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Abstract

Traditional statistical estimates Ŝ(x1, . . . , xn) for different statistical
characteristics S (such as mean, variance, etc.) implicitly assume that we
know the sample values x1, . . . , xn exactly. In practice, the sample values
x̃i come from measurements and are, therefore, in general, different from
the actual (unknown) values xi of the corresponding quantities. Some-
times, we know the probabilities of different values of the measurement
error ∆xi = x̃i − xi, but often, the only information that we have about
the measurement error is the upper bound ∆i on its absolute value – pro-
vided by the manufacturer of the corresponding measuring instrument. In
this case, the only information that we have about the actual values xi is
that they belong to the intervals [x̃i −∆i, x̃i +∆i].

In general, different values xi ∈ [x̃i−∆i, x̃i+∆i] lead to different values

of the corresponding estimate Ŝ(x1, . . . , xn). In this case, it is desirable
to find the range of all possible values of this characteristic.

In this paper, we consider the problem of computing the corresponding
range for the cases of lognormal and delta-lognormal distributions. Inter-
estingly, it turns out that, in contrast to the case of normal distribution
for which it is feasible to compute the range of the mean, for lognormal
and delta-lognormal distributions, computing the range of the mean is an
NP-hard problem.
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1 Introduction

Need for interval uncertainty. Traditional statistical estimates
Ŝ(x1, . . . , xn) for different statistical characteristics S (such as mean, variance,
etc.) implicitly assume that we know the sample values x1, . . . , xn exactly. In
practice, the sample values x̃i come from measurements and are, therefore, in
general, different from the actual (unknown) values xi of the corresponding
quantities. Sometimes, we know the probabilities ρi(∆xi) of different values of
the measurement error ∆xi = x̃i − xi, but often, the only information that we
have about the measurement error is the upper bound ∆i on its absolute value
– provided by the manufacturer of the corresponding measuring instrument. In
this case, the only information that we have about the actual values xi is that
they belong to the intervals xi = [xi, xi] = [x̃i −∆i, x̃i +∆i]; see, e.g., [18].

In general, different values xi ∈ [x̃i −∆i, x̃i +∆i] lead to different values of

the corresponding estimate Ŝ(x1, . . . , xn). In this case, it is desirable to find the
range of all possible values of this estimate:

Ŝ = {Ŝ(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

For continuous estimates Ŝ(x1, . . . , xn), this range is an interval Ŝ.

What is known. For different statistical estimates, there exist numerous effi-
cient algorithms for computing the interval ranges of these characteristics under
interval uncertainty; see, e.g., [2, 3, 6, 8, 12, 13, 15, 14, 16, 17, 21].

For example, the standard ways to estimate mean E and variance V based

on the same x1, . . . , xn is to use the estimates Ê =
1

n
·

n∑
i=1

xi and

V̂ =
1

n
·

n∑
i=1

(
xi − Ê

)2
=

1

n
·

n∑
i=1

x2
i −

(
Ê
)2

.

For the normal distribution, these estimates correspond to the Maximum Like-
lihood Methods (and are, therefore, asymptotically optimal). For other distri-
butions, these same estimates – while not necessarily asymptotically optimal –
also converge to the actual mean and the actual variance when the sample size
increases.

Comment. In many practical situations, we are interested in an unbiased esti-
mate V̂u of the population variance V :

V̂u(x1, . . . , xn) =
1

n− 1
·

n∑
i=1

(
xi − Ê

)2
.

In this paper, we will describe how to estimate the range of V̂ under interval

uncertainty; since V̂u =
n

n− 1
· V̂ , we can easily transform the range of the

estimate V̂ into the range for the estimate V̂u.
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Computing arithmetic average under interval uncertainty. The arith-
metic average Ê is a monotonically increasing function of each of its n vari-
ables x1, . . . , xn, so its smallest possible value Ê is attained when each value
xi is the smallest possible (xi = xi) and its largest possible value is at-

tained when xi = xi for all i. In other words, the range Ê of Ê is equal to[
Ê(x1, . . . , xn), Ê(x1, . . . , xn)

]
. In other words, Ê =

1

n
· (x1 + . . . + xn) and

Ê =
1

n
· (x1 + . . .+ xn).

Similarly, the standard estimate m̂ = med(x1, . . . , xn) for the median is a
monotonic function of all its variables, so its range can be computed as[

m̂, m̂
]
= [m̂(x1, . . . , xn), m̂(x1, . . . , xn)] .

Computing sample variance under interval uncertainty. In contrast to
the arithmetic average, the dependence of the sample variance V̂ on xi is not
monotonic, so the above simple idea does not work. Rather surprisingly, it turns
out that the problem of computing the exact range for the sample variance over
interval data is, in general, NP-hard [7, 16] which means, crudely speaking, that
the worst-case computation time grows exponentially with n.

Comment. To be more precise, a problem P is NP-hard if every problem from
a class NP can be reduced to P; see, e.g., [9]. For a more detailed description
of NP-hardness in relation to interval uncertainty, see, e.g., [11, 16].

Computing sample variance under interval uncertainty (cont-d).

Specifically, computing the upper endpoint V̂ of the range
[
V̂ , V̂

]
is NP-hard.

Moreover, if we want to compute the variance range or V̂ with a given accuracy
ε, the problem is still NP-hard [7, 16].

Specifically, the lower endpoints V̂ can be computed feasibly (i.e., in poly-

nomial time), while computing the upper endpoint V̂ is, in general, NP-hard.
In the example on which NP-hardness is proven, all n intervals have a common
point. In many practically important situations, it is possible to feasibly com-

pute V̂ . For example, V̂ can be feasibly computed when there exists a constant
C for which every subset of C intervals has an empty intersection.

Maximum likelihood estimates for the lognormal distribution. In many
practical situations, we encounter lognormal distributions [1], i.e., distribution
of a random variable x whose logarithm y = ln(x) is normally distributed.
This distribution is usually characterized by the parameters µ and σ of the
corresponding normal distribution.

In principle, we can use the above formula to estimate the mean and the
variance from the sample x1, . . . , xn. However, as we have mentioned, for non-
normal distributions, these estimates are not asymptotically optimal. To get
asymptotically optimal estimates, we need to use the Maximum Likelihood
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Method. For the lognormal distribution, once we have a sample x1, . . . , xn,
we can compute the values yi = ln(xi) and then use the Maximum Likelihood
Method to estimate the parameters µ and σ:

µ̂ =
1

n
·

n∑
i=1

yi; σ̂2 =
1

n
·

n∑
i=1

(yi − µ̂)
2
=

1

n
·

n∑
i=1

y2i − (µ̂)
2
.

Once we know the values µ̂ and σ̂, we can estimate the mean E and the variance
V of the lognormal distribution as

Ê = exp

(
µ̂+

σ̂2

2

)
; V̂ = exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
.

The coefficient of variation CV – which is defined as the ratio

√
V

E
of the

standard deviation over mean, is therefore estimated as

ĈV =
√
exp (σ̂2)− 1.

The values of the median m and the mode m0 can also be estimated based
on µ and σ: m̂ = exp (µ̂) and m̂0 = exp

(
µ̂− σ̂2

)
.

Comment. For estimates originating from the normal distribution, we did not
consider problems for estimating median and mode, since for normal distribu-
tion, median, mode, and mean coincide.

Case of the lognormal distribution: first problem that we solve in
this paper. As we have mentioned, in practice, after the measurements and/or
observations, instead of the exact values xi of the sample, we often only know
the intervals [xi, xi] of possible values of xi. Different values xi from these

intervals lead, in general, to different values of Ê, V̂ , ĈV , m̂, and m̂0. It is
therefore desirable to find the ranges of these characteristics. This is the first
problem with which we deal in this paper.

Maximum likelihood estimates for the delta-lognormal distribution.
In many practical applications, e.g., in medical applications and in meteorology,
a quantity can take any non-negative values but have a positive probability of
0 values. In many such cases, the probabilities are described by the delta-
lognomal distribution, in which with a given probability d > 0, we get a value
0, and with the remaining probability 1 − d, we get a lognormal distribution;
see, e.g., [1, 4, 20].

In medical applications, in distribution of test costs, zeros correspond to
the cases when a patient refused a test. In environmental applications, zeros
correspond to the case when the actual concentration of the analyzed chemical
is below the detection limit. In biological applications, e.g., in distribution of
certain species in different geographic areas, zeros correspond to areas with are
unsuitable for these species, etc.
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The corresponding probability density has the form

ρ(x, µ, σ, d) = d · δ(x) + (1− d) · 1√
2π · σ · x

· exp
(
− (ln(x)− µ)2

2σ2

)
,

where δ(x) denotes Dirac’s delta-function (a generalized function that describes
the probability density of a random variable which is located at point 0 with
probability 1).

For the delta-lognormal distribution, Maximum Likelihood leads to the fol-
lowing estimates:

d̂ =
#{i : xi = 0}

n
; µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);

σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
; Ê =

(
1− d̂

)
· exp

(
µ̂+

σ̂2

2

)
;

V̂ =
(
1− d̂

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+ d̂− 1

)
;

ĈV =

√
exp (σ̂2) + d̂− 1

1− d̂
.

Case of the delta-lognormal distribution: second problem that we
solve in this paper. In practice, instead of the exact values xi of the sample,
we often only know the intervals [xi, xi] of possible values of xi. Different values

xi from these intervals lead, in general, to different values of Ê, V̂ , and ĈV .
It is therefore desirable to find the ranges of these characteristics. This is the
second problem with which we deal in this paper.

2 Case of the Lognormal Distribution: Estimat-
ing Median under Interval Uncertainty

Problem: reminder. Let us start with computing the range [m̂, m̂] of the
estimate for the median m̂ = exp(µ̂) of the lognormal distribution, where µ̂ =

1

n
·

n∑
i=1

yi and yi = ln(xi), under interval uncertainty xi ∈ [xi, xi].

In this problem, we are given n intervals [xi, xi], and we need to find the
range of possible values of m̂ = exp(µ̂).

Analysis of the problem. The median estimate m̂ = exp(µ̂) is an increasing
function of the parameter estimate µ̂. The parameter estimate µ̂, in its turn, is
an increasing function of all its variables yi, and each yi = ln(xi) is an increasing
function of xi. Thus, the median estimate m̂ is a monotonically increasing
function of all its variables x1, . . . , xn. Due to this monotonicity, we can make
the same conclusion as when we estimated the mean of the normal distribution:
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• the median estimate m̂ attains its smallest value when each variable xi

takes its smallest possible value xi, and

• the median estimate m̂ attains its largest value when each variable xi takes
its largest possible value xi.

Thus, we arrive at the following range
[
m̂, m̂

]
:

Resulting estimate. When the inputs xi are in the intervals [xi, xi], the range

range
[
m̂, m̂

]
of the possible values of the median estimate is[

m̂, m̂
]
=
[
exp

(
µ̂
)
, exp

(
µ̂
)]

,

where

µ̂ =
1

n
·

n∑
i=1

ln(xi); µ̂ =
1

n
·

n∑
i=1

ln(xi).

3 Case of the Lognormal Distribution: Estimat-
ing Mean under Interval Uncertainty

Observation: for lognormal distribution, the Maximum Likelihood
estimate for the mean is not monotonic. For the normal distribution,
the Maximum Likelihood estimate for the mean is the arithmetic average Ê =

1

n
·

n∑
i=1

xi, which is an increasing function of all its variables x1, . . . , xn. Our first

observation is that for the lognormal distribution, the corresponding Maximum

Likelihood estimate for the mean Ê = exp

(
µ̂+

σ̂2

2

)
is not always an increasing

function of all its inputs.

Proposition 1. For the lognormal distribution, the Maximum Likelihood esti-
mate for the mean

Ê = exp

(
µ̂+

σ̂2

2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
,

is not always an increasing function of all its inputs.

Comment. For reader’s convenience, all the proofs are placed in a special Proofs
section.

In general, computing Ê is NP-hard. It turns out that in general, the

problem of computing the upper endpoint Ê of the interval of possible values
of the mean estimate Ê is NP-hard:
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Proposition 2. Let Ê be the Maximum Likelihood estimate for the mean E
corresponding to the lognormal distribution:

Ê = exp

(
µ̂+

σ̂2

2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Then, the following problem is NP-hard:

• given n intervals [xi, xi],

• compute the upper endpoint Ê of the range of corresponding values of Ê.

Comment. As we have mentioned earlier, for the lognormal distribution, there
are two possible estimates for the mean based on the sample x1, . . . , xn:

• the general estimate
1

n
·

n∑
i=1

xi which is applicable to all possible distribu-

tions but which is not necessarily asymptotically optimal, and

• the estimate Ê based on the Maximum Likelihood Method for the lognor-
mal distribution, an estimate which is asymptotically optimal.

For the first estimate, results are not optimal, but the range can be easily
computed, while for the second estimate, the results are asymptotically optimal,
but the problem is computationally difficult (NP-hard).

It is worth mentioning that the situation with estimating the variance V in
the normal distribution case is somewhat similar:

• computing the maximum likelihood (asymptotically optimal) estimate is,
as we have mentioned, NP-hard, while

• the average mean deviation
1

n
·

n∑
i=1

∣∣∣xi − Ê
∣∣∣ (where Ê =

1

n
·
∑

xi), a

quantity which can also be used to provide an estimate for V , can be
computed in polynomial time [10].

Approximate computation of Ê is also NP-hard. The above problem

remains NP-hard if we are only interested in computing Ê with a given accuracy.

Proposition 3. Let Ê be the Maximum Likelihood estimate for the mean E
corresponding to the lognormal distribution:

Ê = exp

(
µ̂+

σ̂2

2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Let ε > 0 be a real number. Then, the following problem is NP-hard:

7



• given n intervals [xi, xi],

• compute a value r whose difference from the upper endpoint Ê of the range

of corresponding values of Ê does not exceed ε:
∣∣∣r − Ê

∣∣∣ ≤ ε.

Feasible algorithms for computing Ê and Ê. We have shown that comput-

ing the upper endpoint Ê is, in general, NP-hard. Let us show how to feasibly
compute the lower endpoint Ê and how to feasibly compute the upper endpoint

Ê when the intervals do not intersect much.

Proposition 4. Let Ê be the Maximum Likelihood estimate for the mean E
corresponding to the lognormal distribution:

Ê = exp

(
µ̂+

σ̂2

2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given n intervals [xi, xi],

• computes the lower endpoint Ê of the range of corresponding values of Ê.

Comment. As we will see, this algorithm takes time O(n · log(n)).

Description of the corresponding algorithm. First, we sort all 2n end-
points y

i
= ln (xi) and yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n.

Let us add r0 = −∞ and r2n+1 = +∞. This divides the real line into 2n + 1
zones [rk, rk+1], k = 0, 1, . . . , 2n. For each zone, we do the following:

• First, we compute the values

s−k =
∑

i:yi≤rk

yi; s+k =
∑

j:rk+1≤y
i

y
j
;

M−
k =

∑
i:yi≤rk

(yi)
2; M+

k =
∑

j:rk+1≤y
j

(
y
i

)2
;

and the number nk of all the indices i for which y
i
≤ rk ≤ rk+1 ≤ yi.

• Then, we compute the value µ̂k as

ŷk =
s−k + s+k − nk

n− nk
.
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• If rk ≤ µ̂k − 1 ≤ rk+1, we then compute

Mk =
M−

k +M+
k + nk · (µ̂− 1)

2

n
; σ2

k = Mk − (µ̂k)
2
; Ak = µ̂k +

σ2
k

2
.

We then take the smallest A = min
k

Ak of all the values Ak, and return exp(A)

as the desired value Ê.

Proposition 5. Let C be a positive integer, and let Ê be the Maximum Likeli-
hood estimate for the mean E corresponding to the lognormal distribution:

Ê = exp

(
µ̂+

σ̂2

2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,

• computes the upper endpoint Ê of the range of corresponding values of Ê.

Comment. This algorithm also takes time O(n · log(n)).

Description of the corresponding algorithm. First, we sort all 2n end-
points y

i
= ln (xi) and yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n.

Let us add r0 = −∞ and r2n+1 = +∞. This divides the real line into 2n + 1
zones [rk, rk+1], k = 0, 1, . . . , 2n. For each zone, we do the following:

• For each value i, we select:

– the value yi = y
i
if yi ≤ rk;

– the value yi = yi if rk+1 ≤ y
i
; and

– both values in all other cases, i.e., when y
i
≤ rk ≤ rk+1 ≤ yi.

For each of the resulting tuples, we compute the value A = µ̂+
σ̂2

2
.

Then, we compute the largest Amax of these values A and finally, the desired

bound Ê = exp(Amax).
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4 Case of the Lognormal Distribution: Estimat-
ing Mode under Interval Uncertainty

In general, computing m̂0 is NP-hard. It turns out that in general, the
problem of computing the lower endpoint m̂0 of the interval of possible values
of the mode estimate m̂0 is NP-hard:

Proposition 6. Let m̂0 be the Maximum Likelihood estimate for the mode m0

corresponding to the lognormal distribution:

m̂0 = exp(µ̂− σ̂2), where µ̂ =
1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Then, the following problem is NP-hard:

• given n intervals [xi, xi],

• compute the lower endpoint m̂0 of the range of corresponding values of m̂0.

Proposition 7. Let m̂0 be the Maximum Likelihood estimate for the mode m0

corresponding to the lognormal distribution:

m̂0 = exp(µ̂− σ̂2), where µ̂ =
1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Let ε > 0 be a real number. Then, the following problem is NP-hard:

• given n intervals [xi, xi],

• compute a value r whose difference from the lower endpoint m̂0 of the
range of corresponding values of m̂0 does not exceed ε:∣∣r − m̂0

∣∣ ≤ ε.

Feasible algorithms for computing m̂0 and m̂0. We have shown that
computing the lower endpoint m̂0 is, in general, NP-hard. Let us show how to

feasibly compute the upper endpoint m̂0 and how to feasibly compute the lower
endpoint m̂0 when the intervals do not intersect much.

Proposition 8. Let m̂0 be the Maximum Likelihood estimate for the mode m0

corresponding to the lognormal distribution:

m̂0 = exp
(
µ̂− σ̂2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:
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• given n intervals [xi, xi],

• computes the upper endpoint m̂0 of the range of corresponding values
of m̂0.

Comment. As we will see, this algorithm takes time O(n · log(n)).

Description of the corresponding algorithm. First, we sort all 2n end-
points y

i
= ln (xi) and yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n.

Let us add r0 = −∞ and r2n+1 = +∞. This divides the real line into 2n + 1
zones [rk, rk+1], k = 0, 1, . . . , 2n. For each zone, we do the following:

• First, we compute the values

s−k =
∑

i:yi≤rk

yi; s+k =
∑

j:rk+1≤y
i

y
j
;

M−
k =

∑
i:yi≤rk

(yi)
2; M+

k =
∑

j:rk+1≤y
j

(
y
i

)2
;

and the number nk of all the indices i for which y
i
≤ rk ≤ rk+1 ≤ yi.

• Then, we compute the value µ̂k as

µ̂k =
s−k + s+k +

nk

2
n− nk

.

• If rk ≤ µ̂k +
1

2
≤ rk+1, we then compute

Mk =

M−
k +M+

k + nk ·
(
µ̂+

1

2

)2

n
; σ2

k = Mk − (µ̂k)
2
; Ak = µ̂k − σ2

k.

We then take the largest A = max
k

Ak of all the values Ak, and return exp(A)

as the desired value m̂0.

Proposition 9. Let C be a positive integer, and let m̂0 be the Maximum Like-
lihood estimate for the mode m0 corresponding to the lognormal distribution:

m̂0 = exp
(
µ̂− σ̂2

)
, where µ̂ =

1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:
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• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,

• computes the lower endpoint m̂0 of the range of corresponding values
of m̂0.

Comment. This algorithm also takes time O(n · log(n)).

Description of the corresponding algorithm. First, we sort all 2n end-
points y

i
= ln (xi) and yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n.

Let us add r0 = −∞ and r2n+1 = +∞. This divides the real line into 2n + 1
zones [rk, rk+1], k = 0, 1, . . . , 2n. For each zone, we do the following:

• For each value i, we select:

– the value yi = y
i
if yi ≤ rk;

– the value yi = yi if rk+1 ≤ y
i
; and

– both values in all other cases, i.e., when y
i
≤ rk ≤ rk+1 ≤ yi.

For each of the resulting tuples, we compute the value A = µ̂− σ̂2.

Then, we compute the smallest Amin of these values A and finally, the desired
bound m̂0 = exp(Amin).

5 Case of the Lognormal Distribution: Estimat-
ing Variance under Interval Uncertainty

Proposition 10. Let V̂ be the Maximum Likelihood estimate for the variance
V corresponding to the lognormal distribution:

V̂ = exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
,

where µ̂ =
1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
. Then, the following

problem is NP-hard:

• given n intervals [xi, xi],

• compute the upper endpoint V̂ of the range of corresponding values of V̂ .

Proposition 11. Let V̂ be the Maximum Likelihood estimate for the variance
V corresponding to the lognormal distribution:

V̂ = exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
,

12



where µ̂ =
1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
. Then, there exists a

feasible (polynomial time) algorithm that:

• given n intervals [xi, xi],

• computes the lower endpoint V̂ of the range of corresponding values of V̂ .

Comment. As we will see, this algorithm takes time O(n · log(n)).

Description of the corresponding algorithm. First, we sort all 2n end-
points y

i
= ln (xi) and yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n.

Let us add r0 = −∞ and r2n+1 = +∞. This divides the real line into 2n + 1
zones [rk, rk+1], k = 0, 1, . . . , 2n. For each zone, we do the following:

• First, we compute the values

s−k =
∑

i:yi≤rk

yi; s+k =
∑

j:rk+1≤y
i

y
j
;

M−
k =

∑
i:yi≤rk

(yi)
2; M+

k =
∑

j:rk+1≤y
j

(
y
i

)2
;

and the number nk of all the indices i for which y
i
≤ rk ≤ rk+1 ≤ yi.

• Then, we compute the value r from the equation

r = µ̂−
exp

(
σ̂2
)
− 1

2 exp (σ̂2)− 1
, where

µ̂ =
s−k + s+k + nk · r

n− p
; σ̂2 =

M−
k +M+

k + nk · r2 − (µ̂)
2

n− p
.

• If rk ≤ r ≤ rk+1, we then compute the value

V = exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
.

We then take the smallest of all the values V as the desired value V̂ .

Proposition 12. Let C be a positive integer, and let V̂ be the Maximum Like-
lihood estimate for the variance V corresponding to the lognormal distribution:

V̂ = exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
,

where µ̂ =
1

n
·

n∑
i=1

ln(xi) and σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
. Then, there exists a

feasible (polynomial time) algorithm that:

13



• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,

• computes the upper endpoint V̂ of the range of corresponding values of V̂ .

Comment. This algorithm also takes time O(n · log(n)).

Description of the corresponding algorithm. First, we sort all 2n end-
points y

i
= ln (xi) and yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n.

Let us add r0 = −∞ and r2n+1 = +∞. This divides the real line into 2n + 1
zones [rk, rk+1], k = 0, 1, . . . , 2n.

For each zone, for each value i, we select:

• the value yi = y
i
if yi ≤ rk;

• the value yi = yi if rk+1 ≤ y
i
; and

• for each other index i, i.e., when y
i
≤ rk ≤ rk+1 ≤ yi, select one of the

three possible cases: yi = y
i
, yi = yi, and yi = r, for a constant r to be

determined later.

For each of the resulting tuples, we find r from the equation

r = µ̂−
exp

(
σ̂2
)
− 1

2 exp (σ̂2)− 1
,

where µ̂ and σ̂2 are sample mean and sample variance of the selected values yi
– thus, depending on r as well. Once we find r, we thus know the values of all
selected yi, so we can compute the values µ̂, σ̂2, and

V̂ = exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
.

Then, we compute the largest of these values V̂ and return it as the desired

bound V̂ .

6 Case of the Lognormal Distribution: Estimat-
ing Coefficient of Variation under Interval Un-
certainty

The Maximum Likelihood estimate ĈV for the coefficient of variation CV –

which is defined as the ratio

√
V

E
of the standard deviation over mean – is equal

to
ĈV =

√
exp (σ̂2)− 1.

This estimate is a monotonic function of the sample variance σ̂2; thus:

14



• its largest value ĈV is attained when the sample variance σ̂2 attains its
largest possible value σ̂2, and

• its smallest value ĈV is attained when the sample variance σ̂2 attains its
smallest possible value σ̂2:

[
ĈV , ĈV

]
=

[√
exp (σ̂2)− 1,

√
exp

(
σ̂2
)
− 1

]
.

Thus, from the known results about computational complexity of computing
the endpoints σ̂2 and σ̂2 [7, 16, 21], we make the following conclusions:

Proposition 13. Let ĈV be the Maximum Likelihood estimate for the coeffi-
cient of variation CV =

√
V E corresponding to the lognormal distribution:

ĈV =
√

exp (σ̂2)− 1, where σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
and µ̂ =

1

n
·

n∑
i=1

ln(xi).

Then, the following problem is NP-hard:

• given n intervals [xi, xi],

• compute the upper endpoint ĈV of the range of corresponding values
of ĈV .

Proposition 14. Let ĈV be the Maximum Likelihood estimate for the coeffi-
cient of variation CV =

√
V E corresponding to the lognormal distribution:

ĈV =
√

exp (σ̂2)− 1, where σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
and µ̂ =

1

n
·

n∑
i=1

ln(xi).

Then, there exists a feasible (polynomial time) algorithm that:

• given n intervals [xi, xi],

• computes the lower endpoint ĈV of the range of corresponding values

of ĈV .

Comment. This algorithm takes linear time O(n).

Proposition 15. Let C be a positive integer, and let ĈV be the Maximum
Likelihood estimate for the coefficient of variation CV corresponding to the log-
normal distribution:

ĈV =
√

exp (σ̂2)− 1, where σ̂2 =
1

n
·

n∑
i=1

(ln(xi)− µ̂)
2
and µ̂ =

1

n
·

n∑
i=1

ln(xi).

Then, there exists a feasible (polynomial time) algorithm that:

15



• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,

• computes the upper endpoint ĈV of the range of corresponding values
of ĈV .

Comment. This algorithm takes linear time O(n).

7 Case of the Delta-Lognormal Distribution:
Estimating Mean under Interval Uncertainty

Proposition 16. Let Ê be the Maximum Likelihood estimate for the mean E
corresponding to the delta-lognormal distribution:

Ê =
(
1− d̂

)
· exp

(
µ̂+

σ̂2

2

)
, where d̂ =

#{i : xi = 0}
n

,

µ̂ =
1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi); and σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, the following problem is NP-hard:

• given n intervals [xi, xi],

• compute the upper endpoint Ê of the range of corresponding values of Ê.

Proposition 17. Let Ê be the Maximum Likelihood estimate for the mean E
corresponding to the delta-lognormal distribution:

Ê =
(
1− d̂

)
· exp

(
µ̂+

σ̂2

2

)
, where d̂ =

#{i : xi = 0}
n

,

µ̂ =
1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi); and σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given n intervals [xi, xi],

• computes the lower endpoint Ê of the range of corresponding values of Ê.

Comment. This algorithm takes time O(n2 · log(n)).

Description of the corresponding algorithm. Let n0 ≤ n be the total
number of intervals [xi, xi] for which xi = 0. Let us sort all these intervals in the
increasing order of the upper endpoints xi, so that we have x1 = . . . = xn0

= 0
and x1 ≤ x2 ≤ . . . ≤ xn0 .
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For each p = 0, 1, 2, . . . , n0, we set x1 = . . . = xp = 0. For the remaining
n− p intervals, we sort the corresponding 2 · (n− p) endpoints y

i
= ln (xi) and

yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n−2p.

Let us add r0 = −∞ and r2n−2p+1 = +∞. This divides the real line into
2n − 2p + 1 zones [rk, rk+1], k = 0, 1, . . . , 2n − 2p. For each zone, we do the
following:

• First, we compute the values

s−k =
∑

i:yi≤rk

yi; s+k =
∑

j:rk+1≤y
i

y
j
;

M−
k =

∑
i:yi≤rk

(yi)
2; M+

k =
∑

j:rk+1≤y
j

(
y
i

)2
;

and the number nk of all the indices i for which y
i
≤ rk ≤ rk+1 ≤ yi.

• Then, we compute the value µ̂k as

µ̂k =
s−k + s+k − nk

n− p− nk
.

• If rk ≤ µ̂k − 1 ≤ rk+1, we then compute

Mk =
1

n− p
·
(
M−

k +M+
k + nk · (µ̂k − 1)

2
)
; σ2

k = Mk − (µ̂k)
2
;

Ê =
(
1− p

n

)
· exp

(
µ̂k +

σ2
k

2

)
.

We then compute the smallest of all the resulting values Ê (corresponding to all

values p and to all zones), and return this smallest value as the desired value Ê.

Proposition 18. Let C be a positive integer, and let Ê be the Maximum Likeli-
hood estimate for the mean E corresponding to the delta-lognormal distribution:

Ê =
(
1− d̂

)
· exp

(
µ̂+

σ̂2

2

)
, where d̂ =

#{i : xi = 0}
n

,

µ̂ =
1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi); and σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,
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• computes the upper endpoint Ê of the range of corresponding values of Ê.

Comment. This algorithm also takes time O(n2 · log(n)).
Description of the corresponding algorithm. Let n0 ≤ n be the total
number of intervals [xi, xi] for which xi = 0. Let us sort all these intervals in the
increasing order of the upper endpoints xi, so that we have x1 = . . . = xn0

= 0
and x1 ≤ x2 ≤ . . . ≤ xn0 .

For each p = 0, 1, 2, . . . , n0, we set x1 = . . . = xp = 0. For the remaining
n− p intervals, we sort the corresponding 2 · (n− p) endpoints y

i
= ln (xi) and

yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n−2p.

Let us add r0 = −∞ and r2n−2p+1 = +∞. This divides the real line into
2n − 2p + 1 zones [rk, rk+1], k = 0, 1, . . . , 2n − 2p. For each zone, we do the
following:

• For each value i, we select:

– the value yi = y
i
if yi ≤ rk;

– the value yi = yi if rk+1 ≤ y
i
; and

– both values in all other cases, i.e., when y
i
≤ rk ≤ rk+1 ≤ yi.

• For each of the resulting tuples, we compute the value

Ê =
(
1− p

n

)
· exp

(
µ̂+

σ2

2

)
.

We then compute the largest of all the resulting values Ê (corresponding to all

values p and to all zones), and return this largest value as the desired value Ê.

8 Case of the Delta-Lognormal Distribution:
Estimating Variance under Interval Uncer-
tainty

Proposition 19. Let V̂ be the Maximum Likelihood estimate for the variance
V corresponding to the delta-lognormal distribution:

V̂ =
(
1− d̂

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+ d̂− 1

)
,

where

d̂ =
#{i : xi = 0}

n
, µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);

σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, the following problem is NP-hard:
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• given n intervals [xi, xi],

• compute the upper endpoint V̂ of the range of corresponding values of V̂ .

Proposition 20. Let V̂ be the Maximum Likelihood estimate for the variance
V corresponding to the delta-lognormal distribution:

V̂ =
(
1− d̂

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+ d̂− 1

)
,

where

d̂ =
#{i : xi = 0}

n
, µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);

σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given n intervals [xi, xi],

• computes the lower endpoint V̂ of the range of corresponding values of V̂ .

Comment. As we will see, this algorithm takes time O(n2 · log(n)).

Description of the corresponding algorithm. Let n0 ≤ n be the total
number of intervals [xi, xi] for which xi = 0. Let us sort all these intervals in the
increasing order of the upper endpoints xi, so that we have x1 = . . . = xn0

= 0
and x1 ≤ x2 ≤ . . . ≤ xn0 .

For each p = 0, 1, 2, . . . , n0, we set x1 = . . . = xp = 0. For the remaining
n− p intervals, we sort the corresponding 2 · (n− p) endpoints y

i
= ln (xi) and

yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n−2p.

Let us add r0 = −∞ and r2n−2p+1 = +∞. This divides the real line into
2n − 2p + 1 zones [rk, rk+1], k = 0, 1, . . . , 2n − 2p. For each zone, we do the
following:

• First, we compute the values

s−k =
∑

i:yi≤rk

yi; s+k =
∑

j:rk+1≤y
i

y
j
;

M−
k =

∑
i:yi≤rk

(yi)
2; M+

k =
∑

j:rk+1≤y
j

(
y
i

)2
;

and the number nk of all the indices i for which y
i
≤ rk ≤ rk+1 ≤ yi.
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• Then, we compute the value r from the equation

r = µ̂−
exp

(
σ̂2
)
+

p

n
− 1

2 exp (σ̂2) +
p

n
− 1

, where

µ̂ =
s−k + s+k + nk · r

n− p
; σ̂2 =

M−
k +M+

k + nk · r2 − (µ̂)
2

n− p
.

• If rk ≤ r ≤ rk+1, we then compute the value

V̂ =
(
1− p

n

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+

p

n
− 1
)
.

We then compute the smallest of all the resulting values V̂ (corresponding to all

values p and to all zones), and return this smallest value as the desired value V̂ .

Proposition 21. Let C be a positive integer, and let V̂ be the Maximum Like-
lihood estimate for the variance V corresponding to the delta-lognormal distri-
bution:

V̂ =
(
1− d̂

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+ d̂− 1

)
,

where

d̂ =
#{i : xi = 0}

n
, µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);

σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,

• computes the upper endpoint V̂ of the range of corresponding values of V̂ .

Comment. This algorithm also takes time O(n2 · log(n)).
Description of the corresponding algorithm. Let n0 ≤ n be the total
number of intervals [xi, xi] for which xi = 0. Let us sort all these intervals in the
increasing order of the upper endpoints xi, so that we have x1 = . . . = xn0

= 0
and x1 ≤ x2 ≤ . . . ≤ xn0 .

For each p = 0, 1, 2, . . . , n0, we set x1 = . . . = xp = 0. For the remaining
n− p intervals, we sort the corresponding 2 · (n− p) endpoints y

i
= ln (xi) and

yi = ln (xi) into a non-decreasing sequence

r1 ≤ r2 ≤ . . . ≤ r2n−2p.

Let us add r0 = −∞ and r2n−2p+1 = +∞. This divides the real line into
2n− 2p+1 zones [rk, rk+1], k = 0, 1, . . . , 2n− 2p. For each zone, for each value
i, we select:
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• the value yi = y
i
if yi ≤ rk;

• the value yi = yi if rk+1 ≤ y
i
; and

• for each other index i, i.e., when y
i
≤ rk ≤ rk+1 ≤ yi, select one of the

three possible cases: yi = y
i
, yi = yi, and yi = r, for a constant r to be

determined later.

For each of the resulting tuples, we find r from the equation

r = µ̂−
exp

(
σ̂2
)
+

p

n
− 1

2 exp (σ̂2) +
p

n
− 1

,

where µ̂ and σ̂2 are sample mean and sample variance of the selected values yi
– thus, depending on r as well. Once we find r, we thus know the values of all
selected yi, so we can compute the values µ̂, σ̂2, and

V̂ =
(
1− p

n

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+

p

n
− 1
)
.

Then, we compute the largest of all the resulting values V̂ (corresponding to all

values p and to all zones), and return this largest value as the desired value V̂ .

9 Case of the Delta-Lognormal Distribution:
Estimating Coefficient of Variation under In-
terval Uncertainty

Proposition 22. Let ĈV be the Maximum Likelihood estimate for the coeffi-
cient of variation CV =

√
V E corresponding to the delta-lognormal distribution:

ĈV =

√
exp (σ̂2) + d̂− 1

1− d̂
,

where

d̂ =
#{i : xi = 0}

n
, µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);

σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, the following problem is NP-hard:

• given n intervals [xi, xi],

• compute the upper endpoint ĈV of the range of corresponding values
of ĈV .
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Proposition 23. Let ĈV be the Maximum Likelihood estimate for the coeffi-
cient of variation CV =

√
V E corresponding to the delta-lognormal distribution:

ĈV =

√
exp (σ̂2) + d̂− 1

1− d̂
,

where

d̂ =
#{i : xi = 0}

n
, µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);

σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given n intervals [xi, xi],

• computes the lower endpoint ĈV of the range of corresponding values

of ĈV .

Comment. This algorithm takes quadratic time O(n2).

Description of the corresponding algorithm. Let n0 ≤ n be the total
number of intervals [xi, xi] for which xi = 0. Let us sort all these intervals in the
increasing order of the upper endpoints xi, so that we have x1 = . . . = xn0

= 0
and x1 ≤ x2 ≤ . . . ≤ xn0 .

For each p = 0, 1, 2, . . . , n0, we set x1 = . . . = xp = 0. For the remaining n−p

indices, we compute the intervals
[
y
i
, yi

]
, where y

i
= ln (xi) and yi = ln (xi).

To these n − p intervals, we then apply the known linear-time algorithm for
computing the lower endpoint σ̂2 for the sample variance, and compute the
value

ĈV =

√√√√√exp (σ̂2) +
p

n
− 1

1− p

n

.

The smallest of the resulting values ĈV (corresponding to all possible values

p = 0, 1 . . . , n0) is then returned as the desired value C̃V .

Proposition 24. Let C be a positive integer, and let ĈV be the Maximum Like-
lihood estimate for the coefficient of variation CV corresponding to the delta-
lognormal distribution:

ĈV =

√
exp (σ̂2) + d̂− 1

1− d̂
,

where

d̂ =
#{i : xi = 0}

n
, µ̂ =

1

#{i : xi > 0}
·
∑

i:xi>0

ln(xi);
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σ̂2 =
1

#{i : xi > 0}
·
∑

i:xi>0

(ln(xi)− µ̂)
2
.

Then, there exists a feasible (polynomial time) algorithm that:

• given a list of n intervals [xi, xi] for which every sublist of C intervals has
an empty intersection,

• computes the upper endpoint ĈV of the range of corresponding values
of ĈV .

Comment. This algorithm takes quadratic time O(n2).

Description of the corresponding algorithm. Let n0 ≤ n be the total
number of intervals [xi, xi] for which xi = 0. Let us sort all these intervals in the
increasing order of the upper endpoints xi, so that we have x1 = . . . = xn0

= 0
and x1 ≤ x2 ≤ . . . ≤ xn0 .

For each p = 0, 1, 2, . . . , n0, we set x1 = . . . = xp = 0. For the remaining n−p

indices, we compute the intervals
[
y
i
, yi

]
, where y

i
= ln (xi) and yi = ln (xi).

To these n − p intervals, we then apply the known linear-time algorithm for
computing the upper endpoint σ̂2 for the sample variance, and compute the
value

ĈV =

√√√√√exp (σ̂2) +
p

n
− 1

1− p

n

.

The largest of the resulting values ĈV (corresponding to all possible values

p = 0, 1 . . . , n0) is then returned as the desired value C̃V .

10 Proofs

Proof of Proposition 1. By definition, yi = ln(xi), so xi = exp(yi). Thus,

each xi is a monotonic function of yi and vice versa. So, Ê is an increasing
function of xi if and only if it is an increasing function of yi. Thus, to prove
that Ê is not always increasing in xi, it is sufficient to prove that it is not always
increasing in yi.

A function is always increasing if its derivative is always non-negative. Thus,
to prove that Ê is not always an increasing function of yi, it is sufficient to find

situations where the derivative
∂Ê

∂yi
is negative.

We know that Ê = exp

(
µ̂+

σ̂2

2

)
. Due to the chain rule and to the fact

that the derivative of exp(x) is this same function exp(x), we conclude that

∂Ê

∂yi
= exp

(
µ̂+

σ̂2

2

)
· ∂

∂yi

(
µ̂+

σ̂2

2

)
.
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Since exp(x) > 0 for all real values x, we conclude that the sign of the derivative

∂Ê

∂yi
coincides with the sign of the second factor. Thus, to prove our proposition,

it is sufficient to find the values y1, . . . , yn for which

∂

∂yi

(
µ̂+

σ̂2

2

)
< 0.

The derivative of the sum is equal to the sum of the derivatives, so

∂

∂yi

(
µ̂+

σ̂2

2

)
=

∂µ̂

∂yi
+

1

2
· ∂σ̂

2

∂yi
.

By definition, µ̂ =
1

n
·

n∑
i=1

yi, so
∂µ̂

∂yi
=

1

n
. Similarly, σ̂2 =

1

n
·

n∑
i=1

y2i − (µ̂)2,

hence
∂σ̂2

∂yi
=

2yi
n

− 2µ̂ · ∂µ̂
∂yi

=
2yi
n

− 2µ̂

n
.

Thus,
∂

∂yi

(
µ̂+

σ̂2

2

)
=

1

n
· (1 + yi − µ̂).

So, if yi < µ̂− 1, this derivative is negative.
The values yi = ln(xi) are normally distributed with the mean µ. Thus, the

values yi for which yi < µ̂− 1 are possible. The proposition is proven.

Proof of Proposition 2. The function y = ln(x) is increasing. Thus, once we
know the intervals [xi, xi] of possible values of xi, we can feasibly compute the

intervals
[
y
i
, yi

]
= [ln(xi), ln(xi)] – and vice versa, once we know the intervals[

y
i
, yi

]
, we can compute the intervals [xi, xi] =

[
exp(y

i
), exp(yi)

]
. So, to prove

that the problem of computing Ê from the intervals [xi, xi] is NP-hard, it is

sufficient to prove that the problem of computing Ê from the intervals
[
y
i
, yi

]
is NP-hard.

Similarly, since the function y = ln(x) is increasing, once we find the range[
Ê, Ê

]
, we can feasibly compute the range [a, a] of the auxiliary expression

a = ln(Ê) = µ̂ +
σ̂2

2
as [a, a] =

[
ln(Ê), ln(Ê)

]
. Vice versa, once we know the

interval [a, a], we can compute the interval
[
Ê, Ê

]
= [exp(a), exp(a)]. So, to

prove that the problem of computing Ê is NP-hard, it is sufficient to prove
that the problem of computing a is NP-hard. Since computing the range of

a = µ̂ +
σ̂2

2
is feasibly equivalent to computing the range of a = σ̂2 + 2µ̂, this

NP-hardness follows from the following Lemma:
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Lemma. Let α be an arbitrary real number, and let A
def
= σ̂2 + α · µ̂, where

µ̂ =
1

n
·

n∑
i=1

yi and σ̂2 =
1

n
·

n∑
i=1

(yi − µ̂)2. Then, the following problem in

NP-hard:

• given n intervals
[
y
i
, yi

]
,

• compute the upper endpoint A of the range

[A,A] =
{
A(y1, . . . , yn) : yi ∈

[
y
i
, yi

]}
.

So, once we prove the lemma, we will therefore prove the desired NP-hardness.

Proof of the Lemma.

1◦. By definition, a problem P is NP-hard if every problem P ′ from the class
NP can be reduced to P. Thus, to prove that a problem P is NP-hard, it is
sufficient to prove that a known NP-hard problem P0 can be reduced to P.
Indeed, in this case, every problem P ′ from the class NP can be reduced to
P0, and since P0 can be reduced to P, we can therefore conclude – by using
transitivity of problem reduction – that P ′ can be reduced to P.

2◦. As a known NP-hard problem P0, we will take the following partition prob-
lem which is known to be NP-hard [9, 11]: given q positive integers s1, . . . , sq,
check whether exist q signs εi ∈ {−1, 1} for which ε1 · s1 + . . .+ εq · sq = 0.

We will use the following reduction of this problem P0 to our problem. For
every instance s1, . . . , sq of the partition problem, we form the following tuple

of n = q + 1 intervals:
[
y
1
, y1

]
= [−s1, s1], . . . ,

[
y
q
, yq

]
= [−sq, sq], and[

y
n
, yn

]
=
[α · n

2
,
α · n
2

]
.

3◦. Let us show that for the resulting instance of our problem, always A ≤

A0
def
=

1

n
·

q∑
i=1

s2i +
α2 · n
4

+
α2

4
, and A = A0 if and only if the original partition

problem has a solution.

3.1◦. Let us first prove that always A ≤ A0.

Indeed, by definitions of the quantities A and σ̂2, we have

A = σ̂2 + α · µ̂ =

(
1

n
·

n∑
i=1

y2i − (µ̂)2

)
+ α · µ̂ =

1

n
·

n∑
i=1

y2i − (µ̂)2 + α · µ̂ =

1

n
·

q∑
i=1

y2i +
1

n
· y2n −

(
µ̂− α

2

)2
+

α2

4
.
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Since 0 ≤ |yi| ≤ si for all i ≤ q, we get y2i = |xi|2 ≤ s2i and thus,
1

n
·

q∑
i=1

y2i ≤

1

n
·

q∑
i=1

s2i . We know that xn =
α · n
2

, so
1

n
· x2

n =
α2 · n
4

. Since the square(
µ̂− α

2

)2
is always non-negative, this implies that

A ≤ 1

n
·

q∑
i=1

s2i +
α2 · n
4

+
α2

4
,

i.e., that always A ≤ A0. Since this inequality holds for every A, it also holds for
the largest possible value A of the quantity A. Thus, we proved that A ≤ A0.

3.2◦. If the original instance of the partition problem has a solution εi, then we

can take yi = εi · si for i ≤ q and yn =
α · n
2

. In this case, for every i, we have

y2i = s2i and therefore,
1

n
·

q∑
i=1

y2i ≤ 1

n
·

q∑
i=1

s2i and thus,

1

n
·

n∑
i=1

y2i =
1

n
·

q∑
i=1

y2i +
1

n
· y2n ≤ 1

n
·

q∑
i=1

s2i +
α2 · n
4

.

Here,
q∑

i=1

yi =
q∑

i=1

εi · si = 0 and thus,

µ̂ =
1

n
·

n∑
i=1

yi =
1

n
·

(
q∑

i=1

yi + yn

)
=

1

n
· yn =

1

n
· α · n

2
=

α

2
.

Hence, µ̂− α

2
= 0, and so,

A =
1

n
·

q∑
i=1

y2i +
α2 · n
4

−
(
µ̂− α

2

)2
+

α2

4
=

1

n
·

n∑
i=1

s2i +
α2 · n
4

+
α2

4
= A0.

3.3◦. Vice versa, let us assume that A = A0. Since A is the maximum of a

continuous function A on a closed bounded box
[
y
1
, y1

]
× . . . ×

[
y
n
, yn

]
, this

maximum is attained for some point within the box, i.e., there exist values

yi ∈
[
y
i
, yi

]
for which A = A0, i.e.,

1

n
·

q∑
i=1

y2i +
α2 · n
4

−
(
µ̂− α

2

)2
+

α2

4
= A0 =

1

n
·

q∑
i=1

s2i +
α2 · n
4

+
α2

4
.

Here, y2i ≤ s2i for all i ≤ q, so if y2i < s2i or µ̂ − α

2
̸= 0, we would get A < A0.

Thus, the fact that A = A0 means that y21 = s21, . . . , y
2
q = s2q, and µ̂ =

α

2
.
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The condition y2i = s2i means that yi = ±si, i.e., that yi = εi · si for some

εi ∈ {−1, 1}. In this case, the condition µ̂ =
α

2
means that

1

n
·

n∑
i=1

yi =
1

n
·

q∑
i=1

εi · si +
1

n
· yn =

α

2
.

Since yn =
α · n
2

, we have
1

n
· yn =

α

2
, and thus,

1

n
·

q∑
i=1

εi · si +
α

2
=

α

2
.

Canceling the term
α

2
in both sides and multiplying both sides of the resulting

inequality by n, we conclude that
q∑

i=1

εi · si = 0, i.e., that we have a solution to

the given instance of the partition problem.

The lemma is proven.

Proof of Proposition 3 can be obtained from the proof of Proposition 2
similarly to [7].

Proof of Proposition 4.

1◦. To prove this proposition, let us first recall known facts from calculus:
namely, when a function of one variable attains minimum and maximum on the
interval.

It is known that a function f(x) defined on an interval [x, x] attains its
minimum on this interval either at lone of its endpoints, or in some internal
point of the interval.

If it attains is minimum at a point x ∈ (a, b), then its derivative at this point

is 0:
df

dx
= 0.

If it attains its minimum at the point x = x, then we cannot have
df

dx
< 0,

because then, for some point x+∆x ∈ [x, x], we would have a smaller value of

f(x). Thus, in this case, we must have
df

dx
≥ 0.

Similarly, if a function f(x) attains its minimum at the point x = x, then

we must have
df

dx
≤ 0.

2◦. Let us apply these known facts to our problem. For the estimate Ê, as
we have shown in the proof of Proposition 1, the sign of the partial derivative

∂Ê

∂yi
coincided with the sign of the difference 1 + yi − µ̂. Thus, for the point

(y1, . . . , yn) at which the estimate Ê attains its minimum, we can make the
following conclusions:
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• if yi = y
i
, then yi ≥ µ̂− 1;

• if yi = yi, then yi ≤ µ̂− 1;

• if y
i
< yi < yi, then yi = µ̂− 1.

3◦. In terms of the relation between the value µ̂ − 1 and the endpoints of the

interval
[
y
i
, yi

]
and the value µ̂− 1, there are three possible cases:

• the case when the interval is fully to the left of the value µ̂− 1, i.e., when
yi < µ̂− 1;

• the case when the interval is fully to the right of the value µ̂−1, i.e., when
µ̂− 1 < y

i
; and

• the case when the value µ̂− 1 belongs to the interval.

Let us consider these three cases one by one.

3.1◦. Let us first consider the case when yi < µ̂ − 1. In this case, the value
yi ≤ yi also satisfies the inequality yi < µ̂− 1. Thus, in this case:

• we cannot have yi = y
i
— because then we would have yi ≥ µ̂− 1; and

• we cannot have y
i
< yi < yi – because then, we would have yi = µ̂− 1.

So, if yi < µ̂− 1, the only remaining option for yi is yi = yi.

3.2◦. Let us now consider the case when µ̂ − 1 < y
i
. In this case, the value

yi ≥ y
i
also satisfies the inequality µ̂− 1 < yi. Thus, in this case:

• we cannot have yi = yi — because then we would have yi ≤ µ̂− 1; and

• we cannot have y
i
< yi < yi – because then, we would have yi = µ̂− 1.

So, if µ̂− 1 < y
i
, the only remaining option for yi is yi = y

i
.

3.3◦. Let us now consider the case when yi ≤ µ̂ − 1 ≤ yi. In this case, the
optimizing value yi can either coincide with the left endpoint, or with the right
endpoint, or with some value in between. Let us consider these three subcases
one by one.

• If yi = y
i
, then yi = y

i
≥ µ̂ − 1. Since y

i
≤ µ̂ − 1, this implies that

yi = µ̂− 1.

• If yi = yi, then yi = yi ≤ µ̂ − 1. Since yi ≥ µ̂ − 1, this implies that
yi = µ̂− 1.

• Finally, y
i
< yi < yi, then yi = µ̂− 1.

In all three subcases, we have yi = µ̂− 1.

4◦. So, if we know the location of µ̂ − 1 in relation to the endpoints of all the
intervals, i.e., if we know the zone [rk, rk+1] that contains this value, we can
determine the optimizing values as follows:
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• If yi ≤ µ̂− 1, then yi = yi.

• If µ̂− 1 ≤ y
i
, then yi = y

i
.

• In all other cases, yi = µ̂− 1.

The corresponding value µ̂ can be determined from the fact that µ̂ is, by
definition, an arithmetic average of the corresponding values yi, i.e., that
y1 + . . . + yn = n · µ̂. Substituting the above optimizing values yi into this
formula, we conclude that∑

i:yi≤rk

yi +
∑

j:rk+1≤y
i

y
i
+ nk · (µ̂− 1) = n · µ̂,

where nk is the total number of indices for which the interval
[
y
i
, yi

]
contains

the zone [rk, rk+1]. This leads to the formula for the µ̂ that we provided in the
description of the algorithm.

First, we check whether this value is indeed located in the given zone. If it

is, then we compute the corresponding value Ê = exp(A) where A = µ̂ +
σ̂2

2
.

We have already computed the value µ̂. To compute σ̂2, we use the formula

σ̂2 = M − (µ̂)
2
, where M =

1

n
·

n∑
i=1

y2i . Substituting the above optimizing values

yi into this formula, we conclude that M =
1

n
·
(
M−

k +M+
k + nk · (µ̂− 1)

2
)
,

i.e., exactly the expression used in the algorithm.

5◦. The actual value µ̂−1 belongs to some zone, so to find the desired minimum
Ê, it is sufficient to consider all possible zones.

6◦. To complete the proof of the proposition, it is sufficient to show that our
algorithm indeed takes time O(n · log(n)).

Indeed, sorting takes time O(n · log(n)); see, e.g., [5]. We have 2n+1 = O(n)
zones, for each of which computing the values s±k , M

±
k , etc., takes linear time.

However, we only need linear time for computing the first value. After that, we
change, e.g., from s−0 to s−1 , from s−1 to s−2 , etc., by changing a new terms. Each
of n terms yi is changed only once; once it is changed, it remains. So, overall,
for all 2n zones, we need only O(n) steps. Thus, the total computation time
consists of three parts:

• time O(n · log(n)) for sorting;

• time O(n) for computing the initial values of all the parameters s±k , M
±
k ,

etc., corresponding to the first zone k = 0;

• time O(n) for computing all the remaining values of these parameters;

• time O(n) to compute all the values Ak and their minimum;

29



• time O(1) to compute Ê = exp(A).

The total amount of computation time is

O(n · log(n)) +O(n) +O(n) +O(n) +O(1) = O(n · log(n)).

The proposition is proven.

Proof of Proposition 5.

1◦. As we have mentioned in the previous proofs, computing the maximum of

Ê = exp(A), where A = µ̂ +
σ̂2

2
, is equivalent to computing the maximum of

the auxiliary quantity A.

2◦. The function A is a convex function of all its variables and therefore, its
maximum on a convex set [

y
1
, y1

]
× . . .

[
y
n
, yn

]
is attained at one of the vertices, i.e., at a point (y1, . . . , yn) at which each value
yi is equal either to y

i
or to yi.

3◦. Similarly to the previous proof, from calculus, we conclude that:

• if the maximum is attained at yi = yi, then
∂A

∂yi
≥ 0, hence yi ≥ µ− 1;

• if the maximum is attained at yi = y
i
, then

∂A

∂yi
≤ 0, hence y

i
≤ µ− 1.

Thus:

• if yi < µ − 1, then we cannot have yi = yi, because otherwise, we would
have yi ≥ µ− 1; thus, we have yi = y

i
;

• if µ − 1 < y
i
, then we cannot have yi = y

i
because otherwise, we would

have y
i
≤ µ− 1; thus, we have yi = yi.

So, for each of n zones, only for indices i for which this zone intersects with the

corresponding interval
[
y
i
, yi

]
, we have two options. Because of the condition on

the intervals, there are no more than C such intervals, so we have ≤ 2C = O(1)
combinations of the corresponding lower and upper endpoints.

This leads us to the above algorithm.

4◦. Let us estimate the computation time of this algorithm. For each of 2n+1 =
O(n) zones, we have O(1) combinations, so totally, we need O(n) combinations.
For each combination, we need linear time O(1) to compute the corresponding
value A, but in reality, we only need linear time for the first combination; after
that, we make finitely many changes. Thus, similarly to the proof of Proposition
4, we need:
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• time O(n · log(n)) to sort the endpoints;

• time O(n) to compute the initial values of µ̂, σ̂2, and A:

• time O(n) to compute all consequent values and to find the largest
value Amax:

• time O(1) to compute Ê = exp(Amax).

The total computation time is

O(n · log(n)) +O(n) +O(n) +O(1) = O(n · log(n)).

The proposition is proven.

Proof of Propositions 6 and 7. Since exp(x) is an increasing function,
computing the range of m̂0 is equivalent to computing the range of the difference
µ̂− σ̂2. Thus, computing m̂0 is equivalent to computing the lower endpoint for

µ̂− σ̂2. This, in its turn, is equivalent to computing the upper endpoint A for

A = −(µ̂− σ̂2) = σ̂2 − µ̂.

We have already proved, in the Lemma, that computing A is NP-hard. Thus,
the problem of computing m̂0 is NP-hard as well. This proves Proposition 6.
Similarly to [7], we can now prove Proposition 7.

Proof of Propositions 8 and 9. This proof is similar to the proof of Propo-
sitions 5 and 6, the only difference is that here, we have

∂A

∂yi
=

1

n
− 2(yi − µ̂)

n
= − 2

n
·
(
yi − µ̂− 1

2

)
,

and thus, the sign of the partial derivative
∂m̂0

∂yi
is opposite to the sign of the

expression yi − µ̂− 1

2
.

Proof of Proposition 10. To prove NP-hardness of this problem, let us reduce,
to this problem, a problem which (as we have mentioned earlier) is known to be
NP-hard: the problem of approximately computing the upper endpoint σ̂2 for
the sample variance σ̂2 under interval uncertainty. Indeed, let us assume that

we know how to compute the upper bound V̂ . Let us show how, using these
computations an “oracle”, we can compute the value σ̂2 for a given tuple of

intervals
[
y
i
, yi

]
with any given accuracy.

First, let us note that computing the upper endpoint V̂ for

V̂ = exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)

is feasibly equivalent to the problem of computing the upper endpoint A for an
auxiliary quantity

A = ln
(
V̂
)
= 2µ̂+ σ̂2 + ln

(
exp

(
σ̂2
)
− 1
)
.
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For an arbitrary real number K > 0, we can introduce new variables zi = K ·yi.
When we multiply all the sample values yi by K, the sample average µ̂ gets
multiplied by K, while the sample sample variance σ̂2 gets multiplied by K2.
In other words, the z-based values µ̂z and σ̂2

z are related to the original values
µ̂ and σ̂2 by the formulas µ̂z = K · µ̂ and σ̂2

z = K2 · σ̂2. Thus, the value A(K)
of the quantity A corresponding to zi = K · yi in terms of K and yi, we get

A(K) = 2K · µ̂+K2 · σ̂2 + ln
(
exp

(
K2 · σ̂2

)
− 1
)
.

Computing the upper endpoint of A(K) is feasibly equivalent to computing the
upper endpoint for

a(K)
def
= K−2 ·A(K) = 2K−1 · µ̂+ σ̂2 +K−2 · ln

(
exp

(
K2 · σ̂2

)
− 1
)
.

Here, we have

exp
(
K2 · σ̂2

)
− 1 = exp

(
K2 · σ̂2

)
·
(
1− exp

(
−K2 · σ̂2

))
.

Since logarithm of the product is equal to the sum of the logarithms, and loga-
rithm of exp(t) is always equal to t, we get

ln
(
exp

(
K2 · σ̂2

)
− 1
)
= K2 · σ̂2 + ln

(
1− exp

(
−K2 · σ̂2

))
,

so
a(K) = 2K−1 · µ̂+ 2σ̂2 + ln

(
1− exp

(
−K2 · σ̂2

))
.

When K → ∞, we have K−1 → 0, exp
(
−K2 · σ̂2

)
→ 0 and hence,

ln
(
1− exp

(
−K2 · σ̂2

))
→ ln(1 − 0) = 0. Thus, when K → ∞, we get

a(K) → 2σ̂2. So, for large K, the value a(K) is approximately equal to 2σ̂2.
Whatever approximation accuracy we want to achieve, we can do it by selecting
appropriate K, and this appropriate K can be selected feasibly.

So, if we could compute the upper bound V̂ for V̂ , we would then be able
to compute the upper bound for A(K), for a(K) and thus, an approximate
upper endpoint σ̂2 for σ̂2. We already know that approximate computation of
the upper endpoint σ̂2 is NP-hard. Thus, we have indeed reduced a known

NP-hard problem to the problem of computing V̂ .

This shows that the problem of computing V̂ is indeed NP-hard. The propo-
sition is proven.

Proof of Proposition 11. This proof is similar to the proof of Propositions 5
and 8, the only difference is that here, we have

∂V̂

∂yi
=

∂

∂yi

[
exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)]

=

exp
(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
− 1
)
·2 + 2yi − 2µ̂

n
+exp

(
2µ̂+ σ̂2

)
·exp

(
σ̂2
)
·2yi − 2µ̂

n
=
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exp
(
2µ̂+ σ̂2

)
·
[(
exp

(
σ̂2
)
− 1
)
· 2 + 2yi − 2µ̂

n
+ exp

(
σ̂2
)
· 2yi − 2µ̂

n

]
.

Thus, the sign of his derivative coincides with the sign of the expression

(
exp

(
σ̂2
)
− 1
)
· 2 + 2yi − 2µ̂

n
+ exp

(
σ̂2
)
· 2yi − 2µ̂

n
.

This expression is an increasing linear function of yi which changes sign from
negative to positive when

(
exp

(
σ̂2
)
− 1
)
· 2 + 2yi − 2µ̂

n
+ exp

(
σ̂2
)
· 2yi − 2µ̂

n
= 0,

i.e., when

yi ·
(
2 exp

(
σ̂2
)
− 1
)
= µ̂ ·

(
2 exp

(
σ̂2
)
− 1
)
−
(
exp

(
σ̂2
)
− 1
)
,

or

yi = r, where r = µ̂−
exp

(
σ̂2
)
− 1

2 exp (σ̂2)− 1
.

So, similarly to the proof of Proposition 5, for the minimizing tuple y =
(y1, . . . , yn), we have yi = yi when yi ≤ r, we have yi = y

i
when r ≤ y

i
,

and yi = r for all other indices i. The proposition is proven.

Proof of Proposition 12. In the previous proof, we have found expression for

the sign of the partial derivatives
∂V

∂yi
: it coincides with the sign of the difference

yi − r, where r = µ+
exp

(
σ̂2
)
− 1

2 exp (σ̂2)− 1
.

According to calculus, for the tuple y = (y1, . . . , yn) at which the maximum of
V is attained, we have three possibilities:

• the first possibility is yi = y
i
; in this case,

∂V

∂yi
≤ 0, hence yi ≤ r;

• the second possibility is yi = yi; in this case,
∂V

∂yi
≥ 0, hence yi ≥ r;

• the third possibility is y
i
< yi < yi; in this case,

∂V

∂yi
= 0, hence yi = r.

So, if yi < r, this means that we cannot have yi = yi and we cannot have
y
i
< yi < yi, so we must have yi = y

i
.

Similarly, if r < y
i
, then we cannot have yi = y

i
and we cannot have

y
i
< r < yi, so we must have yi = yi.
In all other cases, we can have three options: yi = y

i
, yi = yi, and yi = r.

This justifies the algorithm – in which we enumerate all such tuples.
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The fact that this algorithm takes time O(n · log(n)) is proven similarly to
the proof of Proposition 5, with the only difference that since each “other” index
has three choices, the number of selected tuples corresponding to each zone is
now bounded not by 2C , but by 3C , which is still O(1). The proposition is
proven.

Proof of Proposition 16: for this proof, we can use the proof of Proposition 2,
since in that proof, we have xi > 0 and thus, d̂ = 0. In this case, delta-lognormal
distribution turns into a lognormal one.

Proof of Proposition 17. We want to find the range of the estimate Ê when
x ∈ [xi, xi]. One of the quantities used in the formula for Ê is the quantity

µ̂ =
p

n
, where p is the total number of indices for which xi = 0. For each index

i, the value xi = 0 is not possible when xi > 0; the value xi = 0 is only possible
when xi = 0. Thus, p ≤ n0.

So, to find the desired minimum, it is sufficient to consider all possible values
p = 0, 1, . . . , n0, find the minimum value of E for this p, and then find the
smallest of the corresponding minima.

For each value p, we may have several possible ways of selecting p out of n0

indices i for which we select xi = 0. If we select an index i and do not select an
index j for which xi > xj , this means that we consider all the tuples for which
xi = 0 and xj ∈ [0, xj ]. If instead we select xj = 0 and xi ∈ [0, xi], then, due
to [0, xj ] ⊂ [0, xi], we will get a larger set of tuples and, potentially, a smaller
minimum E. Thus, to find an arrangement for which E is the smallest, it is
sufficient to consider arrangements in which once we set xi = 0 for some i, we
select xj = 0 for all j for which xj = 0 and xj < xi. In other words, we assign
xi = 0 for all the indices for which xi is smaller than a certain threshold. This
is exactly what we do in our algorithm.

For each value p, as shown in the proof of Proposition 4, we take O(n·log(n))
steps. There are n0 + 1 ≤ n + 1 = O(n) different values p, so overall, this
algorithm takes time O(n) · O(n · log(n)) = O(n2 · log(n)). The proposition is
proven.

Proof of Proposition 18 can be obtained from the proof of Proposition 5 in
the same way as the proof of Proposition 17 was obtained from the proof of
Proposition 4.

Proof of Proposition 19: for this proof, we can use the proof of Proposition
10, since in that proof, we have xi > 0 and thus, d̂ = 0. In this case, delta-
lognormal distribution turns into a lognormal one.

Proof of Propositions 20 and 21. Similarly to the proof of Proposition 17,
we can reduce the problem of computing the desired bound to the problems of
computing the bound for each fixed p, and similarly, for each p, the correspond-
ing bound is attained when we assign xi = 0 to the indices for which the upper
endpoints xi are the smallest.

For each p, we can, similarly to the proof of Proposition 11, differentiate the
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delta-lognormal expression for V̂ by yi. As a result, we get

∂V̂

∂yi
=

∂

∂yi

[(
1− p

n

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+

p

n
− 1
)]

=

(
1− p

n

)
· exp

(
2µ̂+ σ̂2

)
·
(
exp

(
σ̂2
)
+

p

n
− 1
)
· 2 + 2yi − 2µ̂

n
+(

1− p

n

)
· exp

(
2µ̂+ σ̂2

)
· exp

(
σ̂2
)
· 2yi − 2µ̂

n
=(

1− p

n

)
· exp

(
2µ̂+ σ̂2

)
·A,

where

A =
(
exp

(
σ̂2
)
+

p

n
− 1
)
· 2 + 2yi − 2µ̂

n
+ exp

(
σ̂2
)
· 2yi − 2µ̂

n
.

Thus, the sign of his derivative coincides with the sign of the expression A.
This expression is an increasing linear function of yi which changes sign from
negative to positive when(

exp
(
σ̂2
)
+

p

n
− 1
)
· 2 + 2yi − 2µ̂

n
+ exp

(
σ̂2
)
· 2yi − 2µ̂

n
= 0,

i.e., when

yi ·
(
2 exp

(
σ̂2
)
+

p

n
− 1
)
= µ̂ ·

(
2 exp

(
σ̂2
)
+

p

n
− 1
)
−
(
exp

(
σ̂2
)
+

p

n
− 1
)
,

or

yi = r, where r = µ̂−
exp

(
σ̂2
)
+

p

n
− 1

2 exp (σ̂2) +
p

n
− 1

.

After that, the proof is similar to the proofs of Propositions 11 and 12.

Proof of Proposition 22: for this proof, we can use the proof of Proposition
13, since in that proof, we have xi > 0 and thus, d̂ = 0. In this case, delta-
lognormal distribution turns into a lognormal one.

Proof of Propositions 23 and 24. Similarly to the proof of Proposition 17,
we can reduce the problem of computing the desired bound to the problems of
computing the bound for each fixed p, and similarly, for each p, the correspond-
ing bound is attained when we assign xi = 0 to the indices for which the upper
endpoints xi are the smallest.

For each p, the expression for ĈV is a monotonic function of the sample
variance σ̂2; thus:

• its largest value ĈV is attained when the sample variance σ̂2 attains its
largest possible value σ̂2, and
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• its smallest value ĈV is attained when the sample variance σ̂2 attains its
smallest possible value σ̂2.

Thus, for each p, we can use the known linear-time algorithms [16, 21] for com-

puting the endpoints σ̂2 and σ̂2, and then compute the values ĈV corresponding
to these endpoints.

For each p, the computation takes linear time O(n). As we have mentioned
in the proof of Proposition 17, there are O(n)) different values p. Thus, totally,
this algorithm takes time O(n) ·O(n) = O(n2).
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