:

Fig. 8. Search Pipelines Functions

Functions description
mappedBy(view) returns mapper that generates View
operatesOn(operator) returns format ingested by operator
transformsTo(operator) returns format output by operator
depthFirstSearch(KG, sFormat, eFormat) returns edges (i.e., operators)

that link sFormat to eFormat
by traversing KG (i.e., knowledge graph)
and beginning from sFormat node

– findPipelines(KG, inputFormat, view, viewer)
– mapper ← mappedBy(view)
– targetFormat ← operatesOn(mapper)
– pipeline1 ← depthFirstSearch(KG, inputFormat, targetFormat)
– inputFormat ← transformsTo(mapper)
– targetFormat ← operatesOn(viewer)
– pipeline2 ← depthFirstSearch(KG, inputFormat, targetFormat)
– fullPipeline ← pipeline1 + pipeline2

This simple function findPipelines identifies the format operated on by the
mapper that generates the required view and performs a depth first search on
the knowledge graph to identify a path from the inputFormat node to the tar-
getFormat node. It then repeats the process to identify a path from the format



output by the mapper to the format operated on by the specified viewer. The
algorithm can be expressed by OWL rules using property chaining and transi-
tivity, and it is in this form that our algorithm is expressed. The following horn
rules are in a more human friendly format than the RDF/XML format they
reside in. Inference engines such as Pellet apply the composition rules to our

Table 1. Pipeline Composition Rules

isOperatedOnBy(?Fmt1, ?A) :- operatesOn(A, Fmt1)
canBeTransformedTo(?Fmt1, ?Fmt2) :- isOperatedOnBy(Fmt1, A),

transformsTo(A, Fmt2).
canBeTransformedTo(?Fmt1, ?Fmt2) is a transitive rule

knowledge base and infer the pipeline paths. The derivation trace that Pellet
used to infer canBeTransformedTo clause will tell us the order of operators (i.e.,
our pipeline) needed to transform our input format into the format required by
the view mapper. Note however, that the rules prescribe no method for gathering
the augment set that will feed into the operators of the pipeline. VisKo relies
on separate methods for determining the appropriate argument set described in
Section 5

5 VisKo In Use

5.1 Encoding Gravity Map Visualization Operators

Using VisKo concepts and properties, we can describe toolkit functions such
as GMT and NCL. Figure 9 shows statements in our visualization language
describing the operators comprising the GMT pipeline in Figure 3.

Fig. 9. GMT Operators Description

Operator Subject Predicate Object
nearneighbor.exe nearneighbor.exe is a transformer

nearneighbor.exe operatesOn tabular-ascii
nearneighbor.exe transformsTo netCDF

grdContour.exe grdContour.exe is a Mapper
grdContour.exe mapsTo isolines
grdContour.exe operatesOn netCDF
grdCotnour.exe transformsTo PostScript

ps2pdf.exe ps2pdf.exe is a Mapper
ps2pdf.exe operatesOn PostScript
ps2pdf.exe transformsTo Portable Document Format



The statements are triples where, the operator in question (i.e., the subject)
is described in terms of its relationship (i.e., predicates) to other objects. In our
framework, these descriptions are actually encoded in RDF/XML and it is these
descriptions that comprise our knowledge base that the Pellet reasoner applies
our composition rules to.

5.2 Inferring Pipelines

Given the knowledge description in Figure 9, the Pellet reasoner could apply
the inverse and transitive property rule in Figure 1 to infer the following state-
ments about the operators. Given this set of inferences, we can easily query

Fig. 10. Inferred Statements

Subject Predicate Object
tabular-ascii isOperatedOnBy nearNeighbor.exe
netCDF isOperatedOnBy grdContour.exe
PostScript isOperatedOnBy ps2pdf.exe
tabular-ascii canBeTransformedTo netCDF
tabular-ascii canBeTransformedTo PostScript
tabular-ascii canBeTransformedTo Portable Document Format
netCDF canBeTransformedTo PostScript
netCDF canBeTransformedTo Portable Document Format
PostScript canBeTransformedTo Portable Document Format

whether a dataset in a given format can be transformed to a format operated
on by some mapper or viewer. If in fact a format can be transformed to another
target format, we can access sequence of steps used to derive the canBeTrans-
formedTo statements and extract the sequence of operators (i.e. pipeline) that
could perform the transformations.

5.3 Pipeline Execution

One a pipeline has been identified and before it is executed, we must configure
the operators composing the pipeline with an appropriate argument set. On ap-
proach is to simply rely on the default values specified in a Profile described in
Section 4. Based on the semantic type of the dataset being visualized, a VisKo
module will retrieve the corresponding profile and extract the arguments speci-
fied in profile. These arguments will then be passed to the operators as they are
executed one-by-one. Another approach is to allow the users to explicitly specify
these parameter arguments by prompting them as the pipeline is being executed.
Or even yet another approach is to let the users query for their visualization by
providing a set of specifications the visualization must satisfy (described in the
next section), including parameter value bindings. Any parameters that were left



unspecified could be bound with the parameter bindings in the profile, similarly
to how GMT toolkit defaults to a base configuration.

5.4 Visualization Query

Given that VisKo can assemble pipelines from a knowledge base provided some
information such as the requested view and viewer, we might consider the possi-
bility of having users declare for visualizations declaratively. In Structured Query
Language (SQL) [16] relational database setting, declarative SQL queries are
transformed into query plans (i.e. pipelines of relational algebra operators) that
compute or fetch the information requested in the query. With VisKo, we are
afforded the same opportunities for such an environment: users can request for
visualizations by only declaring the desired view and viewer, along with some
information about the input data such as the semantic type and format, and
VisKo will synthesize a visualization pipeline that generates the requested view
in a format that the viewer can ingest [9]. Users can specify for visualization
without specifying any execution specific details such as services or operators.

6 Hybrid Pipelines

Some of the operators composing the two pipelines presented in Section 3 can
be interchanged with each other. For example, the GMT operator nearneigh-
bor.exe outputs netCDF grids, which can then be read into NCL and used by
gsn-csm-contour-map to generate a contour map. Similarly, the gridded out-
put of NCL operator csa2 can be written as a netCDF file and fed into GMT
grdContour.exe to generate a contour map. The resultant hybrid pipelines are re-
sults of our canonical descriptions which overcomes the limitations of having the
toolkit operators exposed in their source languages. The advantages of hybrid
pipelines may have to do with performance; perhaps you prefer the quality of
some toolkit’s plotting capabilities, but know of another toolkit’s interpolation
routine that is superior in performance.

7 Related Work

Duke and Brodlie [10] proposed a visualization ontology that was initially sketched
in a workshop report [1]. In this work they describe visualization in similar terms
as VisKo: visual representations (i.e., views), techniques and renderings (i.e., op-
erators), and services Additionally, they describe how a visualization ontology
might be segmented according to different concerns: World of Representation,
World of Users, World of Data, and World of Techniques, which in our ontology
correspond roughly to VisKo-view, visualization queries, types and formats, and
VisKo-operator respectively. Duke and Brodlie [10] also speak of a separation
of concerns between logical and physical layers, where logical layers may refer
to our conceptual description of pipeline operators and the physical layer may



correspond to our OWL-S services. If this is the case, then VisKo has found a
use for OWL-S to supplementing the Brodlie ontology with execution specific
modelling concerns. Another interesting similarity is that neither of our ontolo-
gies distinguishes between information and scientific visualization in order to
describe the visualization conceptual space.

To the best of our knowledge, Duke and Brodlie have not actually employed
their ontology to construct an RDF knowledge base of executable visualization
modules. Where the Duke and Brodlie ontology ends at conceptual pipelines,
which may not have executable bindings, VisKo continues to describe executable
details associated with real visualization toolkits and relies on concepts such as
Toolkit, Service and Parameter Binding. Additionally, we are not aware that
Duke and Brodlie have defined any rules that help compose pipelines and thus
automate the visualization process.

Other authors have proposed models for the purpose of taxonomizing the
set of available visualization techniques. Shneiderman proposed a visualization
model in terms of two dimensions: task and data type. Given these dimensions,
users could look up what kind of visualization would suit a specific task (i.e.,
browsing or searching) and kind of data you were working with (i.e., 1D, 2D,
3D, or 4D) [22]. This model however did not describe the visualization process
itself but provided more of a direct mapping between a kind of data and tech-
nique for how it should be rendered. A more process oriented model is Chi’s
Data State Model [5, 4], which characterizes different visualization techniques
according to how data is transformed from its raw value (i.e., initial state) to
the view (i.e., final state). Although the data state model can be used to classify
visualization techniques [3], there are two systems that actually implement the
model, Visualization Spreadsheet [6] and Prefuse [14].

The Data State model classifies operators only as a tranformers or in State
and VisKo embraces the notion of transformers; an operator that progresses data
in some state to a state closer to the view. VisKo assumes that as the data state
changes so does its format, and this function of transformers is captured in the
VisKo ontology. In the future, VisKo might provide a definition for the concept
filter, a kind of inState operator. Because inState operators do not progress data
towards the view state, it is difficult to infer when to inject these operations into
the pipelines, unless explicitly requested by the user.

There has also been work in defining declarative languages for specifying
visualizations. Protovis is one such tool that allows users to associate components
of their datasets, such as variables, coordinates, and meta-data with different
kinds of graphical marks such as bars, dots, and lines. Users of Protovis declare
these mappings of data to marks using a language that is defined at a higher level
than what is provided by graphical programming languages such as OpenGL,
which require users to specify graphics in terms of points, lines, and polygons.
However, the Protovis language is still flexible enough for users to specify a
large number of customized charts, graphs, and networks. The goal of VisKo
queries is the same as Protovis; we want to alleviate user from having to write
visualization code and focus primarily on configuring what view they want. The



two systems however define views at different granularities. Protovis users are
provided with the capability of specifying custom views whereas VisKo users
can only configure existing kinds of views. In fact, VisKo users can only request
and configure views generated by mapper operators and so the set of supported
views is directly limited by the number of mapper operators described in the
knowledge base.

8 Conclusions

VisKo ontologies have been used to model visualization processes, providing a
way for scientists to encode their knowledge about visualization toolkits and for
machines to facilitate the scientists’ task of building visualization pipelines. The
paper described how visualization pipelines were automatically derived by OWL
reasoners through the application of a set of pipeline composition rules to en-
coded visualization knowledge. These pipelines although conceptual, may have
an executable binding, in which case VisKo provides a fully implemented infras-
tructure that automates the process of generating visualizations. We have shown
that in the presence of these capabilities, scientists can declaratively request for
visualizations without specifying any executable details such as what operator
or services should participate in the generation of requested visualizations.

Acknowledgements

We would like to acknowledge the support for this work granted by the CYBER-
ShARE Center for Excellence.

References

1. K. W. Brodlie. Visualization Ontologies.
http://www.nesc.ac.uk/talks/393/vis ontology report.pdf.

2. S. K. Card and J. Mackinlay. The structure of the information visualization design
space. In Proceedings of the 1997 IEEE Symposium on Information Visualization
(InfoVis ’97), pages 92–, Washington, DC, USA, 1997. IEEE Computer Society.

3. Ed H. Chi. A taxonomy of visualization techniques using the data state reference
model. In INFOVIS ’00: Proceedings of the IEEE Symposium on Information
Vizualization 2000, page 69, Washington, DC, USA, 2000. IEEE Computer Society.

4. Ed H. Chi. Expressiveness of the data flow and data state models in visualization
systems. In AVI ’02: Proceedings of the Working Conference on Advanced Visual
Interfaces, pages 375–378, New York, NY, USA, 2002. ACM.

5. Ed Huai-hsin Chi and John Riedl. An operator interaction framework for visu-
alization systems. In INFOVIS ’98: Proceedings of the 1998 IEEE Symposium
on Information Visualization, pages 63–70, Washington, DC, USA, 1998. IEEE
Computer Society.

6. Ed Huai-hsin Chi, John Riedl, Phillip Barry, and Joseph Konstan. Principles for
information visualization spreadsheets. IEEE Comput. Graph. Appl., 18(4):30–38,
1998.



7. M. C. Chuah and S. F. Roth. On the semantics of interactive visualizations. In
INFOVIS ’96: Proceedings of the 1996 IEEE Symposium on Information Visual-
ization (INFOVIS ’96), page 29, Washington, DC, USA, 1996. IEEE Computer
Society.

8. et. al. David Martin, Mark Burstein. OWLS: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/.

9. Nicholas Del Rio and Paulo Pinheiro da Silva. Visualization queries. Technical
Report, 0, 2010.

10. D. J. Duke, K. W. Brodlie, and D. A. Duce. Building an ontology of visualiza-
tion. In Proceedings of the conference on Visualization ’04, VIS ’04, pages 598.7–,
Washington, DC, USA, 2004. IEEE Computer Society.

11. Earth science information partners (esip) federation datatype ontology.
http://wiki.esipfed.org/index.php/Data-Service-Ontologies.

12. National Center for
Atomospheric Research (NCAR). NCAR Command Language (NCL) Reference
Manual. http://www.ncl.ucar.edu/Document/Manuals/Ref Manual/.

13. David Foulser. Iris explorer: a framework for investigation. SIGGRAPH Comput.
Graph., 29(2):13–16, 1995.

14. Jeffrey Heer. Prefuse: a toolkit for interactive information visualization. In In
CHI 2005: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 421–430. ACM Press, 2005.

15. Alan Heirich, Bruno Raffin, and Luis Paulo Dos Santos. Remote large data visu-
alization in the paraview framework, 2006.

16. International Organization for Standardization (ISO). SQL Part 2: Foundation
(SQL/Foundation), 2008.

17. Bruce Lucas, Gregory D. Abram, Nancy S. Collins, David A. Epstein, Donna L.
Gresh, and Kevin P. McAuliffe. An architecture for a scientific visualization sys-
tem. In VIS 92: Proceedings of the 3rd conference on Visualization 92, pages
107–114, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

18. Deborah McGuinness, Li Ding, Paulo Pinheiro da Silva, and Cynthia Chang.
PML2: A Modular Explanation Interlingua. In Proceedings of the AAAI
2007 Workshop on Explanation-aware Computing, Vancouver, British Columbia,
Canada, July 22-23 2007.

19. Network common data form netcdf.
http://www.unidata.ucar.edu/software/netcdf/.

20. Pan merican center for earth and environmental studies.
http://research.utep.edu/Default.aspx?alias=research.utep.edu/paces.

21. Will Schroeder, Kenneth M. Martin, and William E. Lorensen. The visualization
toolkit (2nd ed.): an object-oriented approach to 3D graphics. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1998.

22. Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In VL ’96: Proceedings of the 1996 IEEE Symposium on Visual
Languages, page 336, Washington, DC, USA, 1996. IEEE Computer Society.

23. M. Tory and T. Moller. Rethinking visualization: A high-level taxonomy. pages
151 –158, 2004.

24. P. Wessel and W. H. F. Smith. New, improved version of generic mapping tools
released. EOS Transactions, 79:579–579, 1998.

25. Brian Wylie and Jeffrey Baumes. A unified toolkit for information and scientific
visualization. In VDA, page 72430, 2009.



This article was processed using the LATEX macro package with LLNCS style


