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Abstract. To formalize some types of non-monotonic reasoning in
physics, researchers have proposed an approach based on Kolmogorov
complexity. Inspired by Vladimir Lifschitz’s belief that many features
of reasoning can be described on a purely logical level, we show that an
equivalent formalization can be described in purely logical terms: namely,
in terms of physical induction.
One of the consequences of this formalization is that the set of not-
abnormal states is (pre-)compact. We can therefore use Lifschitz’s result
that when there is only one state that satisfies a given equation (or system
of equations), then we can algorithmically find this state. In this paper,
we show that this result can be extended to the case of approximate
uniqueness.
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1 Non-Monotonic Features of Physics Reasoning and
their Formalization Based on Kolmogorov Complexity

Non-monotonic features of physics reasoning. Many areas of physics –
ranging from quantum physics (the physics of microscopic objects) to cosmology
(the physics of very large-scale objects) – have well-defined well-studied mathe-
matical equations and models. At first glance, one may get an impression that
these equations are all we need to make conclusions about the physical world. In
practice, however, in addition to equations and precise logical conclusions, physi-
cists also use intuitive informal reasoning – some of which is non-monotonic.
Specifically, they believe that not all solutions to the corresponding equations
are physically meaningful – only those solutions which are, in some reasonable
sense, “typical” (“not abnormal”). Let us give a few examples of such reasoning;
for details, see, e.g., [7].

First example: statistical physics. The first example comes from the study of
micro-objects, namely, from statistical physics. According to modern physics, all



the molecules that form a gas are constantly in random motion. It is, in principle,
possible that due to this motion, all the molecules of a gas will concentrate in
one half of a vessel. The probability of this event is very low, but still positive;
so, from the purely mathematical viewpoint, this event may occur – we just
have to wait a very long time. Physicists, however, believe that such an event
is simply not possible at all [7]. Their argument is that while mathematically,
such an event is possible, this event is abnormal (atypical), and we should only
consider not-abnormal (typical) situations.

This physicists’ belief may sound unusual, but actually it is in good accor-
dance with common sense. Indeed, if we toss a fair coin many times, then from
the purely mathematical viewpoint, it is possible to have heads a hundred or
even a million times in a row: the probability of this event is small, but if we
wait long enough, it will happen. Similarly, in a state lottery, it is mathemat-
ically possible that the same person wins several times in a row. However, in
practice, if the same individual wins a state lottery several times in a row, then
every person using common sense will conclude that the lottery is rigged.

Second example: cosmology. Our second example comes from cosmology,
the study of very large objects. According to modern physics, the large-scale
state of the Universe is described by the equations of General Relativity. In
principle, these equations allow many different types of solutions. Some of these
solutions correspond to “generic” initial conditions, some to specific “degenerate”
situations. It turns out that all solutions corresponding to the generic initial
conditions have the same asymptotic. Because of this, physicists conclude that
the actual space-time has this same asymptotic – this is the usual picture of the
expansion following the Big Bang. The physicists’ argument is that degenerate
solutions are abnormal, and the actual solution should be not-abnormal; see,
e.g., [15].

Third example: general physical reasoning. One of the most productive
way of making conclusions in physics is to use linearized versions of different
equations. In general, the dependence y = f(x1, . . . , xn) of different physical
quantities on each other is non-linear, but when the values xi are close to some

values x
(0)
i , we can expand the dependence

f(x1, . . . , xn) = f(x
(0)
1 +∆x1, . . . , x

(0)
n +∆xn)

into Taylor series in terms of the differences ∆xi = xi −x
(0)
i and retain only lin-

ear terms in this expansion. The physicists’ usual argument (see, e.g., [7]) is that
quadratic terms are proportional to ∆xi ·∆xj and, since the differences ∆xi are
small, these quadratic terms can be safely ignored. Of course, the Taylor series
contain each quadratic term with a numerical factor. From the purely mathe-
matical viewpoint, this factor can be huge, in which case we can no longer ignore
the corresponding quadratic term. The physicists’ argument is that such situ-
ations are abnormal, and in not-abnormal situations, each factor is reasonably
small.



How to formalize such reasoning: let us start with the simplified ver-
sion of the statistical case. Let us start our description with the simplified
version of the above statistical case. Crudely speaking, the above case means
that if an event has a very small probability, then it cannot happen. Of course,
we cannot take this statement literally: for example, we believe that it is not
possible to have 1000 heads in a row when tossing a coin, but every other se-
quence of 1000 heads and tails has the same probability 2−1000, and surely one
of these sequences will appear if we toss a coin 1000 times.

The simplified statement is that if an event has probability 0, then it cannot
happen. This statement may also sound unusual, but it is an implicit basis of all
real-life conclusions about random events. For example, we usually believe that
for a fair coin, in the limit, the frequency of heads tends to 1/2. How do we justify
this belief? From the purely mathematical viewpoint, the only conclusion that
we can make is that the frequency of heads converges to 1/2 with probability 1,
i.e., that the probability that the frequency does not converge to 1/2 is 0. So,
when we transition from this mathematically justified conclusion to a belief that
for the fair coin, the frequency tends to 1/2, we implicitly use the statement that
events with probability 0 cannot happen.

Similarly, we believe that deviations of the frequency from 1/2 are (asymp-
totically) normally distributed – based on the mathematical result that this
asymptotical behavior occurs with probability 1.

The above implicit statement – that events with probability 0 cannot occur
– is the basis of Kolmogorov-Martin-Löf formalization of the notion of a random
sequence (and, more generally, a random object); see, e.g., [13]. The need for such
a definition comes from the fact that in traditional statistics, there is no definition
of a random sequence, while from the physics viewpoint, some sequences are
random and some are not. What we want from this definition is the ability to
conclude that the random sequence satisfies all the laws of probability: that the
frequency tends to 1/2, that deviations from the frequency are asymptotically
normally distributed, etc. It is therefore reasonable to define a random sequence
as a sequence that satisfies all the corresponding probability laws.

A probability law can be defined as a statement which is true with probability
1 – and whose negation is true with probability 0. Thus, crudely speaking, a
sequence is random if it belongs to every set of probability measure 1 – or,
equivalently, does not belong to every set of probability measure 0. Of course, this
cannot be literally true since for every infinite sequence x, the set {x} consisting
of this very sequence has probability measure 0. To make the above definition
consistent, we must therefore restrict ourselves to sets which are definable in
some reasonable sets. Crudely speaking, a definable set is a set which is uniquely
determined by a statement in some language. Every language has only countably
many words, so if we require that an element does not belong to any definable
set of measure 0, then we dismiss countably many set of measure 0 – i.e., a set
of total measure 0. As a result, almost all sequences are random in this sense.

There are different versions of Kolmogorov-Martin-Löf complexity, depending
on how we define definable sets. For example, if we consider sets which are



computable (in some reasonable sense), then we get an equivalent definition
in terms of Kolmogorov complexity K(s) – the shortest length of a program
that generates a string s. Intuitively, a sequence which is not random – such
as 0101. . . 01 – can be generated by a simple for-loop, while to generate a truly
random sequence, we have to print the corresponding sequence of symbols one
by one – and no shorter program can produce the given random sequence. Thus,
for random strings, the Kolmogorov complexity is close to their length, while
for non-random strings s, the Kolmogorov complexity is much smaller than the
length len(s):K(s) ≪ len(s). It turns out that an infinite sequence x = x1x2 . . . is
random if and only if, in some reasonable sense,K(x1 . . . xn) ≈ len(x1 . . . xn) = n
for all n; see [13] for details.

From simplified version to a full statistical case. How can we formalize
the physicists’ idea that an event with a very small probability cannot occur? We
have already mentioned that we cannot describe this idea by simply fixing some
threshold p0 and requiring that all events with probability < p0 cannot occur.
Instead, it is natural to use the following idea: for every definable decreasing
sequence of events A1 ⊇ A2 ⊇ A3 ⊇ . . ., if the probability P (An) tends to 0,
then there exists an index N for which the probability is so small that this event
cannot occur.

For example, for coin tosses, An is the set of all of the sequences for which
the first n tosses resulted in all heads. Here, clearly, An ⊇ An+1 and P (An) =
2−n → 0, so there exists an N for which having N heads in a row is not possible.

In general, if we have a set X with a probability measure P , then a set
R ⊆ X is called a set of random elements if for every definable sequence of sets
An ⊆ X for which An ⊇ An+1 and P (An) → 0, there exists an integer N for
which AN ∩R = ∅ – i.e., for which no element from the atypical set AN can be
viewed as truly random.

From statistical case to the general description. In our other two exam-
ples, we do not have probabilities. However, we can raise a similar argument.
For example, in our third example, we do not know beforehand how large the
factors need to be for the situation to become abnormal, but we are confident
that some values are too large to be typical. Similarly, we may not know which
human heights are abnormal, but we know that some heights are too large to be
normal.

In all these cases, we can consider the set An of all situations in which (the
absolute values of) some factors exceed n. Here, An ⊇ An+1 and ∩An = ∅,
and we conclude that there exists an integer N for which none of the elements
of the set AN are typical. Thus, we arrive at the following definition; see, e.g.,
[8–10]. For this definition, we need to select a theory L which is rich enough to
contain all physicists’ arguments and at the same time weak enough so that we
will be able to formally talk about definability in L; for a detailed discussion,
see Appendix.



Definition 1. Let L be a theory, and let P (x) be a formula from the language
of the theory L, with one free variable x for which, in the theory L, there exists
a set {x |P (x)}. We will then call the set {x |P (x)} L-definable.

Comment. In the following text, we will assume that the language L is fixed, so
we will simply talk about definability.

Definition 2. Let X be a set. We say that a subset T is a set of typical (not-
abnormal) elements if for every definable sequence An for which An ⊇ An+1 and
∩An = ∅, there exists an integer N for which AN ∩ T = ∅.

Physical induction: an important consequence of the above definition.
As a consequence of the above definition, we get an explanation of physical
induction: the principle that when we have observed some property A sufficiently
many times, then this property must be always true. This is how physical laws
are confirmed: we perform a large number of experiments and/or observations,
and if the hypothetic law is confirmed in all these experiments and observations,
we consider it valid.

The principle of physical induction becomes a theorem if we assume that the
state of the world s is not abnormal. Let A(s, k) mean that the property A was
confirmed during the k-th measurement. Then, physical induction means that
there exists a natural number NA (depending on A) such that if we have A(s, 1),
A(s, 2), . . . , A(s,NA), then A(s, n) holds for every natural number n.

Proposition 1. Let S be a set; its elements are called states of the world. Let
T ⊆ S be a set of not-abnormal elements. Then, for every definable property A,
there exists an integer NA such that, if the state s is not abnormal (i.e., s ∈ T )
and the property A(s, n) holds for all n ≤ NA, then the property A(s, n) holds
for all natural numbers n.

Comment. Physical induction can be described in purely logical terms, as the
following deduction rule:

A(s, 1), A(s, 2), . . . , A(s,NA),¬ab(s)
A(s, n)

,

where ab(s) means that s ̸∈ T .

Proof of Proposition 1. To prove this proposition, let us consider the the
following sequence of sets

An
def
= {s : A(s, 1)& . . . &A(s, n)&¬∀mA(s,m)}.

One can easily see that this sequence is definable, that An ⊇ An+1, and that
∩An = ∅. Thus, by definition of a set of not-abnormal elements, there exists an
integer N for which AN ∩ T = ∅. This means that if s ∈ T , then s ̸∈ AN . So,
if s ∈ T and we have A(s, 1), . . . , A(s,N), then we cannot have ¬∀mA(s,m).
Therefore, when s ∈ T , we have the desired property ∀mA(s,m).



Another important property: the set of typical elements is pre-
compact and so, inverse problems become well-defined. Another im-
portant consequence of the above definition is related to the fact that usually,
we do not directly observe the state of the world s ∈ S, we observe the result
r = f(s) of applying some transformation to this state. We would like to recon-
struct the state s from this observation, as the state s for which f(s) = r, i.e.,
as the value f−1(r), where f−1 denotes an inverse function. This reconstruction
problem is known in physics as an inverse problem.

One of the main challenges related to the inverse problem is that measure-
ments are never absolutely accurate. As a result, instead of observing the exact
combination of values r = f(s), we observe a combination of values r̃ which
is close to r. It would be nice to be able to conclude that the corresponding
reconstructed state f−1(r̃) is close to the actual state s – but for that, we need
the inverse function f−1 to be continuous.

Most physical functions are continuous, so it is reasonable to assume that
the function f is continuous. However, the inverse to a continuous function is,
in general, not continuous. As a result, small changes in the measurement re-
sults can, in principle, lead to drastic changes in the reconstructed state. This
discontinuity is described by saying that the inverse problem is ill-defined; see,
e.g., [17].

To make a definite state reconstruction, physicists often make additional
assumptions about the state: e.g., if we are reconstructing a signal x(t), we
assume certain bounds on the value of the signal and bounds on its derivative.
The set of all the functions that satisfy these bounds form a compact set, and
it is known that for a continuous function f from a compact set, its inverse f−1

is also continuous. Thus, once we impose such a restriction, the inverse problem
becomes well-defined.

We will show that, in principle, there is no need to come up with artificial
compactness restrictions: the mere suggestion that the state s is not abnormal
(in the above precise sense) is sufficient to conclude that the corresponding set
is compact. Let us describe this in precise terms.

Definition 3. By a definable separable metric space, we mean a set X with a
definable metric d(x, y) and a definable sequence {xn} which is everywhere dense
in the set X.

Proposition 2. Let X be a definable separable metric space, and let T ⊆ X be
a set of typical elements. Then, the closure T of this set is a compact set.

Proof of Proposition 2. In a separable metric space, a set C is compact if
and only if it is closed and for each ε > 0, it has a finite ε-net, i.e., a finite
set c1, . . . , cN for which every point c ∈ C is ≤ ε-close to one of these points ci:
∀c∈C ∃i (d(c, ci) ≤ ε). The property that the points ci form an ε-net is equivalent
to the condition that the set C is covered by the union of the corresponding balls:

C ⊆ ∩Bε(ci), where Bε(c)
def
= {x : d(x, c) ≤ ε}.

It is sufficient to prove the existence of an ε-net for rational values ε > 0
(actually, it is sufficient to prove it, e.g., for ε = 2−k).



So, to prove that the closure T is a compact set, it is sufficient to prove
that for every rational number ε > 0, the set T has a finite ε-net. To prove

this, let us consider the following sequence of sets: An = X −
n∪

i=1

Bε(xi). This

sequence is definable – we have just given a definition, and it is easy to prove
that An ⊇ An+1 and that ∩An = ∅. Thus, there exists an integer N for which

AN ∩ T = ∅, i.e., for which T ⊆
N∪
i=1

Bε(xi). Therefore, the elements x1, . . . , xN

form a finite ε-net for the set T . The proposition is proven.

2 First Result: Reformulating the Above Definition of
Typical Elements in Purely Logical Terms

Need for a logical formalization. Our objective is to formalize an important
feature of the physicists’ reasoning. Since logic is what describes reasoning, it is
therefore natural to expect a formalization in terms of logic. Instead, we have
a formalization in terms of sets. It is thus desirable to provide an equivalent
formulation of the above definition in terms of logic.

Possibility of a logical formalization? In searching for such a logical refor-
mulation, I was inspired by the experience of Vladimir Lifschitz who, via his nu-
merous papers, showed that many important things related to human reasoning
can be reformulated in logical terms. First, he worked in constructive mathemat-
ics, the analysis of algorithmic computability of different mathematical objects;
in his research, among other things, he analyzed what can be expressed in the
corresponding (intuitionistic) logic. Then, he started working in logic program-
ming and in the formalization of commonsense reasoning; here, he also showed
that many complex formalisms can be equivalently reformulated in terms of the
corresponding logics.

Towards our result. In our case, there is already a logical consequence: phys-
ical induction. What we will prove here is that physical induction is not just a
consequence of the above non-logical definition, it is actually equivalent to this
definition.

Definition 4. Let X be a set. We say that a property ab(x) describes abnormality
if and only if for every definable property A, the following rule is valid for an
some integer NA (depending on A):

A(x, 1), A(x, 2), . . . , A(x,NA),¬ab(x)
A(x, n)

.

Theorem 1. For every set X and for every property ab(x), the following two
conditions are equivalent to each other:

– the property ab(x) describes abnormality (in the sense of Definition 4), and



– the set {x : ¬ab(x)} is a set of typical elements (in the sense of Definition 2).

Proof of Theorem 1. We have already proven that if the set T is a set of
typical elements in the sense of Definition 2, then the corresponding property
ab(x) ⇔ x ̸∈ T describes abnormality in the sense of Definition 4. So, to com-
plete our proof, we need to show that vice versa, if the property ab(x) describes

abnormality, then the set T def
= {x : ¬ab(x)} is a set of typical elements.

Indeed, let An be a definable sequence of sets for which An ⊇ An+1 and

∩An = ∅. Let us take A(x, k)
def
= x ∈ Ak. The general physical induction

rules means that if we have A(x, 1), . . . , A(x,NA), and ¬ab(x), then we have
∀nA(x, n). In our case, this means that if x ∈ A1, . . . , x ∈ ANA

, and x ∈ T , then
for every n, we have x ∈ An, i.e., we have x ∈ ∩An. Since ∩An = ∅, this means
that it is not possible to have x ∈ A1, . . . , x ∈ ANA

, and x ∈ T . Thus, if we
already know that x ∈ T , then we cannot have x ∈ A1, . . . , and x ∈ ANA , i.e.,
we must have x ̸∈ Ak for some k ≤ NA. For all such k, we have Ak ⊇ ANA

, so
x ̸∈ Ak implies x ̸∈ ANA . Thus, x ∈ T implies that x ̸∈ ANA , i.e., T ∩ANA = ∅.
The theorem is proven.

Comment. It is important to emphasize that physical induction is a meta-rule,
a sequence of rules corresponding to different definable properties A. In general,
it cannot be equivalently reformulated as a rule of second-order logic – which
would mean that this implication holds for all properties A. Indeed, as we will
show, the corresponding second-order logical statement

∀A∃N ∀x ((A(x, 1)& . . . &A(x,N)&¬ab(x)) ⇒ ∀nA(x, n))

implies that only finitely many elements are not-abnormal.
Indeed, let us assume that there are infinitely many not-abnormal elements.

Then, we can find countably many among them. Let us denote these not-
abnormal elements by x1, . . . , xn, . . . Let us select the following property A(x, k):
A(x, k) holds if and only if x = xi and k ≤ i. According to the above second-
order formula, for this property A, there exists an integer N for which, for ev-
ery not-abnormal element x, the condition A(x, 1)& . . . &A(x,N) implies that
A(x, n) holds for every integer n. In particular, this implication is true for a
not-abnormal element xN . For this element, by definition of the property A, we
have A(xN , 1), . . . , A(xN , N), and ¬ab(xN ). Thus, we should be able to conclude
that A(xN , n) holds for every integer n, but by definition of the property A, the
property A(XN , n) does not hold already for n = N + 1.

This contradiction proves that under the second-order reformulation of phys-
ical induction, there are indeed only finitely many not-abnormal elements – and
thus, that this reformulation is not adequate for describing physicists’ intuition.

3 Second Result: Computability from Uniqueness to
Approximate Uniqueness

Uniqueness implies computability: reminder. One of the advantages of
compactness is that in a compact set, if we know that there is only one el-



ement with a certain property – e.g., the property that F (x) = 0 for some
computable function f – then we can algorithmically find this element x.
For example, if we are reconstructing the state s from measurement results
f(s) = (f1(s), . . . , fm(s)) = (r1, . . . , rm) = r, then as the desired function F (x)

we can take the sum of the squares F (x) =
m∑
i=1

(fi(x)− ri)
2.

To describe this result – originally proven by V. Lifschitz [14] – in precise
terms, let us recall the definitions of computable numbers, computable functions,
and computable compact sets; see, e.g., [16, 18] (see also [1–6, 11, 12]).

Definition 5. A real number x is called computable if there exists an algorithm
(program) that transforms an arbitrary natural number k into a rational num-
ber rk which is 2−k-close to x. It is said that this algorithm computes the real
number x.

When we say that a computable real number is given, we mean that we are
given an algorithm that computes this real number.

Definition 6. A sequence of real numbers x1, x2, . . . , xn, . . . is called computable
if there exists an algorithm (program) that transforms arbitrary natural numbers
n and k into a rational number rnk which is 2−k-close to xn. It is said that this
algorithm computes the sequence xn.

When we say that a computable sequence of real numbers is given, we mean
that we are given an algorithm that computes this sequence.

Definition 7. By a a computable metric space, we mean a triple (X, d, {xn}),
where (X, d) is a metric space, {x1, x2, . . . , xn, . . .} is a dense subset of X, and
there exists an algorithm that, given two natural numbers i and j, computes the
distance d(xi, xj).

In other words, we have an algorithm that, given i, j, and an accuracy k,
computes the 2−k-rational approximation to d(xi, xj).

Definition 8. A point x ∈ X of a computable metric space (X, d, {xn}) is called
computable if there exists an algorithm that transforms an arbitrary natural
number k into a natural number i for which d(x, xi) ≤ 2−k. It is said that this
algorithm computes the point x.

A space is a compact set if there is an algorithm that, given ε = 2−k, com-
putes the ε-net:

Definition 9. A computable metric space (X, d, {xn}) is called a computable
compact space if there exists an algorithm that, given an arbitrary natural num-
ber k, returns a finite set of indices Fk ⊂ {1, 2, . . . , n, . . .} such that for every i
there is a f ∈ Fk for which d(xi, xf ) ≤ 2−k.

Many real-life quantities x, y are related by an (efficiently computable) func-
tional relation y = F (x). For example, the volume V of a cube is equal to the
cube of its linear size s: V = F (s) = s3. This means that, once we know the
linear size, we can compute the volume.



At every moment of time, we can only know an approximate value of the
actual quality x ∈ X. Thus, to be able to compute F (x) with a given accuracy
2−k, we must:

– be able to tell with what accuracy we need to know x, and then
– be able to use the corresponding approximation to compute F (x).

We thus arrive at the following definition.

Definition 10. A function F : X → X ′ from a computable metric space
(X, d, {xn}) to a computable metric space (X ′, d′, {x′

n}) is called computable
if there exist two algorithms UF and φ with the following properties:

– the algorithm φ takes a natural number k and produces a natural number
ℓ = φ(k) such that d(x, y) ≤ 2−ℓ implies that d′(F (x), F (y)) ≤ 2−k;

– UF takes two natural numbers n and k and produces a 2−k-approximation
to F (xn), i.e., a point x′

ℓ for which d′(x′
ℓ, F (xn)) ≤ 2−k.

Several computability results are known for computable functions on com-
putable compact spaces.

Proposition 3. There exists an algorithm that, given a computable compact
spaces X and a computable function F : X → R from X to real numbers,
compute its maximum and its minimum on X.

Proof. Indeed, to compute M
def
= maxF (x) with the accuracy 2−k, we must

first use the fact that F is computable and find with what accuracy 2−ℓ we must
compute x to be able to estimate F (x) with the accuracy 2−(k+1). Then, we
use the fact that X is a computable compact space to find a finite 2−ℓ-net. For
each point xi from this 2−ℓ-net, we compute the 2−(k+1)-approximation F̃ (xi)

to the value F (xi). Then, M̃
def
= max f̃(xi) is the desired 2−k-approximation to

M = max f(x). Indeed, since f(xi) ≥ F̃ (xi)− 2−(k+1), we have

M = maxF (x) ≥ maxF (xi) ≥ max F̃ (xi)− 2−(k+1) = M̃ − 2−(k+1).

On the other hand, since the values xi form a 2−ℓ-net, for every value x, there
is an xi for which d(x, xi) ≤ 2−ℓ and hence |F (x)− F (xi)| ≤ 2−(k+1); therefore,
F (x) ≤ maxF (xi)+2−(k+1) for all x and M = maxF (x) ≤ maxF (xi)+2−(k+1).

Here, F (xi) ≤ F̃ (xi) + 2−(k+1) so

M ≤ max F̃ (xi) + 2−(k+1) + 2−(k+1) ≤ M̃ + 2−k.

The proposition is proven.

Proposition 4. [3, 4] If G : X → R is a computable mapping from a computable
compact space X into real numbers, then, for every two rational numbers r and
r′ for which r < r′ ≤ maxG(x), we can algorithmically produce a computable
number α ∈ [r, r′] for which the pre-image {x : G(x) ≥ α} is also constructively
compact (and the corresponding 2−k-nets are also algorithmically produced).



Now, we are ready to reproduce (and prove) Lifschitz’s result that uniqueness
implies algorithmic computability:

Proposition 5. [14] There exists an algorithm that, given a computable function
F : X → IR that has exactly one root x0 (for which F (x0) = 0) on a computable
compact space X, computes this root x0.

Comment. While the result was first proven in [14], we will provide a different
proof of this result, a proof that will be easy to modify to cover our new result
as well.

Proof of Proposition 5. Let us show how to compute the root x0 with a given

accuracy δ > 0. Let us take η =
δ

8
, and build an η-net {p1, . . . , pk} for the

computable compact space X. Let us compute the distances d(pi, pj) between

the points pi with accuracy η. As a result, we get the values d̃(pi, pj) for which∣∣∣d̃(pi, pj)− d(pi, pj)
∣∣∣ ≤ η.

According to Proposition 4, for each i = 1, . . . , k, there exists a value ηi ∈
[η, 2η] for which the ball Bi

def
= Bηi(pi) = {x : d(x, pi) ≤ ηi} is a computable

compact. Due to Proposition 3, we can compute each minimum mi = min
x∈Bi

|F (x)|

with an arbitrary accuracy 2−k. In other words, given an integer k, we can
compute a rational value m̃ik for which |m̃ik −mi| ≤ 2−k.

For each k = 0, 1, 2, . . . we compute these values m̃ik until for all points pi
and pj for which m̃ik ≤ 2−k and m̃jk ≤ 2−k, we get d̃(pi, pj) ≤ 5η. Once such a
k is reached, we return one of the points pi for which m̃ik ≤ 2−k as the desired
δ-approximation to the desired root x0.

Let us prove that this algorithm always converges, and that once it converges,
the produced point pi is indeed a δ-approximation to x0. Let us start with the
second statement. Let us assume that the process converged. Since the points pi
form an η-net, there exists an index j for which d(x0, pj) ≤ η. Since η ≤ ηj , the
root x0 is within the ball Bj = Bηj (pj) and thus, due to |F (x0)| = 0 and |F (x)| ≥
0 for all x, we have mj = min

x∈Bj

|F (x)| = 0. Hence, for the 2−k-approximation

m̃jk to the actual minimum mj = 0, we get m̃jk ≤ 2−k. So, according to our

algorithm, we then have d̃(pi, pj) ≤ 5η. Since d̃(pi, pj) is an η-approximation to

the distance d(pi, pj), we conclude that d(pi, pj) ≤ d̃(pi, pj) ≤ 5η+η = 6η. From
d(x0, pj) ≤ η, we can now get d(x0, pi) ≤ d(x0, pj) + d(pj , pi) ≤ η + 6η ≤ 7η.

Since η =
δ

8
, this implies that d(x, pi) < δ, i.e., that pi is indeed the desired

δ-approximation to the root x0.
To complete the proof, let us show that the algorithm converges. Indeed,

since x0 is the only root, for every ball Bi that does not contain x0, the actual
minimum mi is positive. Let m be the smallest of these positive values, and let k
be such that 3 · 2−k ≤ m. We will show that for this k, the above algorithm will
converge. Indeed, for balls that do not contain x0, we have mi ≥ m ≥ 3 · 2−k.
Since the estimate m̃ik of the actual minimum mi is 2−k-close to mi, we get
m̃ik ≥ mi − 2−k ≥ 3 · 2−k − 2−k = 2 · 2−k > 2−k. Thus, the only points pi which



will be selected by our algorithm as having m̃ik ≤ 2−k are the points for which
the corresponding ball Bi = Bηi(pi) contains x0. Thus, for every selected point
pi, we have d(x0, pi) ≤ ηi. Since ηi ≤ 2η, we get d(x0, pi) ≤ 2η.

Let pi and pj be two such points. Then, we have d(x0, pi) ≤ 2η and d(x0, pj) ≤
2η and thus, d(pi, pj) ≤ d(pi, x0) + d(x0, pj) ≤ 2η + 2η = 4η. Hence, the value

d̃(pi, pj), which is an η-approximation to the actual distance d(pi, pj), satisfies

the inequality d̃(pi, pj) ≤ d(pi, pj)+η ≤ 4η+η = 5η. Thus, the algorithm indeed
stops for this value k (if it has not stopped earlier). The proposition is proven.

From uniqueness to approximate uniqueness. In practice, we may not be
sure that the desired value is unique, we may only be sure that it is approxi-
mately unique – in the sense that for some ε > 0, all the roots are ε-close. Our
second result extends the above computability from the uniqueness case to this
approximate uniqueness case.

Theorem 2. There exists an algorithm that, given a computable function
F : X → IR, a rational number ε > 0 for which all roots of F are ε-close, and
the desired accuracy δ > 0, returns a finite list of points ℓ1, . . . , ℓm for which
d(ℓi, ℓj) ≤ ε+δ and for which every root of F is δ-close to one of these points ℓi.

Proof of Theorem 2. Similarly to the proof of Proposition 5, let us take

η =
δ

8
, and build an η-net {p1, . . . , pk} for the computable compact space X.

Let us compute the distances d(pi, pj) between the points pi with accuracy η.

As a result, we get the values d̃(pi, pj) for which
∣∣∣d̃(pi, pj)− d(pi, pj)

∣∣∣ ≤ η.

Similarly for the previous proof, for each i = 1, . . . , k, there exists a value

ηi ∈ [η, 2η] for which the ball Bi
def
= Bηi(pi) = {x : d(x, pi) ≤ ηi} is a computable

compact. We can therefore compute each minimum mi = min
x∈Bi

|F (x)| with an

arbitrary accuracy 2−k. In other words, given an integer k, we can compute a
rational value m̃ik for which |m̃ik −mi| ≤ 2−k.

For each k = 0, 1, 2, . . . we compute these values m̃ik until for all points pi
and pj for which m̃ik ≤ 2−k and m̃jk ≤ 2−k, we get d̃(pi, pj) ≤ ε+5η. Once such
a k is reached, we return all the points pi for which m̃ik ≤ 2−k as the desired
list of points ℓ1, . . . , ℓm.

Let us prove that this algorithm always converges, and that once it converges,
the produced list has the desired properties. Let us start with the second state-
ment. Let us assume that the process converged. Since for selected points, we
have d̃(pi, pj) ≤ ε+ 5η, and the estimate d̃(pi, pj) is an η-approximation to the
actual distance d(pi, pj), we conclude that

d(pi, pj) ≤ d̃(pi, pj) + η ≤ (ε+ 5η) + η = ε+ 6η.

Since η =
δ

8
, this inequality implies that d(pi, pj) < ε+ δ.

Let us now show that each root x0 is δ-close to one of the selected points
pj . Indeed, since the points pi form an η-net, for each root x0 there exists an



index j for which d(x0, pj) ≤ η. Since η ≤ ηj , the root x0 is within the ball
Bj = Bηj (pj) and thus, due to |F (x0)| = 0 and |F (x)| ≥ 0 for all x, we have
mj = min

x∈Bj

|F (x)| = 0. Hence, for the 2−k-approximation m̃jk to the actual

minimum mj = 0, we get m̃jk ≤ 2−k. So, the point pj will indeed be selected.
For this point, the inequality d(x0, pj) ≤ η implies that d(x0, pj) ≤ 8η = δ.

To complete the proof, let us show that the algorithm converges. Indeed, for
every ball Bi that does not contain any root, the actual minimum mi is positive.
Let m be the smallest of these positive values, and let k be such that 3 ·2−k ≤ m.
We will show that for this k, the above algorithm will converge. Indeed, for balls
that do not contain any root, we have mi ≥ m ≥ 3 · 2−k. Since the estimate m̃ik

is 2−k-close to the actual minimum mi, we get

m̃ik ≥ mi − 2−k ≥ 3 · 2−k − 2−k = 2 · 2−k > 2−k.

Thus, the only points pi which will be selected by our algorithm as having
m̃ik ≤ 2−k are the points for which the corresponding ball Bi = Bηi(pi) contains
a root x0. For this root, d(x0, pi) ≤ ηi. Since ηi ≤ 2η, we get d(x0, pi) ≤ 2η.

Let pi and pj be two selected points. Then, we have two roots x0 and x′
0 for

which d(x0, pi) ≤ 2η and d(x′
0, pj) ≤ 2η. Since every two roots are ε-close to

each other, we get d(x0, x
′
0) ≤ ε and thus,

d(pi, pj) ≤ d(pi, x0) + d(x0, x
′
0) + d(x′

0, pj) ≤ 2η + ε+ 2η = ε+ 4η.

Hence, the value d̃(pi, pj), which is an η-approximation to the actual distance
d(pi, pj), satisfies the inequality

d̃(pi, pj) ≤ d(pi, pj) + η ≤ (ε+ 4η) + η = ε+ 5η.

Since 5η < 8η = δ, for every two selected points pi, we indeed have d̃(pi, pj) ≤
ε + δ. Thus, the algorithm indeed stops for this value k (if it has not stopped
earlier). The theorem is proven.
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A Definability: A Detailed Discussion

To make formal definitions, we must fix a formal theory L that has sufficient
expressive power and deductive strength to conduct all the arguments and calcu-
lations necessary for working physics. For simplicity, in the arguments presented
in this paper, we consider ZF, one of the most widely used formalizations of set
theory.

Using ZF is a little bit of an overkill; a weaker arithmetic system RCA0 is
believed to be quite sufficient to formalize all of nowadays physics. Our definitions
and results will not seriously depend on what exactly theory we choose – in the
sense that, in general, these definitions and proofs can be modified to fit other
appropriate theories L.

A formal definition of definability is given by Definition 1. Crudely speaking,
a set is L-definable if we can explicitly define it in L. The set of all real numbers,
the set of all solutions of a well-defined equation, every set that we can describe
in mathematical terms is L-definable.

This does not mean, however, that every set is L-definable: indeed, every
L-definable set is uniquely determined by formula P (x), i.e., by a text in the
language of set theory. There are only denumerably many words and therefore,



there are only denumerably many L-definable sets. Since, e.g., in a standard
model of set theory ZF, there are more than denumerably many sets of integers,
some of them are thus not L-definable.

A sequence of sets {An} is, from the mathematical viewpoint, a mapping
from the set of natural numbers to set of sets, i.e., a set of all the pairs ⟨n,An⟩.
Thus, Definition 1 leads to the following natural definition of the notion of an
L-definable sequence:

Definition A1. Let L be a theory, and let P (n, x) be a formula from the language
of the theory L, with two free variables n (for integers) and x. If, in some model
of the theory L, the set {⟨n, x⟩ |P (n, x)} is a sequence (i.e., for every n, there
exists one and only one x for which P (x, n)), then this sequence will be called
L-definable.

Our objective is to be able to make mathematical statements about L-
definable sets. Therefore, in addition to the theory L, we must have a stronger
theory M in which the class of all L-definable sets is a set – and it is a countable
set.

Denotation. For every formula F from the theory L, we denote its Gödel num-
ber by ⌊F ⌋.

Comment. A Gödel number of a formula is an integer that uniquely determines
this formula. For example, we can define a Gödel number by describing what this
formula will look like in a computer. Specifically, we write this formula in LATEX,
interpret every LATEX symbol as its ASCII code (as computers do), add 1 at
the beginning of the resulting sequence of 0s and 1s, and interpret the resulting
binary sequence as an integer in binary code.

Definition A2. We say that a theory M is stronger than L if it contains all
formulas, all axioms, and all deduction rules from L, and also contains a spe-
cial predicate def(n, x) such that for every formula P (x) from L with one free
variable, the formula

∀y (def(⌊P (x)⌋, y) ↔ P (y))

is provable in M.

The existence of a stronger theory can be easily proven:

Proposition A1. [10] For L=ZF, there exists a stronger theory M.

Comments. In this paper, we assume that a theory M that is stronger than L
has been fixed; proofs will mean proofs in this selected theory M.

An important feature of a stronger theory M is that the notion of an L-
definable set can be expressed within the theory M: a set S is L-definable if and
only if ∃n ∈ IN∀y(def(n, y) ↔ y ∈ S).

In the paper, when we talk about definability, we mean this property ex-
pressed in the theory M. So, all the statements involving definability (e.g., the
Definition 2) become statements from the theory M itself, not statements from
metalanguage.


