Processing Measurement Uncertainty: From Intervals and p-Boxes to Probabilistic Nested Intervals

Konstantin K. Semenov¹, Gennady N. Solopchenko¹, and Vladik Kreinovich²

¹Measur. Info. Techn. Dept., Saint-Petersburg State Polytechnic Univ., Russia
²Computer Science Dept., University of Texas, El Paso, Texas 79968, USA
semenov.k.k@gmail.com, g.n.solopchenko@mail.ru, vladik@utep.edu

Keywords: measurement uncertainty, interval computations, p-boxes, probabilistic nested intervals

Due to measurement errors, the result $\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n)$ of processing measurement outcomes is, in general, different from the desired result $y = f(x_1, \dots, x_n)$ of processing actual (unknown) values x_i . It is desirable to estimate the difference $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$ [4].

When we only know the bounds Δ_i on measurement errors $\Delta x_i \stackrel{\text{def}}{=} \widetilde{x}_i - x_i$, the only information that we have about y is that $y \in \mathbf{y} \stackrel{\text{def}}{=} \{f(x_1, \dots, x_n) : x_1 \in \mathbf{x}_1, \dots, x_n \in \mathbf{x}_n\}$, where $\mathbf{x}_i = [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i]$. Computing such a range \mathbf{y} is one of the main problems solved by *interval computations* [2].

Often, in addition to the bounds Δ_i , we have partial information about the probability of different values Δx_i . A general probability distribution can be described by the cumulative distribution function (cdf) $F(x) \stackrel{\text{def}}{=} \operatorname{Prob}(\eta \leq x)$. Partial information means that instead of knowing the exact values F(x), we only know bounds $\underline{F}(x) \leq F(x) \leq \overline{F}(x)$. The corresponding "interval-valued" cdf $[\underline{F}(x), \overline{F}(x)]$ is known as a probability box, or p-box, for short [1].

P-boxes are useful in decision making, where the objective is often to satisfy a given inequality-type constraint, and p-boxes provide the probability of satisfying this constraint. In many practical situations (e.g., in control applications), the objective is to find how far is the actual value y from our estimate \tilde{y} . We know that the desired probability $p \stackrel{\text{def}}{=} \operatorname{Prob}(-\Delta \leq \eta \leq \Delta)$ is equal to $F(\Delta) - F(-\Delta)$, so based on the known p-boxes, we can conclude that $p \leq \tilde{p} \stackrel{\text{def}}{=} \overline{F}(\Delta) - \underline{F}(-\Delta)$. However, often, this \tilde{p} is an overestimation: e.g., for $\Delta = 0$, we have p = 0, while for p-boxes of finite width w, we have $\tilde{p} = 2w$.

To get better bounds for p, we use *probabilistic nested intervals*: 1-parametric families of confidence intervals $x_i(\alpha)$ for which $\operatorname{Prob}(x_i \in x_i(\alpha)) \geq 1 - \alpha$ and $x_i(\alpha) \subseteq x_i(\alpha')$ when $\alpha' < \alpha$. E.g., when we have a systematic error component with known bounds $[-\Delta_{si}, \Delta_{si}]$ and a normally distributed random error component with a known σ_i , the confidence intervals are obtained by adding the usual Gaussian confidence interval to the interval $[\widetilde{x}_i - \Delta_{si}, \widetilde{x}_i + \Delta_{si}]$.

Probabilistic nested intervals are a particular case of nested intervals [3]. However, [3] focused on expert estimates, where it was reasonable to assume that when we know that $x_i \in \boldsymbol{x}_i(\alpha)$ with confidence $1-\alpha$, then $y=f(x_1,\ldots,x_n) \in f(\boldsymbol{x}_1(\alpha),\ldots,\boldsymbol{x}_n(\alpha))$ with the same confidence $1-\alpha$. This assumption led to explicit formulas for propagating expert-related nested intervals through computations.

In contrast, it is usually assumed that random errors of different measurements are independent [4]; in this case, when for each i, we have $x_i \in \boldsymbol{x}_i(\alpha)$ with probability $\geq 1 - \alpha$, then we can only conclude that $(x_1, \ldots, x_n) \in \boldsymbol{x}_1(\alpha) \times \ldots \times \boldsymbol{x}_n(\alpha)$ (and thus, that $y = f(x_1, \ldots, x_n) \in f(\boldsymbol{x}_1(\alpha), \ldots, \boldsymbol{x}_n(\alpha))$) with probability $\leq (1 - \alpha)^n \ll 1 - \alpha$. So, we need new formulas for propagating probabilistic nested intervals. Such formulas will be described in the talk.

When measurement errors Δx_i are small, we can safely ignore terms quadratic (and of higher order) in Δx_i . For this linearized case, we can use automatic differentiation to design efficient algorithms. We can further speed up computations because in practice, inputs are usually known with 5-10% accuracy. In such situations, the result can only be computed with a similar 1-digit accuracy, so there is no need to perform iterations that improve the 2nd digit. A practical example of such a speed-up will be presented.

References:

- [1] S. Ferson, RAMAS Risk Calc 4.0: Risk Assessment with Uncertain Numbers, CRC Press, Boca Raton, Florida, 2002.
- [2] R.E. MOORE, R.B. KEARFOTT, M.J. CLOUD, *Introduction to Interval Analysis*, SIAM, Philadelphia, 2009.
- [3] H.T. NGUYEN, V. KREINOVICH, Nested intervals and sets: concepts, relations to fuzzy sets, and applications, In: R.B. Kearfott et al. (eds.), *Applications of Interval Computations*, Kluwer, Dordrecht, 1996, pp. 245–290.
- [4] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice, Springer, New York, 2005.