A Framework to Create Ontologies for Scientific Data Management

Leonardo Salayandia and Paulo Pinheiro and Ann Q. Gates
University of Texas at El Paso
500 W. University Drive
El Paso, Texas 79968

Abstract

Scientists often build and use highly customized sys-
tems to support observation and analysis efforts. Creat-
ing effective ontologies to manage and share data prod-
ucts created from those systems is a difficult task that
requires collaboration among domain experts, e.g., sci-
entists and knowledge representation experts. A frame-
work is presented that scientists can use to create on-
tologies that describe how customized systems capture
and transform data into products that support scien-
tific findings. The framework establishes an abstrac-
tion that leverages knowledge representation expertise
to describe data transformation processes in a consis-
tent way that highlights properties relevant to data users.
The intention is to create effective ontologies for scien-
tific data management by focusing on scientist-driven
descriptions. The framework consists of an upper-level
ontology specified with description logic and supported
with a graphical language with minimal constructs that
facilitates use by scientists. Evaluation of the frame-
work’s usefulness for scientists is presented.

Introduction

Scientific data processing systems can be complex. A clear
understanding of processes that dictate how systems cre-
ate data products is necessary for scientists to use those
data products with confidence. For example, a reputable
geophysicist that cannot determine if a system is gener-
ating properly treated datasets cannot use that system or
the datasets produced for her work. Determining whether
datasets are properly treated can be divided in two types of
concerns: 1) whether the geophysicist agrees with the pro-
cesses used to treat those datasets, and 2) whether the system
implementation is valid with respect to the intended process.
The latter concern falls in the realm of systems engineering
and it is out of the scope of this work.

The work presented addresses the problem of engaging
scientists in creating ontologies that describe data capture
and transformation processes. Creating these types of on-
tologies is a difficult task that requires collaboration among
domain experts, including scientists and knowledge repre-
sentation experts. However, the technical complexities of
creating formal ontologies may hinder the level of input
from scientists, which is critical given the intention of cap-

turing process knowledge that can help scientists evaluate
data products for their work.

A framework is presented that specifies an abstraction to
document, from a scientist’s point of view, how data is cap-
tured and transformed. Abstraction refers to the general no-
tion of describing real-world things by using relevant prop-
erties from a specific point of view and ignoring irrelevant
properties (Gates et al. 2011). The framework defines an ab-
straction in the form of an upper-level ontology that includes
three general concepts that can be specialized to describe
data capturing and transformation. The first general concept
is data. Data refers to things that can be used directly
or indirectly as evidence for scientific findings. For exam-
ple, the output of a sensor, the content of a technical report,
records in a database, or a digital elevation map are data.
Raw output of a sensor may be formatted in a way that is
hard for a person to interpret, and hence, it would unlikely
be used directly as evidence for scientific findings. However,
the output of a sensor may represent field observations that
can be filtered and treated to create spatio-temporal map ren-
derings. Maps are more adequate for human interpretation
and could potentially provide evidence for scientific find-
ings.

The second general concept is method. Method refers
to things that can be used to systematically transform data.
Method examples are extrapolation software, interpretation
of data by an expert, and visualization software. Notice that
systematic data transformation refers to activities that are
expected to produce consistent results under similar condi-
tions; it does not refer to activities that are automated, as op-
pose to human-driven. For instance, extrapolation and visu-
alization software are automated methods, i.e., given that
required preconditions exist, these methods produce out-
comes without human intervention. Interpretation of data by
an expert, on the other hand, is a human-driven met hod that
assumes consistent behavior by a person.

The third general concept is container. Container
refers to things that can be used as acquirers or placehold-
ers of data. For example, a sensor, a database, a file, a
physical document, or a person are containers. Unlike
methods, containers do not transform data and in-
stead serve as providers or receivers of data. Notice that
containers can be digital entities or real-world enti-
ties. For instance, a database and a file are digital enti-

ties, while a physical document and a person are real-world
entities. In addition, containers can play the roles of
data provider, data receiver, or both. For instance, a
sensor would typically play the role of a data provider,
while a person could play both the role of data provider
and receiver. Notice that a person could be classified as a
method instead of a container if the person is trans-
forming data.

With respect to the people involved in capturing and trans-
forming scientific data, a distinction is made between the
roles of process author and process implementer. While the
former is concerned with the appropriateness of the process,
the latter is concerned with the correctness of the system
that carries out the process. In the realm of customized sci-
entific systems, a scientist is often the process author. The
framework presented is intended to capture process knowl-
edge from the viewpoint of process authors. Consequently,
process knowledge documented through this framework fo-
cuses on the identification of core activities used to system-
atically transform data without introducing nuances about
how those activities are performed. In this context, process
knowledge is appropriate to understand and answer ques-
tions related to what and why activities are performed in the
production of data. This type of process knowledge does not
delve into details of how activities are implemented or per-
formed and does not give a full temporal specification about
when activities are carried out with respect to each other.
Hence, the type of process knowledge documented with this
framework is labeled data-centric because the focus is on
describing transformations of data with minimal emphasis
on functional descriptions. Data-centric process knowledge
captured through this framework is useful for a variety of
people: for process authors it serves as structured documen-
tation that can be shared with colleagues; for process imple-
menters it is useful in the requirements elicitation and val-
idation phases of system development; for process users it
serves as a training tool; finally, for data users it serves as a
provenance tool.

The framework is formalized using description logic
(Baader et al. 2003), complemented with a graphical repre-
sentation, and supported by software tools (Pinheiro da Silva
et al. 2010); it has minimal constructs to facilitate process
knowledge transfer among users, i.e., authorship and in-
terpretation of process knowledge. In addition, the result-
ing ontologies are encoded in the Web Ontology Language
(OWL). OWL is an open, Web-based language with com-
munity adoption that has resulted in a wide range of tools to
support querying and reasoning.

The rest of this paper is organized as follows: Section
2 presents background on ontologies and their application
to the production of scientific data. Section 3 presents the
framework by describing the ontology used to encode pro-
cess knowledge and the graphical representation that facili-
tates its use. Section 4 presents related work and evaluation.
Finally, Section 5 presents conclusions.

Background

The expertise of a knowledge engineer is important in the
creation of suitable knowledge representations, i.e., ontolo-

gies, that effectively capture relevant properties of a do-
main and that can be reused across applications. Guarino of-
fers a classification of ontologies based on their intention or
point of view (1997). Upper-level ontologies describe gen-
eral concepts that can be used across domains. The intention
of upper-level ontologies is to support semantic interoper-
ability across specialized ontologies. For example, Cyc is a
popular upper-level ontology (Lenat and Guha 1989).

Specialized ontologies from upper-level ontologies can be
divided in two main categories: domain ontologies and task
ontologies. Chandrasekaran and Josephson describe the dis-
tinction between domain and task ontologies in the context
of the knowledge needed to build Knowledge Based Sys-
tems (1997). Domain ontologies capture factual knowledge
about a domain; it is the knowledge operated on to produce
an answer. Task ontologies capture knowledge about prob-
lem solving methods; it is the knowledge that guides the
answer-seeking process.

In creating customized scientific systems to serve a spe-
cific project, the input of a scientist is necessary to com-
plement the ground work of the knowledge engineer. Facil-
itating the scientist’s input to build a knowledge base is the
niche targeted by the framework presented. In this case, the
resulting ontology captures knowledge from the perspective
of a process author, i.e., the scientist designing appropriate
processes to capture and transform data to serve specific sci-
entific endeavors. Guarino calls these further refined ontolo-
gies application ontologies (1997).

To create an effective application ontology for a cus-
tomized data capturing and transformation process, a pro-
cess author specializes concepts from one or more domain
ontologies, hence reusing the groundwork of the knowledge
engineer. The overall methodology of building scientist-
driven ontologies to build knowledge bases for data cap-
ture and transformation activities is discussed in more detail
in (Pinheiro da Silva et al. 2009).

The Framework

This section describes an ontology for data processing using
description logics (Baader et al. 2003) and a graphical lan-
guage intended to facilitate its use. Description logics is a
family of formal knowledge representation languages that
are popular in providing logical formalism for ontologies
and the Semantic Web. In description logics, a knowledge
representation system is divided in two components: TBox
and ABox. TBox defines the terminology of an application
domain. ABox includes assertions about named individuals
in terms of the terminology defined in the TBox. Terminol-
ogy is captured in the form of concepts and roles, where con-
cepts are sets of individuals and roles are binary relations be-
tween individuals. Concept subsumption refers to the notion
of determining whether one concept is more general than an-
other, where the universal concept denoted by T subsumes
all concepts. The counter part of the universal concept is the
bottom concept denoted by L.

The following subsections describe the ontology and
its graphical language in parts: data, data assertion and
store, data derivation, resource attachment, and process
composition. In addition, the ontology is aligned to a

seismogram
destination

Figure 1: Graphical representation of a data concept con-
necting two node concepts.

provenance ontology in order to support the develop-
ment of knowledge bases that can answer queries re-
lated to how data products are created. The ontol-
ogy has been encoded in OWL and can be found at:
http://trust.utep.edu/2.0/wdo.owl.

Data

The data concept was identified through interaction with
the Earth science community and it is intended to represent
things that can be used directly or indirectly as evidence for
scientific findings. In a more pragmatic sense, data refers
to content being captured, transformed, analyzed, used, or
created in a process (Salayandia et al. 2006). The data
concept is formalized in the description logics equations be-
low. Data is defined in relation to the container and
method concepts, which will be further described in the
following subsections.

N=CuM)
D = VisOutputO f.N MVisInputTo.N 2)
l=DOnc)yu(dOnM)yu(CnM) 3)

Equation 1 defines the node concept, denoted by N, as
the union of the container and method concepts de-
noted by C' and M respectively. Equation 2 defines the
data concept denoted by D as things that are output of
node and things that are input to node. The roles isOut-
putOf and isInputTo are chosen to indicate data flow. Notice
that equation 2 requires data concepts to have both isOut-
putOf and isInputTo relations to nodes. Equation 3 defines
data, container, and method concepts to be disjoint.

Figure 1 illustrates the graphical representation of the
seismogram concept, which has been subsumed by the
data concept!. The label of the directed edge corresponds
to the name of the concept. The direction of the edge rep-
resents flow. In this case, seismogram data is flowing
from the source node tothe destination node.

Data assertion and storage

The container concept, denoted by C, represent acquir-
ers or placeholders of data. In describing a data capture
and transformation process, containers play the role of
asserting data (e.g., a sensor capturing data from the field
and providing it), storing data (e.g., a file server receiving
data dump files for archiving), or both (e.g., a person reading
a document and reporting on it). The relation between data

'Notice that subsumed concepts can be referred by the name
of the more general concept, e.g., the seismogram concept is a
data concept. This convention is used throughout the paper.

and container concepts is formalized as follows:

C = (FhasOutput.D U hasInput.D) M =M (4)
1 = FisOutputO f.C(a) N JisInputTo.C(a) (5)

As mentioned above, the roles isOutputOf and islnputTo
are chosen to indicate data flow. The roles hasOutput and
hasInput are corresponding inverse roles. With respect to
data and containers, data isOQutputOf container
represents data being asserted by a container, while
data islnputTo container represents data being stored
inacontainer.

Equation 4 states that container represents things that
assert data or things that store data and that are not
method. Equation 5 specifies that things cannot be asserted
and stored from/to the same container. This restriction
refers to the intention of the container concept to repre-
sent things that do not alter data. As such, having any one
data concept being asserted and stored from/to the same
container would be ineffectual.

Notice that the formalism does not specify container
or data structure. For example, a database may be used
to assert and store datasets in some system. The schema of
the database and the formats of the datasets are not spec-
ified here. The intention is to facilitate process description
by separating concerns between process author and process
implementer, focusing on the point of view of the former.

Container concepts are represented graphically as
ovals. Figure 1 shows the graphical representation of two
containers labeled source and destination. Source
represents a container that is asserting seismogram
data, while destination represents a container
that is storing seismogram data. Notice that this
specification does not violate equation 5 above, since
seismogram is not being asserted and stored by the same
container. While it s still true that this specification does
not have an effect on seismogram, such specification may
be useful to indicate that data is being moved from one
container to another, e.g., a dataset moved from main to
archival storage.

Data derivation

The method concept, denoted by M, was originally iden-
tified through interaction with the Earth science community,
and it is intended to represent discrete activities carried out
to systematically transform data (Salayandia et al. 2006).
Data is derived from previously existing data through the
application of a method. Methods can be manual, e.g., a
person analyzing and interpreting a dataset; methods can
be automated, e.g., using extrapolation software with pre-
established parameters to process a dataset; finally, methods
can be hybrid, e.g., using software that requires inputs from
a person to process a dataset. The relation between data
and method concepts is formalized as follows:

M 3 (3hasOutput.D U 3hasInput.D) M -C (6)

With respect to data and methods, data isOutputOf
method represents data being derived by a method, while
data islnputTo method represents data being used by a

seismogram

picked seismogram
—_— pick —

Figure 2: Graphical representation of a method concept us-
ing and deriving data concepts.

method. Equation 6 states that method includes things
that derive data or things that use data and that are not
container.

Method concepts are represented graphically as rect-
angles. Figure 2 shows the graphical representation of the
seismogram data concept that is used by the pick
method concept to derive the picked seismogram
data concept.

Notice that the formalism does not directly specify the re-
lation of a data concept being derived from another data
concept. Instead, the focus is on the relations used by and
derived by through an intermediary method concept. The
intention is to explicitly identify the activities involved in
data derivation and to simplify for the process author the
specification of data derivation in a wide range of execu-
tion models. In other words, defining relations of data de-
rived from data leaves out references to methods used to
carry out such derivations. Furthermore, specifying data
derived from data relations would require process authors
to specify logical expressions to match the execution model
and implementation of met hods. For example, consider a
method mthatuses data concepts x1 and x2 and derives
data concept y. In one implementation, m executes until x1
and x2 are available. The data derivation specification in
this case would be: y derived from (x1 and x2). In another
implementation, m executes when at least one input is avail-
able. The data derivation specification in this case would
be: v derived from (x1 or x2). The specification for both
implementations is the same with the proposed formalism:
x1 used by m, x2 used by m, y derived by m.

Itis expected that all methods will use at least one data
concept and derive at least one data concept; after all, the
intention is to specify a process about data capture and trans-
formation. However, this restriction is relaxed in equation 6
through the use of an inclusion instead of an equality. The
intention is to support incremental description of processes
where a process author may identify a method concept be-
fore identifying data concepts to be used and derived.

The formalism does not define cardinality restrictions or
control structures between data and method. Hence, the
specification of Figure 2 does not specify whether one or
more seismogram items are to be used by pick and
whether one or more picked seismogramitems will be
derived. Also, the formalism does not specify triggering con-
ditions for a method, and in the case of a loop, it does not
specify the number of iterations to be performed.

In contrast to containers, methods are intended to
change the state of data. A convention used here is that
data concepts are linked to relevant states of data. If the
relevant state of data changes, then data is no longer rep-
resented by the same concept. The process author deter-

mines which states of data are relevant. For example, with
respect to Figure 2, a given dataset could be referred to
as seismogramoras picked seismogram depending
on the state of the dataset with respect to the data transfor-
mation process.

Through data assertion, derivation, and store, processes
are effectively represented as connected graphs where
leaf nodes are containers, intermediate nodes are
methods, and connecting edges are data. Notice that
containers are defined as things that necessarily assert
or store data, while methods are defined as things that
can use or derive data. The implications with respect to
process graphs is that all container nodes must be con-
nected, while method nodes can be disconnected. Simi-
larly, data concepts are defined as things that necessarily
are asserted or stored in containers, or things that nec-
essarily are used or derived by methods. The implications
with respect to process graphs is that all directed edges need
to be connected to at least one node on each end. Finally, the
restriction imposed by equation 5 above implies that process
graphs cannot include container nodes with edge loops.

Resource attachment

Resource attachment refers to the inclusion of references
in a process specification, e.g., a reference to a user’s
manual document. The attachment concept, denoted by
A, is introduced to represent references to resources that
can be attached to concepts used in a process specifica-
tion, i.e., data, container, and method concepts. The
process concept is also used; it will be described further
in the next subsection. The formalism is as follows:

A = FisAttachedTo.(D U C UM U P) (7
L=AnN(DUCUM) (8)

Equation 7 defines attachment as things that are at-
tached to data, container, method, or process con-
cepts. Equation 8 defines attachment as things that are
not data, container, ormethod.

The graphical representation of attachments is con-
sidered non-essential from the point of view of process
description, i.e., a process graph composed of data,
containers, and methods is sufficient to describe the
capture and transformation of data while attachments pro-
vide additional information based on the structure of the
process graph. As a result, the intention of the graphical rep-
resentation of attachments is merely to signal the presence
of additional resources for a specific part of the process.
One possible graphical representation of attachments
is to use a coloring scheme to signal the presence of
attachmentsindata, containers, and methods.

Process composition

Process composition refers to the linking of two process de-
scription graphs. The intention is to support a mechanism by
which processes can be described at multiple levels where
one process is considered a subprocess of a more general
process. The process concept, denoted by P, is intro-
duced to formalize process composition as follows:

filtered picked
seismogram ¢

seismogram

. . seismogram
@ ———— filternoise g mark

Figure 3: Graphical representation of a sub-process.

DCD, Cc’cc, MM, ACA)
P=DuC’uM A (10)
P 1 VisAbstractedBy.(M 1 —-M") (11)

M JVisDetailedBy.(P 2 M' N1 —~(P 2 M)) (12)

Equation 9 introduces subsumptions of the data,
container, method, and attachment concepts. No-
tice that in the case of method a proper subsumption is
specified to indicate that there is at least one item that is
not included in the subsumed concept. Equation 10 defines
process to be the graph defined by the subsumed con-
cepts. Equation 11 defines the relation where processes
can be abstracted by methods that are not included in the
definition of the process. Equation 12 defines the inverse
relation where methods can be detailed by processes
that do not include those methods in their definition. The
intention is to support multiple levels of process descrip-
tion where a method represents an activity that is treated
as black box in one general level and further described in
another more specific level.

Figure 3 shows the graphical representation of a subpro-
cess corresponding to the method illustrated in Figure 2. To
maintain consistency between the super process and the sub-
process, a leveling DeMarco structure similar to that of Data
Flow Diagrams (DFD’s) is supported, where the same num-
ber of inputs and outputs to a method node at the super level
are maintained in the subprocess graph (Davis 1990). Spe-
cial diamond-shaped nodes are used to maintain graphical
consistency across levels. In addition, semantic consistency
is maintained across process description levels by referenc-
ing data concepts across levels instead of duplicating con-
cepts. In OWL encoding, this is accomplished by assigning
unique identifiers to concepts, i.e., URIs, and using them for
reference.

Aligning to a provenance ontology

Data provenance supports the analysis of how data is cre-
ated or derived, e.g., which sources were used, who en-
coded the data, what equipment was used, and more. Cap-
turing data provenance at an adequate level of granular-
ity, however, is not a trivial problem (Stephan et al. 2010).
Aligning a provenance ontology to the proposed frame-
work is beneficial in determining an adequate level of
granularity from the point of view of the scientist. Cur-
rently there are several languages and models for captur-
ing data provenance and there is work underway to estab-
lish a recommendation from the World Wide Web Con-
sortium (W3C) (http://www.w3.0rg/2011/prov/).
The Proof Markup Language (PML) (McGuinness et al.

2007) ontology is used as a case study to leverage the per-
spective of process authors to capture data provenance.

PML defines concepts and roles for representing prove-
nance about data. First, identified thing refers to
entities from the real world. These entities have attributes
that are useful for provenance, such as name, description,
create date-time, authors, and owner. Three key subsump-
tions of identified thing motivated by provenance
representation concerns are information, source, and
inference rule. Information refers to information
at various levels of granularity and structure. Source refers
to identified things from which information
is obtained. A source could be a document, an agent,
a web page, among others. Inference rules are
identified things thatare used to derive conclusions
from premises. Examples of inference rules are al-
gorithms used to manipulate data or decision trees used to
deduce outcomes from existing information. In PML, expla-
nations of how information came to be are described in
terms of justifications, in the sense that information ex-
istence is justified because some set of actions took place.
Justifications are described in terms of information,
source, and inference rule concepts.

To present the alignment of the framework and PML,
the PML concepts of information, source, and
inference rule are denoted by I, S, and IR respec-
tively. Also, the concept assert container denoted by
AC is introduced. The description logic formalism follows:

DCI (13)
AC = FhasOutput. DM C (14)
ACLCS (15)

MCIR (16)

Notice that concepts data, container, and method
are respectively subsumed by the PML concepts of
information, source,and inference rule.Inthe
case of container, the concept is more closely subsumed
by the source concept if we only consider containers
that assert data and not containers that store data.
The reason is that PML focuses on describing justifications
of informat ion, which includes
containers that assert data; however, such justifications do
not specify where information (or data) is stored after
it has been derived, and hence, store containers are
not included in the subsumption.

The alignment formalism includes subsumption equa-
tions instead of equalities because provenance-related con-
cepts are more general than their corresponding framework
concepts in the following sense: data can be transformed
through a systematic process, in which case, the presented
framework can be used to document the process. Alterna-
tively, data can be generated through an ad-hoc approach, in
which case, the framework cannot be used. In both cases,
however, provenance about the generated data can be en-
coded with PML.

Evaluation

Petre suggests graphical languages do not guarantee clarity
and that secondary notation is necessary to be effective in
capturing complex processes. However, secondary notation
in graphical languages requires training and experience from
users to detect perceptual cues about important informa-
tion (1995). The graphical language chosen for this frame-
work is similar in nature to Data Flow Diagrams (DFD’s),
favoring language simplicity over expressiveness. Given the
intention of using the framework to capture process author
concerns instead of process implementer concerns, language
simplicity is preferred. Figure 4 illustrates feedback from
users with respect to ease of use. This is the result of a sur-
vey performed among 18 subjects from diverse engineering
and science backgrounds, including college students, fac-
ulty, researchers, and professionals that either were involved
in capturing and transforming data or were users of scien-
tific data products. Over 75% of subjects agreed the graphi-
cal language was easy to use to describe process knowledge,
while over 45% of subjects agreed the graphical language
was easy to use to interpret process knowledge.

90%
80%
70% A

60% / \

st [\
40% / \
30% / \

20% Y
10% 77/‘%7
0% T T T T

Strongly Agree Neutral Disagree Strongly
agree disagree

Easy to describe Easy to interpret

Figure 4: Ease of use.

Intuitiveness of the terminology was also evaluated in the
survey. Figure 5 shows over 85% subjects found Data and
Method concepts intuitive. However, Container was
not as well received. One suggested alternative was Data
Container. More interestingly, several subjects agreed
that Container was not an intuitive term but could not
think of a better alternative.

Finally, the overall usefulness of the framework was
gauged using a scale from 1 to 10 that ranged from too sim-
ple to be useful to too complicated to be useful. The scale
was designed without an exact middle, and hence, forced
subjects to choose an inclination. As illustrated in Figure 6,
subjects with engineering or programming expertise favored
the roo simple to be useful side, while scientists favored too
complicated to be useful.

Conclusion

By focusing on abstractions that support process authors,
a framework is presented that scientists can use to create

100% —— —
90% - E—
80% - E—
70% e
60% -
50% - o
40%
30% -
20% -
10%
0% -

myes

Data Method Container
Concept Name

Figure 5: Intuitiveness of terminology.

35%

30%

25%

20%

15%

10% -

5%

0% -

4 5 6 7

L amd 8 9 10
Too simple to Complexity Scale Too complicated
be useful to be useful

B Scientists

Computing & Engineering

Figure 6: Overall usefulness.

ontologies that describe the processes of how data is cap-
tured and transformed into products that support scientific
findings. The framework consists of an ontology formalized
with description logic and aligned to a provenance ontology.
In addition, the framework supports a graphical language
similar in nature to Data Flow Diagrams in order to facil-
itate its use for authoring and interpreting processes about
data capture and transformation.

The alignment of the framework to a provenance ontology
provides the additional benefit of using the scientist’s per-
spective to scope the granularity at which data provenance
should be acquired, a non-trivial problem in complex data
applications.

The framework is currently in use in an interdisci-
plinary setting with colleagues from the fields of Envi-
ronmental Sciences and Earth Sciences. Evaluation with
respect to the usefulness of the framework is positive.
Concept terminology improvements are still needed to in-
crease intuitiveness for scientists. A Java-based tool is avail-
able to support the authoring and interpretation of pro-
cesses with this framework and can be downloaded from
http://trust.utep.edu/wdo.

Acknowledgments

This work has been funded in part by the National Science
Foundation (NSF) under CREST grant no. HRD-0734825.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF.

References

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge Uni-
versity Press.

Chandrasekaran, B., and Josephson, J. R. 1997. The on-
tology of tasks and methods. Technical Report SS-97-06,
AAAL

Davis, A. M. 1990. Software Requirements: Analysis and
Specification. Upper Saddle River, NJ, USA: Prentice Hall
Press.

Gates, A. Q.; Pinheiro da Silva, P.; Salayandia, L.; Ochoa,
O.; Gandara, A.; and Del Rio, N. 2011. Use of abstraction to
support geoscientists’ understanding and production of sci-
entific artifacts. In Keller, G., and Baru, C., eds., Geoin-
formatics: Cyberinfrastructure for the Solid Earth Sciences.
Cambridge University Press. 266—.

Guarino, N. 1997. Semantic matching: Formal ontological
distinctions for information organization, extraction, and in-
tegration. In Information Technology, International Summer
School, SCIE-97, 139-170. Springer Verlag.

Lenat, D. B., and Guha, R. V. 1989. Building Large
Knowledge-Based Systems; Representation and Inference in
the Cyc Project. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1st edition.

McGuinness, D. L.; Ding, L.; Pinheiro da Silva, P.; and
Chang, C. 2007. Pml 2: A modular explanation interlingua.
In Proceedings of the 2007 Workshop on Explanation-aware
Computing, ExaCt-2007.

Petre, M. 1995. Why looking isn’t always seeing: readership
skills and graphical programming. Commun. ACM 38:33—
44,

Pinheiro da Silva, P.; Salayandia, L.; Gandara, A.; and Gates,
A. Q. 2009. Ci-miner: semantically enhancing scientific
processes. Earth Science Informatics 2(4):249-269.

Pinheiro da Silva, P.; Salayandia, L.; Del Rio, N.; and Gates,
A. Q. 2010. On the use of abstract workflows to capture sci-
entific process provenance. In Proceedings of the 2nd Con-
ference on Theory and Practice of Provenance, TAPP’10.
Berkeley, CA, USA: USENIX Association.

Salayandia, L.; Pinheiro da Silva, P.; Gates, A. Q.; and Sal-
cedo, F. 2006. Workflow-driven ontologies: An earth sci-
ences case study. In Proceedings of the Second IEEE In-
ternational Conference on e-Science and Grid Computing,
E-SCIENCE °06, 17—. Washington, DC, USA: IEEE Com-
puter Society.

Stephan, E.; Halter, T.; Critchlow, T.; Pinheiro da Silva,
P; and Salayandia, L. 2010. Using domain require-
ments to achieve science-oriented provenance. In McGuin-

ness, D.; Michaelis, J.; and Moreau, L., eds., Third Interna-
tional Provenance and Annotation Workshop, volume 6378
of IPAW’10, 301-303. Springer, New York.

