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Abstract: Uncertainty is usually gauged by using standard statistical characteristics: mean, variance,
correlation, etc. Then, we use the known values of these characteristics (or the known bounds on these
values) to select a decision. Sometimes, it becomes clear that the selected characteristics do not always
describe a situation well; then other known (or new) characteristics are proposed. A good example is
description of volatility in finance: it started with variance, and now many descriptions are competing,
all with their own advantages and limitations.

In such situations, a natural idea is to come up with characteristics tailored to specific application
areas: e.g., select the characteristic that maximize the expected utility of the resulting risk-informed
decision making.

With the new characteristics, comes the need to estimate them when the sample values are only known
with interval uncertainty. Algorithms originally developed for estimating traditional characteristics
can often be modified to cover new characteristics.
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1. NEED FOR APPLICATION-TAILORED STATISTICAL CHARACTERIS-
TICS

Need to take epistemic uncertainty into account. To make a proper decision, we need to know
the state of the world, i.e., we need to know the values of the physical quantities that characterize this
state. These values usually come from measurements. Measurement are never absolutely accurate;
see, e.g., [30]. As a consequence, the measurement result x̃ is, in general, different from the actual
(unknown) value x of the desired physical quantity. In other words, in practice, we only know the
values of the desired quantities with uncertainty.

How to describe epistemic uncertainty: probabilistic approach. Once we know the measure-
ment result x̃, we need to know the upper bound ∆ on the (absolute value of) measurement error

∆x
def
= x̃ − x. Indeed, if no such upper bound is known, this means that the difference between the

actual value and the measurement result can be arbitrarily large – this is not a measurement, this is
a wild guess. For the procedure to be called “measurement”, we need to know this upper bound.

Once we know the upper bound ∆x (for which |∆x| ≤ ∆), we can conclude that the measurement
error ∆x belongs to the interval [−∆,∆] and thus, that the actual value x belongs to the interval
[x̃−∆, x̃+∆].

In practice, different values ∆x ∈ [−∆,∆] occur with different frequency. It is therefore desirable,
in addition to the upper bound ∆, to also know the probability of different values ∆x ∈ [−∆,∆].
In other words, to describe uncertainty, it is desirable to describe a probability distribution for the
measurement error.

Traditional probabilistic approach for describing epistemic uncertainty. In many practical
situations, the measurement error is a result of many independent factors, each of which is reasonably



small. It is known (see, e.g., [35]), that, under reasonable assumption, the sum of a large number of
small independent random variables tends to a normal distribution. This result is known as a Central
Limit Theorem. Thus, in such situations, the probability distribution of the measurement error is
close to normal.

A normal distribution is uniquely determined by its mean and standard deviation. Because of this, to
describe the probability distribution of a measurement error, we traditionally use mean and standard
deviation. The mean is called a systematic error, and the standard deviation is said to characterize
the random error; see, e.g., [30].

To describe a normal distribution of several variables, in addition to their means and standard devia-
tions, we also need to know their covariances or, alternatively, their pairwise correlations. Thus, these
covariances (or correlations) are traditionally used in the description of epistemic uncertainty.

Need to take into account aleatoric uncertainty. To make a proper decision, we need to know not only
the current state of the world, we also need to be able to predict the future state of the world, the
state that will occur as a result of different actions. Often, the future state depends not only on the
current state, but also on many difficult-to-measure factors. For example, in weather prediction, the
future temperature depends not only on the current meteorological characteristics such as temperature,
humidity, etc., at the sensor locations, it also depends on the physical processes in the oceans, in the
Arctic, and in many other places where sensors are rare.

In such situations, even if we know the exact (or at least very accurate) values of the physical quantities
that characterize the current state of the world, we cannot exactly predict their future values. In
different situations, we may have slightly different future values. Once we have collected a large
number of such situations, we can talk about the frequencies (probabilities) of different future states.
These aleatoric probabilities reflect the probability distribution of the un-measured factors that affect
the transition from the current to the future state.

Traditional probabilistic approach for describing aleatoric uncertainty. Similarly to the
case of epistemic uncertainty, the aleatoric uncertainty is also often caused by a joint effect of a
large number of small independent factors. In such situations, due to the Central Limit Theorem,
the corresponding probability distributions are close to normal. As a result, these distributions are
characterized by mean, standard deviation, and covariance (or correlation).

Need to take into account heavy-tailed distributions. In many practical situations, distribu-
tions, e.g., distributions of measurement errors, are indeed close to normal. However, there are many
other practical situations in which the probability distribution is drastically different from normal.
In many such situations, the variance is infinite; such distributions are called heavy-tailed. These
distributions surfaced in the 1960s, when Benoit Mandelbrot, the author of fractal theory, empirically
studied the fluctuations and showed [21] that large-scale fluctuations follow the Pareto power-law dis-
tribution, with the probability density function ρ(x) = A · x−α for x ≥ x0, for some constants α ≈ 2.7
and x0. For this distribution, variance is infinite. The above empirical result, together with similar
empirical discovery of heavy-tailed laws in other application areas, has led to the formulation of fractal
theory; see, e.g., [22, 23].

Since then, similar heavy-tailed distributions have been empirically found in other financial situations
[3, 4, 5, 10, 24, 26, 31, 34, 38, 39, 40], and in many other application areas [1, 12, 22, 25, 33].

Need for new statistical characteristics. For heavy-tailed distributions, variance is infinite, so
we cannot use variance to describe the deviation from the “average”. Thus, we need to come up with
other characteristics for describing this deviation.

This situation is typical in financial and economic applications, where this deviation is known as
volatility. At first, economists followed a natural idea to use standard deviation as a quantitative
measure of volatility. However, since the empirical distribution is heavy-tailed, its standard deviation
is infinite, so other characteristics of volatility are needed.



What we do in this paper. In the following text, we will describe different characteristics of
deviation from the average, and we will describe how we can estimate these characteristics – both
when we know the exact sample values and when the sample values are only known with interval
uncertainty.

2. HOW TO DESCRIBE DEVIATION FROM THE “AVERAGE” FOR GEN-
ERAL HEAVY-TAILED DISTRIBUTIONS

Of course, there are many possible mathematical definitions. Since our main motivation is to make
decisions, it is desirable to select a definition that best reflects the user’s preferences.

A standard way to describe preferences of a decision maker is to use the notion of utility u; see, e.g.,
[8, 9, 17, 20, 32]. According to decision theory, a user prefers an alternative for which the expected
value E[u] =

∫
ρ(x) · u(x) dx of the utility is the largest possible. Alternative, we can say that the

expected value E[U ] =
∫
ρ(x) · U(x) dx of the disutility U

def
= −u is the smallest possible.

In our case, instead of considering all possible values x, we consider a single value m (e.g., the
measurement result). Since we are replacing each original value x with a new value m which is only an
approximation to x, there is some resulting disutility. For example, if we dress based on the expected
average temperature m and the actual temperature is x ̸= m, then we may feel somewhat warm or
somewhat cold. Similarly, if the heating and cooling system of the campus buildings is programmed
based on the assumption that the outside temperature is m and the actual temperature is x ̸= m, the
system does not work perfectly well, and we may need to spend extra resources (and extra heaters
and/or ventilators) to make the temperature in the offices most comfortable.

The further away the approximate value m from the actual one x, the larger the disutility. Let U(d)
denote the disutility cause by the difference d = x−m. When x coincides withm, there is no disutiluty,
i.e., U(0) = 0. If this difference d is positive, then, the larger d, the larger the disutility: d1 ≤ d2
implies U(d1) ≤ U(d2). Similarly, if the difference d is negative, the smaller d, the larger the disutility:
d1 ≤ d2 implies U(d1) ≥ U(d2).

Under this notation, for each x, the disutility is equal to U(x −m). Thus, the expected value of the
disutility is equal to ∫

ρ(x) · U(x−m) dx. (1)

It is therefore reasonable to select, as the “average” m, the value for which this disutility attains
the smallest possible value. The resulting value of expected disutility can then be used as the de-
sired characteristic of the deviation of the values from the average. Thus, we arrive at the following
definitions.

Definition 1. By a disutility function, we mean a function U(d) ≥ 0 from real numbers to non-
negative real numbers for which U(0) = 0, U(d) is (non-strictly) increasing for d ≥ 0, and U(d) is
(non-strictly) decreasing for d ≤ 0.

Definition 2. For each probability distribution ρ(x) and a disutility function U(d), by a U -mean,
we mean the value mU that minimizes the expression (1). By a U -deviation, we mean the value

VU
def
= min

m

∫
ρ(x) · U(x−m) dx.

Comment. Because of the definition of mU , the value VU takes the form VU =
∫
ρ(x) · U(x−mU ) dx.

Examples. When U(x) = x2, the expression (1) turns into the expression
∫
ρ(x) · (x −m)2 dx for

which minimization leads to the mean m =
∫
ρ(x) ·x dx. For this mean, the expression VU is the usual

variance.



When U(x) = |x|, the expression (1) turns into the expression
∫
ρ(x)·|x−m| dx for which minimization

leads to the median. For the median mU , the expression VU is the average absolute deviation VU =∫
ρ(x) · |x−mU | dx.

3. HOW TO DESCRIBE DEPENDENCE FOR GENERAL HEAVY-TAILED
DISTRIBUTIONS

Formulation of the problem. In the traditional statistics, a reasonable measure of dependence is

the correlation, which is defined as ρxy =
E[(x− E(x)) · (y − E(y))]√

Vx · Vy
. This correlation describes linear

dependencies.

For heavy-tailed distributions, as we have mentioned, variances are infinite, so this formula cannot be
applied. Thus, we need to come up with a numerical characteristic for describing dependence.

One possibility: use Kendall’s tau. The traditional correlation only describes linear dependence.

To describe possibly non-linear monotonic dependencies, we can use, e.g., Kendall’s tau (see, e.g.,
[35]) – which can be estimated as the proportion of pairs of tuples (x, y) and (x′, y′) for which x and
y change in the same direction, i.e., either x ≤ x′ and y ≤ y′, or x′ ≤ x and y′ ≤ y. Kendall’s tau can
be applied (and has been applied) to heavy-tailed distributions as well.

Remaining problem. But what is we are interested not in all possible monotonic dependencies, but
only in linear ones, or, more generally, only in dependencies y = f(x) belonging to a certain class of
functions F (e.g., all quadratic functions, or all fractionally linear functions).

Our idea. Let us again take into account disutility. The above measure of deviation estimates
the disutility of replacing all the values x with a single value mx, and the disutility of replacing all
the values y with a single value my. Dependence means that if we know x, we can get a better
approximation for y than my.

For example, if we want to predict temperature in El Paso, then we approximate this temperature by
an average value and get some deviation. However, we know that there is a correlation between the
temperature in El Paso and the temperature in the nearby city of Las Cruces. Thus means that if
we know the temperature in Las Cruces, we can predict the temperature in El Paso better than by
simply taking the average of El Paso temperatures.

In general, to approximate the values y, instead of using a single value my (and selecting the value
for which the expected disutility is the smallest), we use the value f(x) for an appropriate function
f ∈ F – and we select the function f for which the expected disutility is the smallest possible. Thus,
we arrive at the following definitions:

Definition 3. Let us assume that we have a random 2-D vector (x, y). Let U(d) ≥ 0 be a disutility
function, and let F be a class of functions from real numbers to real numbers. By an F-regression,
we mean a function f ∈ F for which the value E[U(y − f(x))] =

∫
ρ(x, y) · U(y − f(x)) dx dy is the

smallest possible.

Discussion. In particular, when F is the class of all constant functions, we get the U -estimate.
When U(d) = d2 and F is the class of all linear functions, we get the usual linear regression. It is now
reasonable to define correlation as the proportion of how much the average disutility decreases when
we use x to help predict the values y.

Definition 4. By a (U,F)-correlation c, we mean the value c
def
=

VU (y)− VU,F (y|x)
VU (y)

, where VU (y)
def
=

min
m

1

n
·

n∑
i=1

U(yi −m) and VU,F (y|x)
def
= min

f∈F

1

n
·

n∑
i=1

U(yi − f(xi)).



Observation. For the class of linear functions F and for U(d) = d2, the resulting value of the (U,F)-
correlation c coincides with the square ρ2 of the usual correlation.

Discussion. For normal distributions, correlation is symmetric: if we can reconstruct y from x,
then we can reconstruct x from y. Our definition is, in general, not symmetric. This asymmetry make
perfect sense. For example, suppose that y = x2. Then, if we know x, then we can uniquely reconstruct
y, so the reconstruction of y from x is perfect. However, if we know y, we can only reconstruct x
modulo sign, so the reconstruction of x from y is not perfect.

4. HOW TO ESTIMATE THE NEW CHARACTERISTICS FROM OBSERVA-
TIONS

General idea. In the above text, we defined the desired characteristics in terms of the corresponding
probability density functions ρ(x) and ρ(x, y). In practice, we often do not know the actual distri-
bution, i.e., we do not know the probability density ρ(x) (or, for two variables, ρ(x, y)). Instead, we
know the sample values x1, . . . , xn. How do we estimate the above characteristics based on the sample
values?

A natural idea is to use the “histogram” distribution, i.e., the distribution in which each of n observed

values x1, . . . , xn appears with equal probability
1

n
. This idea is behind the usual estimates for the

mean and for the variance. Indeed, if we plug in the corresponding distribution ρ(x) =
1

n
·

n∑
i=1

δ(x−xi)

into the definitions of the mean E =
∫
ρ(x) · x dx and variance V =

∫
ρ(x) · (x − E)2 dx, we get the

usual estimates Ê =
1

n
·

n∑
i=1

xi and V̂ =
1

n
·

n∑
i=1

(
xi − Ê

)2
.

Resulting estimates for deviation from the mean. Applying this idea to the above formulas for
the deviation from the mean, we get the following estimates.

Definition 5. Let U(d) ≥ 0 be a disutility function. For each sample x1, . . . , xn, by an estimate for
the U -mean, we mean the value m̂U that minimizes the expression

1

n
·

n∑
i=1

U(xi −m). (2)

By an estimate for U -deviation, we mean the value V̂U
def
= min

m

1

n
·

n∑
i=1

U(xi −m).

Comment. Because of the definition of m̂U , the value V̂U takes the form V̂U =
1

n
·

n∑
i=1

U (xi − m̂U ) .

Examples. When U(x) = x2, the expression (2) turns into the expression
1

n
·

n∑
i=1

(xi −m)2 for which

minimization leads to the arithmetic average m̂ =
1

n
·

n∑
i=1

xi. For this arithmetic average, the expression

V̂U is the usual sample variance.

When U(x) = |x|, the expression turns into the expression
1

n
·

n∑
i=1

|xi − m| for which minimization

leads to the sample median. For the sample median m̂U , the expression V̂U is the average absolute

deviation V̂U =
1

n
·

n∑
i=1

|xi − m̂U | .



How to estimate m̂U and V̂U . Once we compute m̂U , the computation of V̂U is straightforward:
we just apply the function U(d) n times and compute the corresponding expression.

Estimating m̂U means optimizing a function of a single variable. This particular optimization problem
is well-known and actively used in statistics, because, as we will show, it is equivalent to the Maximum
Likelihood approach to the following problem. Let us assume that we know the shape ρ0(x) of the
actual distribution but not the starting point, i.e., we know that the actual distribution has the form
ρ0(x −m) for some unknown value m. To estimate this value m based on the sample x1, . . . , xn, we
can use the maximum likelihood method, i.e., find m for which the probability density

L = ρ0(x1 −m) · . . . · ρ0(xn −m)

attains the largest possible value. Maximizing this probability is equivalent to minimizing the value

ψ
def
= − ln(L) =

n∑
i=1

U(xi − m), where we denoted U(x)
def
= − ln(ρ0(x)). Minimizing this value is

equivalent to minimizing the value (2); thus, this value is exactly our estimate m̂U .

Similar algorithms are also used in robust statistics – an area of statistics in which we need to make
statistical estimates under partial information about the probability distribution.

In robust statistics (see, e.g., [14]), there are several different types of techniques for estimating a
shift-type parameter a based on a sample x1, . . . , xn. The most widely used methods are M-methods,
methods which are mathematically equivalent to the maximum likelihood approach from the tradi-
tional (non-robust) statistics.

Comment. The relation between utilities, maximum likelihood methods, and robust statistics was
analyzed in [36].

How to estimate measures of dependence. If we have several possibly related samples x1, . . . , xn
and y1, . . . , yn, then, in addition to knowing how much each sample deviates from its “average”, it is
also desirable to know how much they depend on each other.

Definition 6. Let x1, . . . , xn and y1, . . . , yn be two tuples, let U(d) ≥ 0 be a disutility function, and
let F be a class of functions from real numbers to real numbers. By an estimate for the F-regression,

we mean a function f̂ ∈ F for which the value
1

n
·

n∑
i=1

U
(
yi − f̂(xi)

)
is the smallest possible.

In particular, when F is the class of all constant functions, we get the U -estimate. When U(d) = d2

and F is the class of all linear functions, we get the usual linear regression.

Definition 7. By an estimate for the (U,F)-correlation c, we mean the value ĉ
def
=

V̂U (y)− V̂U,F (y|x)
VU (y)

,

where V̂U (y)
def
= min

m

1

n
·

n∑
i=1

U(yi −m) and V̂U,F (y|x)
def
= min

f∈F

1

n
·

n∑
i=1

U(yi − f(xi)).

5. ESTIMATING THE NEW CHARACTERISTICS UNDER INTERVAL UN-
CERTAINTY

Need to take into account interval uncertainty. In practice, we rarely know the exact values of
xi. For example, in financial situations, we can take, as xi, the price of the financial instrument at
the i-th moment of time – e.g., on the i-th day. However, the price does not remain stable during the
day – it fluctuates. Of course, we can always arbitrarily select a value, but it is more reasonable to
consider the whole range [xi, xi] of the daily prices instead of a single value xi.

Different values xi from the corresponding intervals lead, in general, to different estimates f(x1, . . . , xn)
for the parameters of the heavy-tailed distribution. To get a good understanding of the corresponding



risk, it is therefore desirable to compute not just a single value of each characteristic, but rather the
range y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn} of possible values of this characteristic when each xi
takes different values from the corresponding interval xi. It is therefore desirable to find the range of
all resulting values of f(x1, . . . , xn).

Due to the ubiquity of interval uncertainty, the need to estimate a range of a given function f(x1, . . . , xn)
over given intervals x1, . . . ,xn occurs in many other application areas. The problem of computing this
range is known as the main problem of interval computations; see, e.g., [16, 15, 27].

In spite of the simplicity of the problem’s formulation, in general, the interval computations problem
is NP-hard (computationally intensive [29]); see, e.g., [19].

It is even NP-hard if we restrict ourselves to simple functions: e.g., to quadratic ones. Moreover, the
problem is NP-hard even for the simplest statistically meaningful quadratic function: the function

V̂ (x1, . . . , xn) =
1

n
·

n∑
i=1

x2i −
(
1

n
·

n∑
i=1

xi

)2

that describes the sample variance [6, 7].

Algorithm for computing the lower endpoint V̂U of the range
[
V̂U , V̂U

]
of possible values

of V̂U . In order to find V̂U , let us first sort all 2n endpoints xi and xi into an increasing sequence

x(1) ≤ x(2) ≤ . . . ≤ x(2n). To these values, we add x(0)
def
= −∞ and x(2n+1)

def
= +∞, then we get

−∞ = x(0) ≤ x(1) ≤ x(2) ≤ . . . ≤ x(2n) ≤ x(2n+1) = +∞.

The resulting values divide the real line into 2n+1 zones [x(k), x(k+1)], k = 0, 1, . . . , 2n. For each zone,
we select the values x1, . . . , xn as follows: for some value m (to be determined),

• if xi ≤ r(k), then we select xi = xi;

• if r(k+1) ≤ xi, then we select xi = xi;

• for all other i, we select xi = m.

Then, we take only the values for which xi ̸= m, and find their U -mean and – if this U -mean is in the
zone – take m equal to this U -mean and compute the corresponding U -deviation.

The smallest of thus computed U -deviations is the desired value V̂U .

Computation time for this algorithm is O(n2)+O(n) ·Texact, where Texact is the time to compute
the U -mean and U -deviation for the given values xi.

Proof of correctness is similar to the algorithm for variance; see, e.g., [28] and [2].

Conclusion. If we can compute VU for exactly known xi in polynomial time, then we can compute V̂U
under interval uncertainty also in polynomial time. For example:

• if we could compute VU for exact xi in linear time O(n), then we can compute V U for interval
xi in quadratic time O(n2);

• if we could compute VU for exact xi in quadratic time O(n2), then we can compute V U for
interval xi in cubic time O(n3).

Computing V̂U is, in general, NP-hard. Indeed, it is NP-hard already for the usual variance.

First efficient algorithm for computing V̂U . This algorithm is applicable to the case when for
some integer C, every group of > C different intervals [xi, xi] has an empty intersection. The algorithm
is as follows.

First, we sort all 2n endpoints xi and xi into an increasing sequence, and add the values x(0) = −∞
and x(2n+1) = +∞, resulting in: −∞ = x(0) ≤ x(1) ≤ x(2) ≤ . . . ≤ x(2n) ≤ x(2n+1) = +∞. For each
zone [x(k), x(k+1)], we do the following:



• if xi ≤ r(k), then we select xi = xi;

• if r(k+1) ≤ xi, then we select xi = xi;

• for all other i, we select either xi = xi or xi = xi.

For each zone, we have ≤ C indices i that allow two selections, so we thus get ≤ 2C selections. For
each of these selections, we compute the U -deviation. The largest of these U -deviations is the desired

value V̂U .

This algorithm requires time O(n2) +O(n) · Texact.

Second efficient algorithm for computing V̂U . This algorithm is applicable to the case when no
two intervals are proper subintervals of each other, i.e., when [xi, xi] ̸⊆ (xj , xj) for all i and j.

In this case, first, we sort all the intervals in lexicographic order, i.e., by the order [xi, xi] ≤ [xj , xj ] ⇔
((xi < xj)∨(xi = xj &xi < xj)).We then consider all n+1 tuples of the form (x1, . . . , xk, xk+1, . . . , xn),
with k = 0, 1, . . . , n. For each of these tuples, we compute the U -deviation. The largest of these U -

deviations is the desired value V̂U .

This algorithm requires time O(n · log(n)) +O(n) · Texact.

Third algorithm. This algorithm is applicable if for some m, all the intervals can be divided into
m groups each of which satisfies the above no-subinterval property. In this case, we sort all intervals
within each group in lexicographic order. For each group j = 1, . . . ,m, with nj ≤ n elements, we
consider nj + 1 ≤ n + 1 tuples of the form (x1, . . . , xkj , xkj+1, . . . , xn), and we consider all possible
combinations of such tuples corresponding to all possible vectors (k1, . . . , km). For each of these ≤ nm

vectors, we compute the U -deviation. The largest of these U -deviations is the desired value V U .

This algorithm requires time O(n · log(n)) +O(nm) · Texact.

6. CONCLUSION

Uncertainty is usually gauged by using standard statistical characteristics: mean, variance, correlation,
etc. Then, we use the known values of these characteristics (or the known bounds on these values) to
select a decision. Sometimes, it becomes clear that the selected characteristics do not always describe a
situation well; then other known (or new) characteristics are proposed. A good example is description
of volatility in finance: it started with variance, and now many descriptions are competing, all with
their own advantages and limitations.

In such situations, a natural idea is to come up with characteristics tailored to specific application
areas: e.g., select the characteristic that maximize the expected utility of the resulting risk-informed
decision making.

With the new characteristics, comes the need to estimate them when the sample values are only known
with interval uncertainty. We show that algorithms originally developed for estimating traditional
characteristics can often be modified to cover new characteristics.
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