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Abstract Time series comes from measurements, and measurements are never abso-
lutely accurate. Traditionally, when we deal with an individual measurement or with
a sample of measurement results, we subdivide a measurement error into random
and systematic components: systematic error does not change from measurement
to measurement which random errors corresponding to different measurements are
independent. In time series, when we measure the same quantity at different times,
we can also have correlation between measurement errors corresponding to nearby
moments of time. To capture this correlation, environmental science researchers
proposed to consider the third type of measurement errors: periodic. This extended
classification of measurement error may seem ad hoc at first glance, but it leads to a
good description of the actual errors. In this paper, we provide a theoretical explana-
tion for this semi-empirical classification, and we show how to efficiently propagate
all types of uncertainty via computations.

1 Formulation of the Problem

In many applications areas — e.g., in meteorology, in financial analysis — the value
of the important variable (temperature, stock price, etc.) changes with time. In order
to adequately predict the corresponding value, we need to analyze the observed time
series and to make a prediction based on this analysis.

All the values that form the time series come from measurements or from ex-
pert estimates. Neither measurements nor expert estimates are absolutely accurate.
Thus, the actual values of the corresponding variables are, in general, slightly dif-
ferent from the observed values x;. It is therefore desirable to describe how the
corresponding uncertainty affects the result of data processing.
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In this paper, we analyze this problem, describe the related challenges, and show
how these challenges can be overcome.

2 Traditional Approach to Measurement Errors

Traditional approach of metrology (measurement theory): enter probabilities.
When we are interested in the value x of some quantity that we can measure directly,
we apply an appropriate measuring instrument and get the measurement result x. In
the ideal world, the measurement result X is exactly equal to the desired value x.
In practice, however, there is noise, there are imperfection, there are other factors
which influence the measurement result. As a consequence, the measurement re-
sult x is, in general, different from the actual (unknown) value x of the quantity of

interest, and the measurement error Ax def X — x is different from O.

Because of this, if we repeatedly measure the same quantity by the same measur-
ing instrument, we get, in general, slightly different results. Some of these results
are more frequent, some less frequent. For each interval of possible values, we can
find the frequency with which the measurement result gets into this interval; at first,
some of these frequencies change a lot with each new measurement, but eventually,
once we have a large number of measurements, these frequencies stabilize — and
become probabilities of different values of X and, correspondingly, probabilities of
different values of measurement error Ax. In other words, the measurement error
becomes a random variable.

Traditional metrological approach: independence. Usually, it is assumed that
random variables corresponding to different measurement errors are statistically in-
dependent from each other. In statistics, independence of two events A and B means
that the probability of A does not depend on B, i.e., that the conditional probability
P(A|B) of A under condition B is equal to the unconditional probability P(A) of the
event A.

N(A
The probability P(A) of the event A can be estimated as the ratio % of the

number of cases N(A) when the event A occurred to the total number N of ob-
served cases. Similarly, the probability P(B) of the event B can be estimated as

N(B)
N
total number N of observed cases, and the probability P(A & B) of both events A

NA&B
% of the number of cases N(A&B)

when both events A and B occurred to the total number N of observed cases.
In contrast, to estimate the conditional probability of A given B, we must only

take into account cases when B was observed. As a result, we get an estimate

A&B A&B B
P(A|B) =~ NE\/(?)) Since P(A&B) ~ w and P(B) ~ %, we con-

clude that N(A&B) ~ P(A&B) - N and N(B) ~ P(B) - N and therefore, P(A|B) ~

the ratio of the number of cases N(B) when the event A occurred to the

and B can be estimated as the ratio
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P(A&B)-N _ P(A&B) P(A&B)
P(B)-N  P(B) P(B)
accurate are these estimates, so in the limit when N tends to infinity, we get the

P(A&B
equality P(A|B) = (P(m>, i.e., equivalently, P(A&B) = P(A|B) - P(B). For in-
dependent events, P(A|B) = P(A) and thus, P(A&B) = P(A) - P(B).

So, under the independence assumption, if we have two different series of
measurements, resulting in measurement errors Ax and Ay, then the probability
P(Ax € [x,X] &Ay € [y,y]) that Ax is in an interval [x,X] and Ay is in an interval
[y,¥] is equal to the product of the two probabilities:

,s0 P(A|B) =~ . The larger the sample, the more

e the probability P(Ax € [x,X]) that Ax is in the interval [x,X], and
e the probability P(Ay € [y,y]) that Ay is in the interval [y, y]:

P(Ax € [x,X] & Ay € [y,]) = P(Ax € [x,x]) - P(Ay € [y,y]).

Random and systematic error components. Usually in metrology, the measure-
ment error is divided into two components (see, e.g., [9]):

e the systematic error component, which is defined as the expected value (mean)
E(Ax) of the measurement errors, and

e the random error component which is defined as the difference Ax — E(Ax) be-
tween the measurement error Ax and its systematic component E(Ax).

Systematic error component is usually described by the upper bound Ay on its ab-
solute value: |E(Ax)| < A, while the random error is usually described by its mean
square value

o = /E[(Ax—E(Ax)).

In statistical terms, ¢ = \/V is the standard deviation of the random variable Ax,
i.e., the square root of the variance V = E [(Ax — E(Ax))?].

Practical meaning of random and systematic error components: brief re-
minder. The practical meaning of these components — and the practical difference
between them — can be described if, in order to improve measurement accuracy, we
repeatedly measure the same quantity several times. Once we have several results
)?“), e, ™M) of measuring the same (unknown) quantity x, we can then take the
arithmetic average
B e
e M

as the new estimate.

One can easily see that the measurement error Ax = X — x corresponding to this
new estimate is equal to the average of the measurement errors Ax®) =30 _ x
corresponding to individual measurements:

AxD 4+ 4 AxM)
Ax = .
M
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What are the systematic and random error components of this estimate? Let
us start with the systematic error component, i.e., in mathematical terms, with the
mean. It is known that the mean of the sum is equal to the sum of the means, and
that when we divide a random variable by a constant, its mean is divided by the
same constant. All M measurements are performed by the same measuring instru-

ment with the same systematic error £ (Ax(1)> =...=F (Ax(M)). Thus, for the

sum Ax(D) + ...+ AxM) the mean is equal to
E(axV 4+ ax) = E (4x0) 4 B (A00) M- E (ax).

Therefore, the mean of the ratio Ax (which is obtained by dividing the above sum by
M) is M times smaller than the mean of the sum, i.e., equal to E(Ax) = E (Ax(k)) .In

other words, the systematic error component does not decrease if we simply repeat
the measurements.

In contrast, the random component decreases, or, to be precise, its standard devi-
ation decreases. Indeed, for independent random variables, the variance of the sum
is equal to the sum of the variances, and when we divide a random variable by a
constant, the variance is divided by the square of this constant. The variance V = 6>
of each random error component is equal to v = =VvM); thus, the variance of
the sum Ax(D ...+ Ax®) s equal to the sum of these variances, i.e., to

2
% Ax(1>+...+Ax(M)} :V<1>+...+V<M>=M-(c<’<>) .

Therefore, the variance of the ratio Ax (which is obtained by dividing the above sum

2
m. So,

- o o o)
the standard deviation o (which is the square root of this variance) is equal to T

by M) is M? times smaller than the variance of the sum, i.e., equal to

In other words, the more times we repeat the measurement, the smaller the resulting
random error.

So, when we repeat the same measurement several times, the random error dis-
appears, and the only remaining error component is the systematic error.

3 The Traditional Metrological Approach Does Not Work Well
for Time Series

Traditional approach: reminder. In the traditional approach, we represent the
measurement error as the sum of two components:

e a systematic component which is the same for all measurements, and
e a random component which is independent for different measurements.
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Challenge. When we process time series, this decomposition is insufficient: e.g.,
usually, there are strong correlations between measurement errors corresponding to
consequent measurements.

How this challenge is resolved now. To achieve a better representation of measure-
ment errors, researchers in environmental science have proposed a semi-empirical
idea of introducing the third component of measurement error: the seasonal (peri-
odic) component; see, e.g., [7].

For example, a seasonal error component can represent errors that only happen
in spring (this is where the name of this error component comes from), or errors that
only happen at night, etc.

Comment. From the purely mathematical viewpoint, we can have periodic error
components corresponding to all possible frequencies. However, from the physical
viewpoint, it makes sense to concentrate on the components with physically mean-
ingful frequencies — and with frequencies which are multiples of these frequencies,
e.g., double or triple the daily or yearly frequencies.

For example, in environmental observations, it makes sense to concentrate on
daily and yearly periodic errors. If we are interested in the effect of human activity,
then we need to add weekly errors — since human activity periodically changes from
weekdays to weekends.

Remaining open problems. The idea of using three components of measurement
error works extremely well — which leads to two related challenges:

e A metrological challenge: how can we explain this success? What is the founda-
tion of this idea?

e A computational challenge: how can we efficiently describe this new error com-
ponent and how can we efficiently propagate it through computations?

What we do in this paper. In this paper, we address both challenges:

e we provide a theoretical justification for the semi-heuristic idea of the third error
component, and

e we show a natural way for efficiently describing this error component, and show
how to efficiently propagate different error components through computations.

4 First Result: A Theoretical Explanation of the
Three-Component Model of Measurement Error

Idea. Our objective is to analyze measurement errors Ax(¢) corresponding to time
series. Namely, we want to represent a generic measurement error as a linear com-
bination of several error components.

This division into components can be described on different levels of granularity.
Let us consider the level where the granules are the smallest, i.e., where each gran-
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ule corresponds to a finite-dimensional linear space, i.e., to the linear space whose
elements can be determined by finitely many parameters.

Towards a formalization of the above idea. Each component of the measurement
error is described by a finite-dimensional linear space L, i.e., by the set of all the
functions of the type x(¢) = ¢; -x1(t) + ...+ ¢y - x,4(¢), where x(2), ..., x,() are
given functions, and cy,...,c, are arbitrary constants.

In most applications, observed signals continuously (and even smoothly) depend
on time, so we will assume that all the functions x;(¢) are smooth (differentiable).

Also, usually, there is an upper bound on the measurement error, so we will
assume that each of the the functions x;(¢) are bounded by a constant.

Finally, for a long series of observations, we can choose a starting point arbi-
trarily. If instead of the original starting point, we take a starting point which is
to seconds earlier, then each moment of time which was originally described as
moment ¢ is not described as moment ¢ + fy. Then, for describing measurement er-
rors, instead of the original function x(r), we have a new function x,(r) for which
Xy, (t +10) = x(t +19). It is reasonable to require that the linear space that describes
a component of the measurement error does not not change simply because we
changed the starting point. Thus, we arrive at the following definitions.

Definition 1. We say that a function x(¢) of one variable is bounded if there exists a
constant M for which |x(z)| < M for all 7.

Definition 2. We say that a class F' of functions of one variable is shift-invariant if
for every function x(¢) € F and for every real number #j, the function x(¢ 4 o) also
belongs to the class F.

Definition 3. By an error component we mean a shift-invariant finite-dimensional
linear space of functions

L={ci-x1(t)+...+cp-xu(t)},

where x;(7), ..., x,(¢) are given bounded smooth functions and ¢; are arbitrary num-
bers.

Theorem 1. Every error component is a linear combination of the functions
x(t) =sin(@-t) and x(t) = cos(w - 1).

Proof.
1°. Let us first use the assumption that the linear space L is shift-invariant.

For every i from 1 to n, the corresponding function x;(¢) belongs to the linear
space L. Since the error component is shift-invariant, we can conclude that for every
real number #y, the function x;(¢ + 1) also belongs to the same linear space. Thus, for
every i from 1 to n and for every #g, there exist values cy,...,c, (possibly depending
on i and on ty) for which
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xi(l‘—FI()) =cj (l()) - X1 (l) +.. .—|—Cin(l‘0) -x,l(t). (D)

2°. We know that the functions x (¢), ..., x,(¢) are smooth. Let us use the equation
(1) to prove that the functions c;; (to) are also smooth (differentiable).

Indeed, if we substitute n different values #1, ..., #, into the equation (1), then we
get a system of n linear equations with n unknowns to determine n values c;; (1),
ey C,'n(to)Z

xi(ti +10) = cit(t0) - x1(t1) + ...+ cin(t0) - X (t1);

Xi(th +10) = ci1(to) - x1(tn) + ... + cin(t0) - Xn (tn).

The solution of a system of linear equations — as determined by the Cramer’s rule —
is a smooth function of all the coefficients and right-hand sides. Since all the right-
hand sides x;(t; 4 19) are smooth functions of 7y and since all the coefficients x;(t;)
are constants (and thus, are also smooth), we conclude that each dependence c;;(to)
is indeed smooth.

3°. Now that we know that all the functions x;(¢) and c;;(fo) are differentiable, we
can differentiate both sides of the equation (1) with respect to 7y and then take 7o = 0.
As aresult, we get the following systems of n differential equations with » unknown
functions x; (¢), ..., x,(¢):

Xi(@t)=cin-x1(t)+... 4+ cin-xa(t),

where X;(r) denotes derivative over time, and ¢;; denoted the value of the corre-
sponding derivative ¢;; when g = 0.

3°. We have shown that the functions x (), ..., x,(¢) satisfy a system of linear
differential equations with constant coefficients.

It is known that a general solution of such system of equations is a linear com-
bination of functions of the type ¥ - exp(A -t), where k is a natural number (non-
negative integer), and A is a complex number. Specifically, A is an eigenvalue of the
matrix ¢;;, and the value k > 0 appears when we have a degenerate eigenvalue, i.e.,
an eigenvalue for which there are several linearly independent eigenvectors.

4°. Every complex number A has the form a +1- @, where a is its real part and @ is
its imaginary part. So:

exp(A-t) =exp(a-t)-cos(w-1)+i-exp(a-t)-sin(@-1).

Thus, every function x;(¢) can be represented as a linear combination of expressions
of the types t*-exp(a-t) -cos(w-t) and t* -exp(a-t) - sin(®-1).
5°. Now, we can use the requirement that the functions x;(¢) are bounded.

5.1°. Because of this requirement, we cannot have a # 0:
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e for a > 0, the function is unbounded for t — +oo, while
e for a < 0, the function is unbounded for t — —oo.

So, we must have a = 0.

5.2°. Similarly, if k > 0, the corresponding function is unbounded. Thus, we must
have k = 0.

6°. Thus, every function x;(¢) is a linear combination of the trigonometric functions
x(t) =sin(®-t) and x(¢) = cos(® - 1).
The theorem is proven.

Practical conclusions. We have concluded that the measurement error Ax(¢) can
be described as a linear combination of sines and cosines corresponding to different
frequencies .

In practice, depending on the relation between the frequency @ and the fre-
quency f with which we perform measurements, we can distinguish between small,
medium, and large frequencies:

e frequencies @ for which ® < f are small,;
e frequencies w for which @ > f are large, and
o all other frequencies w are medium.

Let us consider these three types of frequencies one by one.

Components corresponding to low frequencies. When the frequency @ is low, the
corresponding values cos(® -7) and sin(@ -¢) practically do not change with time:
the change period is much larger than the usual observation period.

Thus, we can identify low-frequency components with systematic error compo-
nent — the error component that practically does not change with time.

Components corresponding to high frequencies. When the frequency o is high,
o > f, the phases of the values cos(® ;) and cos(® -#;41) (or, alternatively,
sin(w-#;) and sin(®-#;41)) corresponding to the two sequential measurements #; and
tiy1 differ so much that for all practical purposes, the resulting values of cosine or
sine functions are independent.

Thus, high-frequency components can be identified with random error compo-
nent — the error component for which measurement errors corresponding to different
measurements are independent.

Components corresponding to medium frequencies. In contrast to the cases of
low and high frequencies, where the periodicity of the corresponding cosine and sine
functions is difficult to observe, components cos(@ -¢) and sin(® - ) corresponding
to medium frequencies @ are observably periodic.

It is therefore reasonable to identify medium-frequency error components with
seasonal (periodic) components of the measurement error.

Comment. This conclusion explains why, in addition to the original physically mean-
ingful frequencies, it is also reasonable to consider their multiples:
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e We know that the corresponding error component is a periodic function of time,
with the physically meaningful period 7p.

e It is known that every periodic function can be explained into Fourier series,
i.e., represented as a linear combination of sines and cosines with frequencies

2
o which are multiples of the basic frequency wy = Tn corresponding to the
0

period Tp.

Main conclusion of this section. Thus, we have indeed provided a justification to
the semi-empirical three-component model of measurement error.

5 Periodic Error Component: Technical Details

Need for technical details. In the above section, we explained that the periodic
error component is as fundamental as the more traditional systematic and random
error components. It is therefore necessary to extend the usual analysis of error
components and their propagation to this new type of measurement errors.

What exactly technical details are needed. For systematic and random error com-
ponents we know:

e how to describe reasonable bounds on this error component, and
e how to estimate this error component when we calibrate the measuring instru-
ment.

Specifically, the random error component is characterized by its standard deviation
o, while a systematic error component s is characterized by the upper bound A:
|s| <A.

The standard deviation ¢ of the measuring instrument can be estimated if we re-
peatedly measure the same quantity x by this instrument. Then, the desired standard
deviation can be estimated as the sample standard deviation of the corresponding
measurement results (1, ..., x(M):

o~ Loy @ E),
M k=1

1 M
where E = —-Z?c(k).
M =

To estimate the systematic error component, it is not enough to have the given
measuring instrument, we also need to calibrate the measuring instrument, i.e., to
measure the same quantity x with an additional much more accurate (“standard”)
measuring instrument — whose measurement result x; is assumed to be very close
to the actual value x of the measured quantity. Here, E ~ E(X) and X; ~ x, so the
difference E — x; is approximately equal to E(X) —x = E(X —x) = E(Ax). Thus,
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this difference E — Xy can be used as a good approximation to the systematic error
component.

Since we want to also take into account the periodic error component, it is desir-
able to provide answers to the above two questions for the periodic error component
as well.

How to describe reasonable bounds for each part of the periodic error compo-
nent. For each frequency w, the corresponding linear combination

ac-cos(@-1)+ag-sin(@-r)

can be equivalently represented as A - cos(® - ¢ + ¢). This is the form that we will
use for describing the periodic error component.

Similarly to the systematic error, for the amplitude A, we will assume that we
know the upper bound P: [A| < P.

For phase ¢, it is natural to impose a requirement that the probability distribution
of phase be invariant with respect to shift # — ¢ 4 f9. When time is thus shifted, the
phase is also shifted by ¢y = @ - #p. Thus, the requirement leads to the conclusion
that the probability distribution for the phase be shift-invariant, i.e., that the corre-
sponding probability density function p(¢) is shift-invariant p (@) = p (¢ + @) for
every possible shift ¢q. This means that this probability density function must be
constant, i.e., that the phase ¢ is uniformly distributed on the interval [0,27].

How to estimate the periodic error component when calibrating a measuring
instrument. When we compare the results of measuring the time series by our mea-
suring instrument and by a standard measuring instrument, we get a sequence of
differences x(#) — X, (¢) that approximates the actual measurement errors Ax(f).

Periodic error components are sinusoidal components corresponding to several
frequencies. In data processing, there is a known procedure for representing each
sequence as a linear combination of sinusoids of different frequency — Fourier
transform. To find the periodic components, it is therefore reasonable to perform a
Fourier Transform; the amplitudes of the Fourier transform corresponding to physi-
cally meaningful frequencies (and their multiples) @ will then serve as estimates for
the amplitude of the corresponding periodic measurement error component.

Computing Fourier transform is fast: there is a known Fact Fourier Transform
(FFT) algorithm for this computation; see, e.g., [1].

Resulting computational challenge and how it can be overcome. While the
standard measuring instrument is reasonably accurate and its measurement results
Xs(t) provide a good approximation to the actual values x(¢), these results are
still somewhat different from the actual values x(¢). Hence, the observed differ-
ences x(#) — X,(t) are only approximately equal to the measurement errors Ax(z) =
X(t) —x(t). When we apply FFT in a straightforward way, this approximation error
sometimes leads to drastic over-estimation of the results; see, e.g., [2, 6]. Because
of this fact, many researchers replaced FFT by much slower — but more accurate —
error estimation algorithms.
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In our paper [6], we showed how we can modify the FFT techniques so that we
get (almost) exact error bounds while being (almost) as fast as the original FFT.
So, to estimate the periodic error component, we need to use thus modified FFT
algorithm.

6 Because of Our Justification, the Three-Component Model of
Approximation Error Can Also Be Applied to Expert
Estimates

Need for expert estimates. In many cases, in addition to measurements, we need
to also have expert estimates of some quantities.
For example, in environmental research:

we can measure temperature, humidity, etc.;

however, it is also useful to supplement these measurement results with expert
estimates of, e.g., amount of leaves on the bushes (“low”, “medium”, “high”),
state of the leaves — and many other characteristics which are difficult to measure

but which can be easily estimated by an expert.

Need to deal with uncertainty in expert estimates. We have already mentioned
that in data processing, it is important to take into account the uncertainty of mea-
surement results. Expert estimates are usually even much less accurate than mea-
surement results. So, it is even more important to take into account the uncertainty
of expert estimates.

How this uncertainty is usually dealt with. The main idea behind most methods
for dealing with uncertainty of expert estimates is to treat an expert as a measuring
instrument and use the corresponding metrological techniques.

One of the main techniques for describing expert uncertainty is fuzzy techniques;
see, e.g., [3, 8]. While these techniques are not exactly probabilistic, many fuzzy
techniques are similar to the probabilistic ones.

For example, one of the most widely used methods of determining the (fuzzy)
degree of belief pp(x) that a certain value x satisfies the property P (e.g., that a cer-
tain temperature is low) is to poll several experts and take, as p(x), the proportion
of those who thing that x satisfies this property.

Our conclusion. In our analysis of the error components, we never used the fact
that this error comes from measurements. We can apply the exact same analysis to
the approximation error of the expert estimates.

Thus, we can conclude that it is natural to apply the same three-component de-
composition to inaccuracies of expert estimates as well.
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7 How to Propagate Uncertainty in the Three-Component Model

Need to propagate uncertainty. In the previous sections, we analyzed how to de-
scribe the uncertainty related to measurements and/or expert estimates. Some quan-
tities can be indeed directly measured or estimates. However, there are many quan-
tities of interest which cannot be directly measured or estimated.

An example of such a quantity is a carbon flux that describes the exchange of
carbon between the soil and the atmosphere; see, e.g., [5]. It is difficult to measure
this flux directly. Instead, we measure the humidity, wind and concentration of dif-
ferent gases at different height of a special meteorological tower, and then use the
results of these measurements to process the data.

In general, for many quantities y, it is not easy (or even impossible) to measure
them directly. Instead, we measure related quantities xi,...,x,, and use the known
relation y = f(x1,...,x,) between x; and y to estimate the desired quantity y.

Since measurements come with uncertainty, the resulting estimate is, in general,
somewhat different from the actual value of the desired quantity — even when the
relation y = f(x1,...,x,) is known exactly. It is therefore desirable to propagate
this uncertainty, i.e., to find out how accurate is the estimate based on (approximate)
measurement results.

Propagating uncertainty from measuring time series: towards a precise formu-
lation of the problem. In practical applications, many inputs to the data processing
algorithm come from the same sensor at different moments of time. In other words,
as inputs, we have the results X;(#;;) of measuring the values x;(;;) by the i-th sen-
sor at the j-th moment of time #;; = fo + j- At;, where 1y is the starting moment
of all the measurements, and A¢; is the time interval between the two consecutive
measurements performed by the i-th sensor.
The desired quantity y depends on all these values:

y= f(xl(t”),)q (l‘]z),...,xz(tzl),XQ(tzz),. .. ,x”(tnl),xn(tnz),...).

Instead of the actual values x;(7;;, we only know the measurement results x;(t;;),
results which differ from the actual values by the corresponding measurement errors
Axi(tij):

Xi(tij) = xitij) + Axi(tij).

After applying the data processing algorithm f to the measurement results x;(z;),
we get the estimate y for the desired quantity y:

y=fG(tn) X1 (t2), - Xatn1) Xn(tn2), - --)-
We are interested in estimating the difference
Ay=y—y=f(xi(tn),X1(t12),- -, Xn(tu1)s Xn(tn2) - ) —

fx(t),x1(ti2), . Xn(ta1), Xn(tn2), - )
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We know that the actual (unknown) value x;(t; j) of each measured quantity is equal
to

x;(tij) = Xi(tij) — Axi(tij).

Thus, the desired difference has the form
Ay = f(kvl (tll); cee 75Cvn(tnl)afn(tn2)a .. ~)*

f(f] (l‘]]) —AX1 (11]), - ,fn(tm) —Axn(l‘nl),fn(l‘nz) —Ax,,(t,,z), .. )

Our objective is to estimate this difference based on the known information about
the measurement errors Ax;(f;;).

Possibility of linearization. Measurement errors are usually relatively small, so
terms quadratic and of higher order in terms of Ax;(t;;) can be safely ignored.

For example, if the measurement error is 10%, its square is 1% which is much
much smaller than 10%. If we measure with a higher accuracy, e.g., of 1%, then the
square of this value is 0.01% which is even mich more smaller than the error itself.

Thus, we can linearize the above formula, i.e., expand the dependence of Ay on
Ax;(t;;) in Taylor series and keep only linear terms in this expansion. As a result,
we arrive at the following formula:

Ay =3} Cij- Axi(tij),
i

dy
8x,-(t,‘j) ’
Consequence of linearization: we can consider all three components sepa-
rately. We know that each measurement errors Ax;(;;) consists of three compo-
nents: systematic component s;, random component 7;;, and periodic component(s)
Ay -cos(@y - 1;j + @y;) corresponding to different physically meaningful frequencies
(and their multiples) wy:

where C;; denotes the corresponding partial derivative

Ax,-(t,-j) =si+rij+ ZA@' . COS((D[ “tij+ (Péi)~
14

The dependence of Ay on the measurement errors Ax;(t;;) is linear. Thus, we can
represent Ay as the sum of different components coming from, correspondingly,
systematic, random, and periodic errors:

Ay =Ay;+Ay, + ) Ayp,
l

where

Ay, =YY Cij-sis
i
Ayr:ZZCij'Vij;
i
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Ay = ZZCU “Ayi-cos(oy - t;; + Qi)
J

1

So, it is sufficient to estimate the effect of all three types of measurement error
components separately.

Natural assumptions: measurement errors corresponding to different time se-
ries are independent. As we have mentioned earlier,

e while measurement errors corresponding to measurement by the same sensor at
consecutive moments of time are correlated,

e measurement errors corresponding to different sensors usually come from differ-
ent factors and are, therefore, largely independent.

As a result, we arrive at the following algorithms for estimating different compo-
nents of Ay.

Propagating random component: analysis of the problem. Propagating random
component is the traditional part of error propagation. A natural way to describe the
resulting error Ay, is to use simulations (i.e., a so-called Monte-Carlo approach).

By definition of the random error component, the values 7;; and r;; corresponding
to measurements by the same i-th sensor at different moments of time #;; and ¢, are
independent. We are also assuming that the values r;; and ryy corresponding to
different sensors are independent. Thus, all the values r;; corresponding to different
pairs (i, j) are independent.

There are many such values, since each sensor performs the measurements with
a high frequency — e.g., one reading every second or every minute. The value Ay,
is thus a linear combination of a large number of independent random variables.
It is known that under reasonable conditions, the probability distribution of such a
combination tends to normal; this is what is known as the Central Limit Theorem
— one of the main reasons why normal distributions are ubiquitous in nature; see,
e.g., [10].

A normal distribution is uniquely determined by its mean and standard deviation.
We know that each measurement error r;; has mean 0 and a known standard devi-
ation o; corresponding to measurements of the i-th sensor. The mean of the linear
combination is equal to the linear combination of means. Thus, the mean of Ay, is
0. The standard deviation can be obtained if we repeatedly simulate random errors
and take a standard deviation of the corresponding empirical values Aygl), Aygz),
... Thus, we arrive at the following algorithm.

Propagating random component: algorithm. The random component Ay, is nor-
mally distributed with zero mean. Its standard deviation can be obtained as follows:

e First, we apply the algorithm f to the measurement results x;(#;;) and get the
estimate y.
e Then, fork=1,...,N, we do the following:

— simulate the random errors rf]f) as independent random variables (e.g., Gaus-

sian) with 0 mean and standard deviation oj;
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— form simulated values xl(k) (tij) = xi(tij) — rgjl»();

(

— substitute the simulated values xik) (t;j) into the data processing algorithm f

and get the result y*).

e Finally, we estimate the standard deviation ¢ of the random component Ay, as

1 Y ) 2
6= N‘Z(Y -3~
k=1

Mathematical comment. The proof that this algorithm produces a correct result eas-
ily follows from the fact that for simulated values, the difference y®) —F has the form

ZZC,'.,- . rl-(;() and thus, has the exact same distribution as Ay, = ZZCij - Axi(t;j); see,
i J

e.g., [4].

Metrological comment. In some practical situations, instead of the standard devi-
ations 0; = /E|[(Ax)?| that describe the absolute accuracy, practitioners often de-
scribe relative accuracy O; such as 5% or 10%. In this case, the standard deviation o;
can be obtained as o; = J; - m;, i.e., by multiplying the given value §; and the mean
square value of the signal

where T; is the total number of measurements performed by the i-th sensor.

Propagating systematic component: analysis of the problem. By definition, the
systematic component Ay of the resulting error Ay is equal to Ay, = Y.} C;; - s;.
i

If we combine terms corresponding to different j, we conclude that Ay, = Y K - s;,
i
where K,’ déf ZCij-
J

The values K; can be explicitly described. Namely, one can easily see that if for
some small value & > 0, for this sensor i, we take Ax;(#;;) = 0 for all j, and for all
other sensors /', we take Axy (t; ;) = 0, then the resulting increase in y will be exactly
equal to 6 - K;.

Once we have determined the coefficients K;, we need to find out the smallest
and the largest possible value of the sum Ay, =Y} K; - s;. Each parameter s; can take

l
any value between —Ay; and Ay, and these parameters are independent. Thus, the
sum is the largest when each term K; - s; is the largest.
Each term is a linear function of s;. A linear function is increasing or decreasing
depending on whether the coefficient K; is positive or negative.

e When K; > 0, the linear function K; - s; is increasing and thus, its largest possible
value is attained when s; attains its largest possible value Ay;. Thus, this largest
possible value is equal to K; - Ag;.
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e When K; <0, the linear function K; - s; is decreasing and thus, its largest possible
value is attained when s; attains its smallest possible value —Ay;. Thus, this largest
possible value is equal to —K; - Ay;.

In both cases, the largest possible value is equal to |K;|- Ay; and thus, the largest

def

possible value Ag of the sum Ay; is equal to Ay = |K,\ - Ag;. Similarly, one can

prove that the smallest possible value of Ay; is equal to —As.
Thus, we arrive at the following algorithm for computing the upper bound As on
the systematic component Ays.

Propagating systematic component: algorithm. The largest possible value A of
the systematic component Ay can be obtained as follows:

e First, we apply the algorithm f to the measurement results x;(;;) and get the
estimate y.

e Then, we select a small value 6 and for each sensor i, we do the following:
— for this sensor i, we take xgi) (tij) = Xi(t;;) + & for all moments j;

— for all other sensors i’ # i, we take xE,') (tp;) = %i(tv )

— substitute the resulting values xg,i) (t7;) into the data processing algorithm f
and get the result y(?).

e Finally, we estimate the desired bound A on the systematic component Ay, as

a-x

1

-3
0

Ay

Metrological comment. In some practical situations, instead of the absolute bound
Agi on the systematic error of the i-th sensor, practitioners often describe relative ac-
curacy 6; such as 5% or 10%. In this case, a reasonable way to describe the absolute
bound is to determine it as Ag; = &; - a;, i.e., by multiplying the given value §; and
the mean absolute value of the signal

= LY ).
J

1

Propagating periodic component: analysis of the problem. By definition, the
periodic-induced component Ay, of the resulting error Ay is equal to

Ay = ZZCU “Ayi-cos(y - t;; + @),
i

ie., to

Ay, = ZZG; Ay - (cos( @y - tij) - cos(@y;) — sin( @y - 1) - sin(@y;)).
i
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By combining the terms corresponding to different j, we conclude that

Aypr =Y Agi- Kei-cos(@u) + Y A Kyi - sin(@p:),
i i

where K,; défzc,'j 'COS((D( . l[j) and Kj; défzc,'j . sin(a)g . l,'j).
J J
The values K,; and Kj; can be explicitly described. Namely:

e One can easily see that if for some small value 6 > 0, for this sensor i, we take
Ax;(tij) = & -cos(wy -1;;) for all j, and for all other sensors i, we take Axy (ty;) =
0, then the resulting increase in y will be exactly equal to 0 - K.

e Similarly, if for this sensor i, we take Ax;(t;;) = & - sin(ay - #;;) for all j, and for
all other sensors i, we take Axy (fy j) = 0, then the resulting increase in y will be
exactly equal to 0 - Kj;.

Once we have determined the coefficients K; and K;, we need to describe the
probability distribution of the sum Ay, = Y As; - Kei - cos(@i) + L Asi - Ki - sin(@y;).

We assumed that all ¢; are independent (arlld uniformly distribuied). Thus, for the
case of multiple sensors, we can apply the Central Limit Theorem and conclude that
the distribution of the sum Ay, is close to normal.

In general, normal distribution is uniquely determined by its first two moments:
mean and variance (or, equivalently, standard deviation). The mean of each sine
and cosine term is 0, so the mean of the sum Ay, is zero as well. Since the terms
corresponding to different sensors are independent, the variance of the sum is equal
to the sum of the variances of individual terms. For each i, the mean of the square

(Agi- Kei-cos(@yi) +Agi - K- Sin((Péi))2 =
A?,» . (Kf,» . COSZ((PH) +KSZ,~ -sin(@g;) +2 - Kei - Ky - cos(@y;) - sin(@y;))

1
is equal to 5 ~A?,» : (Kf, JrKszi). Thus, the variance of the sum is equal to
1 2 (g2 2
P ’ ZA&' ’ (Kci +K¥i>'

Each amplitude Ay; can take any value from O to the known bound Py;. The above
expression monotonically increases with Ay;, and thus, it attains its largest value
when Ay; takes the largest value P;. Thus, the largest possible value of the variance

. 1 2 w2 L 22
is equal to 3 -Zi:Pg,' (K& +Kg)-

Thus, we arrive at the following algorithm for computing the upper bound 6,,¢ of
the standard deviation of the periodic-induced component Ay, on the approxima-
tion error Ay.

Propagating periodic-induced component: algorithm. The upper bound 6,, on
the standard deviation of the periodic-induced component Ay, can be obtained as
follows:
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e First, we apply the algorithm f to the measurement results x;(7;;) and get the
estimate y.
e Then, we select a small value 6 and for each sensor i, we do the following:

— for this sensor i, we take x( (tij) = Xi(t;j) + 0 - cos(wy - t;;) for all moments j;
xy ) =)

— substitute the resulting values x, ( ;) into the data processing algorithm f

— for all other sensors i’ # i, we tak

and get the result ylei),

— then, for this sensor i, we take xl@ (tij) = Xi(t;j) + 6 - sin(@y - ;) for all mo-
ments j;

— for all other sensors i’ # i, we take x<, )(tr ) =Xi(tv;);

(si)
(t,

— substitute the resulting values x;  (#7;) into the data processing algorithm f

and get the result y©*9).

e Finally, we estimate the desired bound o, as

1 , ylei) — 5 2 ylsi) 5 2
Opt =[5 1P < 5 >+< 5 )

Metrological comment. In some practical situations, instead of the absolute bound
Py; on the amplitude of the corresponding periodic error components, practitioners
often describe relative accuracy &y; such as 5% or 10%. In this case, a reasonable
way to describe the absolute bound is to determine it as o; = §; - m;, i.e., by multi-
plying the given value &; and the mean square value of the signal
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