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Abstract—To properly gauge the extent of poverty in a
country or in a region, economists use semi-heuristic poverty
measures such as the Foster-Greer-Thorbecke (FGT) metric.
These measures are used because it was empirically shown that
they capture the commonsense meaning of the extent of poverty
better than previously proposed measures. However, the fact that
these measures are better then a few earlier proposed ones does
not necessarily mean that these measures are the best possible;
so, it is desirable to look for optimal poverty measures. In this
paper, we first use fuzzy techniques to provide a commonsense
interpretation of FGT poverty measures, and then show that
under certain reasonable conditions, these measures are indeed
optimal.

I. INTRODUCTION

How poverty is measured now. How do we gauge the extent
of poverty in a country or in a region? Usually, there is a
threshold z (called poverty line or poverty threshold), which
is the minimum level of income deemed necessary to achieve
an adequate standard of living in a given country, so that:

• a person i with an income xi at or below z is considered
poor, while

• a person i whose income is larger than this threshold is
not considered to be poor.

At first glance, it may seem natural to simply count the number

H of poor people, and to take the proportion F0 =
H

N
of poor

people (i.e., people whose income is at or below the poverty
line z) to the population as a whole as an appropriate measure
for the extent of poverty. This proportion is indeed used as
a measure of poverty – especially in the media, where the
economic hardship is easy to describe by saying, e.g., that
20% of the people live below the poverty line.

However, the proportion F0 (called the incidence of poverty
or the headcount ratio) may not be the most adequate poverty
measure, because it does not distinguish between those who
income is close to z (and who are “almost” not poor) and
those whose income is much smaller than the poverty line –
and who are thus suffering much more from their poverty. To

capture this difference, economists use special Foster-Greer-
Thorbecke (FGT) property measures (first introduced in [6]):

F1 =
1

N
·

H∑
i=1

(
1− xi

z

)
and F2 =

1

N
·

H∑
i=1

(
1− xi

z

)2

,

where the sum is over all persons whose income is at or below
poverty level. F1 is called the intensity of poverty, and F2 is
called the severity of poverty. Both measures give more weight
to people whose income is smaller.

Advantages and limitations of the existing poverty mea-
sures. Empirically, the poverty measures F0, F1, and F2 work
well, they are used by economists and governments throughout
the world to gauge poverty – and thus, to gauge the success
of different measures aimed at reducing poverty. For example,
in Mexico, the measure F2 is officially used as a poverty
measure; in Egypt, all three measures are used; see, e.g., [1],
[2], [3], [4], [5].

The main problem with these measures is that they are
semi-heuristic. There is no precise justification and therefore,
there is no guarantee that a slightly modified version of one of
these measures would not provide a better description of the
extent of poverty. It is therefore desirable to look for poverty
measures which are optimal – in some reasonable sense.

What we do in this paper. In this paper, we provide a fuzzy-
motivated justification of FGT poverty measures:

• we start with an informal fuzzy motivation, and then
• we describe a precise mathematical derivation of FGT

measures motivated by these fuzzy ideas.

II. USING FUZZY TECHNIQUES TO PROVIDE A
COMMONSENSE INTERPRETATION OF FGT POVERTY

MEASURES

Main idea: using fuzzy logic. The main problem with simply
counting the number of poor people is that, like many other
things in the world, poverty is a matter of degree: one person
can be simply poor, another is somewhat poor, the third person



may be very poor. The fact that many properties are not always
absolutely true or absolutely false – but often true to a degree
– was the main reason why L. Zadeh introduced fuzzy logic;
see, e.g., [7], [9], [10]. In fuzzy logic, this degree is usually
described by a number from the interval [0, 1]:

• the degree 1 means that the property is absolutely true,
• the degree 0 means that the property is absolutely false,

and
• the degrees between 0 and 1 mean that the property is

true to some extend.
It is therefore reasonable to use fuzzy logic to describe poverty.

Corresponding membership function. We need to have a
function that describes, based on the person income x, a degree
µ(x) to which this person is poor. In deriving this function,
we can use the following two commonsense facts:

• When the income x is 0 (the smallest possible amount)
the person is absolutely poor. In this case, the degree µ(0)
to which this person is poor should be equal to 1.

• When the income x is equal to z (the largest possible
amount at which a person is still considered poor), the
person is only one cent away from being absolutely not
poor. In this case, it is reasonable to require that the
degree µ(z) to which this person is poor should be equal
to 0.

Thus, we need to define a function µ(x) on the interval [0, z]
for which µ(0) = 1 and µ(z) = 0.

In principle, there exist many different functions with this
property, some simpler, some more complex. The simplest
possible functions are linear functions. Thus, it is reasonable to
select a linear function µ(x) for which µ(0) = 1 and µ(z) = 0.
(A more mathematical argument for selecting linear or piece-
wise linear membership functions is given in [8].)

A linear function is uniquely determined by its value at two
points x = 0 and x = z, so we get a uniquely determined
function µ(x) = 1− x

z
.

Counting the proportion of number of poor people: three
natural possibilities. It is natural to describe the extent of
poverty as the ratio between the number of poor people (or,
to be more precise, the cardinality of the set of poor people)
and the total population.

The first idea, as we have mentioned earlier, is to consider
poverty as a crisp property:

• people whose income x is below or at the poverty level
z are considered to be poor, while

• people whose income x is above the poverty level z are
considered to be not poor.

In this case, the above ratio is the measure F0.
A more adequate idea is to take into account that poverty is

a fuzzy property, and the set of poor people is a fuzzy set: a
person whose income is x belongs to this set with the degree
µ(x) = 1 − x

z
. To apply the above idea to this fuzzy set,

we need to be able to estimate the cardinality of a fuzzy set.

The most widely used way to define a cardinality of a fuzzy
set S with a membership function µ(x) is to define it as the
sum of all the membership values

∑
x
µ(x); see, e.g., [7], [9].

For the above membership function, this cardinality is equal

to
H∑
i=1

(
1− xi

z

)
and therefore, the corresponding ratio of this

cardinality to the total number N of people is equal to FGT
measure F1.

Eliminating poverty is an important ultimate goal. As a we
have mentioned, some people are somewhat poor, some are
very poor. Clearly, from the political viewpoint, it is most
important to take care of those who are very poor. From this
viewpoint, instead of counting the number of poor people, it
may be more reasonable to count the number of people who
are very poor. In fuzzy logic, the most widely used way to
describe the hedge “very” is to use a squaring operation: the
degree to which a property is very satisfied is equal to the
square µ2(x) of the degree to which this property is satisfied;
see, e.g., [7], [9]. From this viewpoint, the degree µv(x) to

which a person is very poor is equal to µv(x) =
(
1− x

z

)2

.
Thus, the cardinality of the set of all very poor people is

equal to
H∑
i=1

µv(xi) =
H∑
i=1

(
1− xi

z

)2

, and the ratio of this

cardinality to the the total number N of people is equal to the
FGT measure F2.

Conclusion of this section. All three FGT measures F0, F1,
and F2 naturally appear in the fuzzy interpretation, as the ratio
of the number of poor people to the population as a whole:

• the poverty measure F0 appears when we consider
poverty to be a crisp property, when every person is either
poor or not poor;

• the poverty measure F1 appears when we take into
account, when counting the number of poor people, that
poverty is a fuzzy property, so that every poor person is
poor to a certain degree;

• finally, the poverty measure F2 appears when instead of
simply counting the number of poor people, we count the
number of very poor people.

III. FROM AN INFORMAL FUZZY JUSTIFICATION TO A
PRECISE MATHEMATICAL JUSTIFICATION

Possibility. Since we have shown that the FGT measures
naturally come from fuzzy techniques, and fuzzy techniques
have a precise mathematical foundation, it makes sense to look
for precise mathematical justifications of FGT measures.

Towards a general description of possible poverty mea-
sures. We will assume that in the population of N people,
there are H poor ones, with incomes x1, . . . , xH . The authors
of the original paper [6] consider decomposable poverty mea-
sures, i.e., measures for which, crudely speaking,

• once we know the poverty measures corresponding to
two subareas of a given area, and we know the total
populations N1 and N2 and the total numbers of poor
people H1 and H2 in these subareas,



• we will be able to compute the poverty measure corre-
sponding to the area as a whole.

They showed that all such measures are proportional to the

sums
H∑
i=1

f(xi) for an appropriate function f(x). In view of

this conclusion, we will consider poverty measures of this
type. Thus, we arrive at the following definition.

Definition 1. By an income, we mean a non-negative real
number. By incomes, we mean a tuple of incomes x1, . . . , xH .

Definition 2. By a poverty measure, we mean a smooth (twice
differentiable) function f(x) from real numbers to real num-
bers. By the value of a poverty measure f(x) corresponding
to incomes x1, . . . , xH , we mean the sum

v(x1, . . . , xH) =
H∑
i=1

f(xi).

Comment. Instead of a single poverty measure, we may want to
consider several different poverty measures f1(x), . . . , fk(x)
that describe different aspects of poverty. In this case, for each
tuple of incomes x1, . . . , xH , instead of a single poverty value
v, we have k different poverty values

vj =
H∑
i=1

fj(xi), j = 1, . . . , k.

Important question. Because of the above definition, to
select an appropriate poverty measure, we need to select an
appropriate function f(x) – or, in case of several poverty
measures, select functions f1(x), . . . , fk(x) corresponding to
all these measures. How can we select these functions?

It is important to select independent poverty measures.
Once we have property measures f1(x), . . . , fk(x), we can
then combine the resulting property values v1, . . . , vk. For ex-
ample, we can take an average

v1 + v2
2

, which corresponds to

a poverty measure f(x) =
f1(x) + f2(x)

2
. It makes no sense

to add such “combined” property measures to the original list:
indeed, to compute the poverty value corresponding to this
measure, we do not need to painstakingly add the values of
f(xi), it is enough to apply the corresponding combination
function to the poverty values corresponding to the original
poverty measures.

It is therefore reasonable to require that the selected poverty
measures are independent in the sense that none of these
poverty measures can be described as a function of others.

Definition 3. We say that a poverty measure f(x) depends
on the poverty measures f1(x), . . . , fk(x) if it is possible to

uniquely reconstruct the poverty value v =
H∑
i=1

f(xi) based on

the poverty values vj =
H∑
i=1

fj(xi) (j = 1, . . . , k), i.e., if there

exists a function F for which v = F (v1, . . . , vk). We say that
a set of poverty measures f1(x), . . . , fk(x) is independent if
none of these measures depends on the others.

Idea. How do we select the set of independent poverty mea-
sures? One of the main objectives of using poverty measures
is to improve the life of poor people by providing them
with immediate financial help. There are two main ways of
providing such help:

• One possibility is to allocate a certain fixed amount
of money (or goods) a to each poor person. In the
US, an example of such allocation is distributing food
stamps – approximately the same amount goes to every
person below a certain poverty threshold. In this case, the
original incomes change from xi to x′

i = xi + a.
• Another possibility is to provide tax deductions to all the

poor people; this is also done in the US. Since taxes are
usually proportional to the income, tax deduction means,
in effect, that the resulting income xi of all poor people
increases by the same factor, i.e., goes from xi to x′

i =
λ · xi, for some constant λ > 0.

In both cases, instead of the original poverty values vj =
H∑
i=1

fj(xi), we get new poverty values v′j =
H∑
i=1

fj(x
′
i) which

are equal either to
H∑
i=1

fj(xi + a) or to
H∑
i=1

fj(λ · xi). Useful

poverty measure should enable us to easily predict the effect
of both measures on the poverty values. Thus, we arrive at the
following definition.

Definition 4. An independent set of poverty measures
f1(x), . . . , fk(x) is called efficient if the following two prop-
erties hold:

• for each incomes tuple x1, . . . , xH , once we know all k

poverty values vj =
H∑
i=1

fj(xi) and the real value a, we

can uniquely predict poverty values v′j =
H∑
i=1

fj(xi + a);

• for each incomes tuple x1, . . . , xH , once we know all k

poverty values vj =
H∑
i=1

fj(xi) and the real value λ, we

can uniquely predict poverty values v′j =
H∑
i=1

fj(λ · xi).

Comment. One can easily check that the set of three FGT
poverty measures f0(x) = 1, f1(x) = 1 − x

z
, and f2(x) =(

1− x

z

)2

is efficient in this sense. Indeed, since these three
functions are polynomials of 0-th, 1-st, and 2-nd order, know-

ing the corresponding sums vj =
H∑
i=1

fj(xi) is equivalent to

knowing the values V0 =
H∑
i=1

1, V1 =
H∑
i=1

xi, and V2 =
H∑
i=1

x2
i .

When we add a, the value V0 does not change V ′
0 = V0, the



value V1 changes to

V ′
1 =

H∑
i=1

x′
i =

H∑
i=1

(xi + a) =

H∑
i=1

xi +

H∑
i=1

a = V1 + a · V0,

and the value V2 changes to

V ′
2 =

H∑
i=1

(x′
i)

2 =

H∑
i=1

(xi + a)2 =

H∑
i=1

(xi)
2 + 2a ·

H∑
i=1

xi +

H∑
i=1

a2 = V2 + 2a · V1 + a2 · V0.

Similarly, when we multiply all the values xi by a constant λ,
the value V0 does not change V ′

0 = V0, the value V1 changes
to

V ′
1 =

H∑
i=1

x′
i =

H∑
i=1

λ · xi = λ ·
H∑
i=1

xi = λ · V1,

and the value V2 changes to

V ′
2 =

H∑
i=1

(x′
i)

2 =
H∑
i=1

(λ · xi)
2 =

H∑
i=1

λ2 · x2
i = λ2 ·

H∑
i=1

x2
i = λ2 · V2.

In both cases, once we know the original values V0, V1, and
V2 and the corresponding parameter a or λ, we can uniquely
determine the new values V ′

0 , V ′
1 , and V ′

2 . It turns out that the
FGT poverty measures are the only ones with this property.

Definition 5. We say that two independent sets of poverty mea-
sures f1(x), . . . , fk(x) and g1(x), . . . , gl(x) are equivalent if
the following two conditions hold:

• each poverty measure fj(x) depends on the property
measures g1(x), . . . , gl(x); and

• each property measure gj(x) depends on the poverty
measures f1(x), . . . , fk(x).

Comment. In other words:
• If we know all the poverty values v1, . . . , vk correspond-

ing to poverty measures f1(x), . . . , fk(x), then we can
uniquely reconstruct poverty values w1, . . . , wl corre-
sponding to poverty measures g1(x), . . . , gl(x).

• Vice versa, if we know all the poverty values w1, . . . , wl

corresponding to poverty measures g1(x), . . . , gl(x), then
we can uniquely reconstruct poverty values v1, . . . , vk
corresponding to poverty measures f1(x), . . . , fk(x).

From this viewpoint, the two sets of poverty measures are
indeed equivalent.

The following proposition provides an example of equivalent
sets of poverty measures.

Proposition. The set of FGT poverty measures is equivalent
to the measures 1, x, and x2.

Indeed, e.g., since f1(x) = 1 − x

z
, the value F1 can be

represented as

F1 =
1

N
·

H∑
i=1

f1(xi) =
1

N
·

H∑
i=1

(
1− xi

z

)
=

1

N
·

H∑
i=1

− 1

N · z
·

H∑
i=1

xi.

Now, we are ready to formulate our main result.

Theorem. Every efficient independent set of poverty measures
f1(x), . . . , fk(x) is equivalent to the set consisting of the
measures 1, x, x2, . . . , xk−1.

The proof of this theorem is given in the next section.

Corollary. Every efficient independent set of poverty measures
f1(x), f2(x), f3(x) is equivalent to the set consisting of the
three FGT measures.

Comment. Thus, we arrive at the desired justification of the
FGT measures.

IV. PROOF

1◦. Efficiency means, in particular, that if we change the
numbers x1, . . . , xH (representing incomes) without changing

the values of the original poverty values vj =
H∑
i=1

fj(xi), then

the values v′j =
H∑
i=1

fj(xi + a) also remain unchanged.

For small changes ∆xi, the resulting change in vj is equal to

∆vj =
H∑
i=1

f ′
j(xi) ·∆xi + o(∆xi),

where f ′ denote the derivative. Thus, the requirement that
∆vj = 0 means that

H∑
i=1

f ′
j(xi) ·∆xi = o(∆xi)

for all j from 1 to k.
Under this requirement, the value v′j should also not change.

The corresponding change in v′j is equal to

∆v′j =
H∑
i=1

f ′
j(xi + a) ·∆xi + o(∆xi),

i.e., we should have
H∑
i=1

f ′
j(xi + a) ·∆xi = o(∆xi).

If we take any vector dx = (dx1, . . . , dxn) and take ∆xi =
ε · dxi, then in the limit ε → 0, we arrive at the following
conclusion:

• if
∑

f ′
j(xi) · dxi = 0 for all j,

• then
∑

f ′
j(xi + a) · dxi = 0 for all j.



2◦. The above requirement can be described in the vector form,
since the sum

∑
f ′
j(xi) ·dxi is a dot (scalar) product ⟨f ′

j , dx⟩
of two vectors: the vector f ′

j = (f ′
j(x1), . . . , f

′
j(xH)) and the

vector dx. Similarly, the sum
∑

f ′
j(xi+a)·dxi is a dot product

⟨f ′
aj , dx⟩, where

f ′
aj = (f ′

j(x1 + a), . . . , f ′
j(xH + a)).

In this vector form, the above requirement takes the following
form:

• if ⟨f ′
j , dx⟩ = 0 for all j,

• then ⟨f ′
aj , dx⟩ = 0 for all j.

3◦. The condition ⟨a, b⟩ = 0 means that the vectors a and b are
orthogonal to each other: a ⊥ b. Thus, the above requirement
means that every vector dx which is orthogonal to all the
vectors f ′

j is also orthogonal to all the vectors f ′
aj .

As is well known in vector algebra, each vector f ′
aj can

be decomposed into two components: a component c∥ which
belongs to the linear space L generated by the vectors f ′

j , and
a component c⊥ which is orthogonal to this space:

f ′
aj = c∥ + c⊥.

In this case, ⟨c∥, c⊥⟩ = 0 hence

⟨f ′
aj , c⊥⟩ = ⟨c⊥, c⊥⟩ = ∥c⊥∥2,

where ∥a∥ denotes the length of the vector a.
If we take dx = c⊥, we conclude (by definition of c⊥) that

dx ⊥ f ′
j for all j; thus, we should conclude that dx ⊥ f ′

aj , i.e.,
that ⟨f ′

aj , dx⟩ = 0. But for dx = c⊥, we know that ⟨f ′
aj , dx⟩ =

∥c⊥∥2, so we conclude that the length of the vector c⊥ is 0,
i.e., that c⊥ = 0. Thus, the vector f ′

aj belongs to the linear
space generated by the vectors f ′

1, . . . , f
′
n, i.e.,

f ′
aj = cj1(a) · f ′

1 + . . .+ cjk(a) · f ′
k

for some coefficients cjk(a) (which may depend on a). In
terms of components, we conclude that

f ′
j(xi + a) = cj1(a) · f ′

1(xi) + . . .+ cjk(a) · f ′
k(xi).

In other words, we conclude that the functions Fj(x)
def
= f ′

j(x)
satisfy the following system of equations:

Fj(x+ a) = cj1(a) · F1(x) + . . .+ cjk(a) · Fk(x).

4◦. Since the original poverty functions fj(x) are twice dif-
ferentiable, their derivatives Dj(x) = f ′

j(x) are differentiable.
Let us now prove that the coefficients cjl(a) are differentiable
as well.

Let us pick any k values x1, . . . , xk, then we have

cj1(a) ·D1(xi) + . . .+ cjk(a) ·Dk(xi) = Dj(xi + a).

The coefficients cj1(a), . . . , cjk(a) are now a solution to a sys-
tem of linear equations. We know that, by using Cramer’s rule,
we can explicitly (and differentiably) describe the solution of
the system of linear equation in terms of the coefficients and

of the right-hand side. The coefficients do not depend on a
at all, the right-hand side depends on a differentiably, so we
conclude that cjl(a) are indeed differentiable functions of a.

5◦. Since the function Dj(x + a) is a differentiable function
of a and the coefficients cjl(a) are differentiable functions of
a, we can differentiate both sides of the above equality with
respect to a:

D′
j(x+ a) = c′j1(a) ·D1(x) + . . .+ c′jk(a) ·Dk(x).

Substituting a = 0 into this formula, we conclude that

D′
j(x) = cj1 ·D1(x) + . . .+ cjk ·Dk(x),

where cjl
def
= c′jl(0).

Thus, the functions D1(x), . . . , Dk(x) satisfy a system
of linear differential equations with constant coefficients. A
general solution to such a system is well known: it is a
linear combination of the terms exp(λ · x) with possible
complex λ (eigenvalues of the matrix cjl) and terms of the
type xd · exp(λ ·x) with natural d = 1, 2, . . . corresponding to
multiple eigenvalues; see, e.g., [8] and references therein.

6◦. Let us now use a second requirement, that we can also
uniquely reconstruct the poverty values under a different
change xi → λ · xi. In this case, if we add a small value
∆xi to the original value xi, then we will get

fj(λ · (xi +∆xi)) = fj(xi) + λ · f ′
j(λ · xj) ·∆xj .

Thus, the value vj is changed by λ ·
∑
i

f ′
j(λ · xi) · ∆xi.

The requirement that when the original poverty values remain
intact, the new poverty values will also remain intact mean
that if ⟨f ′

j , dx⟩ = 0 for all j then ⟨f ′
λ,j , dx⟩ = 0 for all j,

where f ′
λ,j denotes a vector with components f ′(λ · xi).

Similarly to the case of a shift x′
i = xi + a, we therefore

conclude that

Dj(λ · x) = cj1(λ) ·D1(x) + . . .+ cjk(λ) ·Dk(x).

We can similarly prove that all the coefficients cjl(λ) are
differentiable functions of λ. Thus, we can differentiate both
sides of the above equation and conclude that

x ·D′
j(λ · x) = c′j1(λ) ·D1(x) + . . .+ c′jk(λ) ·Dk(x).

Substituting λ = 1 into this formula, we conclude that

x ·D′
j(x) = cj1 ·D1(x) + . . .+ cjk ·Dk(x),

where cjl
def
= c′jl(1).

Here, x · dD

dx
=

dD

dx/x
=

dD

dX
, where X

def
= ln(x).

In terms of X , we can reconstruct x as x = exp(X).
Thus, if we consider new functions Ej(X) = Dj(exp(X))
(for which Dj(x) = Ej(ln(x))), then these new functions
satisfy a system of linear differential equations with constant
coefficients:

E′
j(X) = cj1 · E1(X) + . . .+ cjk · Ek(X).



Similarly to the shift part, we conclude that a general solution
Ej(X) is a linear combination of functions Xd · exp(λ ·X).
This means that Dj(x) = Gj(ln(x)) is a linear combination
of the functions (ln(x))d · exp(λ · ln(x)) = xλ · (ln(x))d.

7◦. Efficiency means that we must be able to reconstruct the
new poverty values both for x′

i = xi + a and for x′
i = λ · xi.

Thus, each function Dj(x) must be both a linear combination
of the functions xd · exp(λ · x) (d = 0, 1, . . .) and a linear
combination of functions xλ · (ln(x))d. If a function contains
exponential terms, it cannot be represented in the second form.
Thus, it has to be a linear combination of terms xd with d =
0, 1, 2, . . ., i.e., a polynomial.

8◦. We have shown that in the efficient set of poverty functions,
all the poverty functions D1(x) = f ′

1(x), . . . , Dk(x) = f ′
k(x)

from this set are polynomials. Let d be the largest degree of
all these polynomials. Then, each of the polynomials Dj(x)
is of degree ≤ d and thus, any linear combination of these
polynomials has a degree ≤ d.

Let us show that the linear space generated L by these
polynomials consists of all the polynomials D1(x), . . . , Dk(x)
up to a degree d.

We have shown that the derivative of each of the functions
D1(x), . . . , Dk(x) belongs to this linear space. For each linear
combination of the polynomials Dj(x), its derivative is a linear
combination of the derivatives D′

j(x) and therefore, is equal
to the linear combination of linear combinations of functions
Dj(x). Thus, for every function from the linear space L, its
derivative also belongs to the same space L.

By definition of the value d, the linear space L contains a
polynomial of degree d, i.e., a polynomial of the type

ad · xd + ad−1 · xd−1 + . . .

with ad ̸= 0. Multiplying this polynomial by the value
1

ad
, we

get a new polynomial which also belongs to the linear space
L. This new polynomial has the form

xd + bd−1 · xd−1 + . . .

As we have just shown, the derivative of this polynomial also
belongs to the space L; so, L contains a polynomial

d · xd−1 + . . .

By dividing this new polynomial by d, we conclude that the
space L contains a polynomial of the type

xd−1 + cd−2 · xd−2 + . . .

Similarly, by differentiating this polynomial and dividing it
by the coefficient at the highest degree term, we conclude that
this linear space contains a function

xd−2 + . . . ,

a function
xd−3 + . . . ,

etc., all the way to the function 1.

The linear space of all polynomials of degree has dimension
d+1. We have shown that its subspace L contains d+1 linearly
independent functions from this space, namely, the functions

xd + . . . , xd−1 + . . . , . . . , 1.

Thus, the subspace L is also (d + 1)-dimensional and thus,
it indeed coincides with the space of all the polynomials of
degree ≤ d.

These are linear combinations of functions Dj(x) = f ′
j(x).

Thus, linear combinations of the original functions fj(x)
(which are integrals of the linear combinations of the functions
Dj(x)) are all polynomials of degree ≤ (d+1), and the linear
space L0 of such linear combinations contains polynomials of
the type xd+1+. . ., xd+. . ., . . . , x+. . . (i.e., x+c for some
constant c). In particular, for the function x+ c, we should be

able to reconstruct its after-shift value
H∑
i=1

(xi + a + c) from

the before-shift value(s) of this (and other) poverty measures.
The difference between the after-shift and before-shift poverty
values is equal to

H∑
i=1

(xi + a+ c)−
H∑
i=1

(xi + c) = a ·
H∑
i=1

1.

This difference corresponds to poverty measure f(x) = 1;
thus, the linear space L0 contains polynomial 1 as well. So,
L0 is a linear subspace of the (n+2)-dimensional linear space
of all polynomials of degree ≤ (d+ 1), and it contains n+ 2
linearly independent functions

xd+1 + . . . , xd + . . . , . . . , x+ . . . , and 1.

Thus, the linear space L0 generated by all the poverty
measures fj(x) indeed coincides with the linear space of
all polynomials of degree ≤ (d + 1). So, we can take the
functions 1, x, x2, . . . , xd+1 as the new basis – for which, as
one can easily see, each new poverty value can be uniquely
reconstructed from the old poverty values and vice versa.

The theorem is proven.
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