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Abstract—In many practical situations, we need to locate
local maxima and/or local minima of a function which is only
know with interval uncertainty. For example, in radioastronomy,
components of a radiosource are usually identified by locations
at which the observed brightness reaches a local maximum. In
clustering, different clusters are usually identified with local
maxima of the probability density function (describing the
relative frequency of different combinations of values). In the
1-D case, a feasible (polynomial-time) algorithm is known for
locating local extrema under interval (and fuzzy) uncertainty. In
this paper, we extend this result to the general multi-dimensional
case.

I. INTRODUCTION

The problem of locating local extrema is important. In
spectral analysis, chemical species are identified by locating
local maxima of the spectra.

In radioastronomy, sources of celestial radio emission and
their subcomponents are identified by locating local maxima
of the measured brightness of the radio sky. In other words,
we are interested in the local maxima of the brightness
distribution, i.e., of the function f(t) that describes how the
intensity y of the signal depends on the position t of the point
from which we receive this signal.

Elementary particles are identified by locating local maxima
of the experimental curves that describe (crudely speaking) the
scattering intensity y as a function of energy t.

In clustering, different clusters correspond to a multi-modal
distribution, so clusters correspond to local maxima of the
probability density function.

In each of these applications, the following problem arises:
• we know that a physical quantity y is a function of one

or several (m ≥ 1) other physical quantities t1, . . . , tm,
y = f(t1, . . . , tm);

• we have n situations, i = 1, . . . , n, in each of which we
know the values of all m quantities: vi = (ti1, . . . , tim);

• in each of these n situations, we have measured the values
y1 = f(v1), . . . , yn = f(vn) of the quantity y;

• based on this information, we want to locate the local
maxima and/or the local minima of the function f .

Need to take into account interval uncertainty. The ob-
served values yi = f(vi) come from measurements, and
measurements are never absolutely accurate. The measurement

results ỹi are, in general, different from the actual (unknown)
values yi of the corresponding quantity.

In some cases, we know the probabilities of different values
of the measurement error ∆yi

def
= ỹi − yi. In many practical

cases, however, we only know the upper bound ε > 0 on
the (absolute value of) this measurement error: |∆yi| < ε;
see, e.g., [12]. In such situations, the only information that we
have about the actual (unknown) value yi of the corresponding
quantity is that it belongs to the interval (ỹi − ε, ỹi + ε). We
thus need to locate the local maxima and local minima of a
function under such interval uncertainty.

Need for guaranteed results. Due to measurement uncer-
tainty, the actual observed values fluctuate, and the function
corresponding to the actual measurement results usually has
many local maxima and minima. Most of these local maxima
and minima are caused by the measurement errors and do not
have any physical significance. From the practical viewpoint,
we only want to keep those local maxima and minima which
reflect the local extrema of the actual dependence, i.e., which
are guaranteed to correspond to source components, chemical
substances, etc.

Case of fuzzy uncertainty. Often, in addition (or instead)
the guaranteed bound ε for the measurement error ∆yi, an
expert can provide bounds that contain ∆yi with a certain
degree of confidence. Usually, we know several such bounding
intervals corresponding to different degrees of confidence.
Such a nested family of intervals is also called a fuzzy set,
because it turns out to be equivalent to a more traditional
definition of fuzzy set; see, e.g., [3], [6], [7], [8] (if a traditional
fuzzy set is given, then different intervals from the nested
family can be viewed as α-cuts corresponding to different
levels of uncertainty α).

From the algorithmic viewpoint, the case of fuzzy uncer-
tainty can be reduced to the case of interval uncertainty.
In the case of fuzzy uncertainty, for each degree of confidence
α, we must solve the problem corresponding to the α-cut
intervals. Thus technically, the fuzzy problem can be reduced
to several interval ones. Because of this reduction, we will
be concentrating on the algorithms for solving the interval
problem.



Locating local extrema under interval uncertainty: what is
known. For the case of m = 1, when there is only one input
variable t1, there exist feasible (polynomial-time) algorithms
for locating local extrema under interval uncertainty; see, e.g.,
[14], [15], [16]; see also [2], [4], [5], [9], [10], [11], [13].

Need for considering the general multi-D case. In many
practical applications, we need to solve a similar problem in
a situation when we have several inputs t1, ]ldots, tm, m > 1.
For example, in locating components of a radioastronomical
source, we start with a 2-D function that describes the intensity
as a function of two spatial coordinates. In clustering, we
also need to consider local maxima of functions of several
variables, etc.

What we do in this paper. In this paper, we describe a
polynomial-time algorithm that solves the problem of locating
local extrema of functions of several variables.

II. DEFINITIONS AND THE MAIN RESULT

Describing locations. We are interested in the situation in
which we measure the value of some quantity – e.g., intensity
of an image – at different spatial locations x. In each situation,
we have finitely many locations at which measurements were
made.

We are interested in finding local minima and local maxima.
By definition, a function f has a local minimum at a location
x if its value f(x) at this location is smaller than or equal to
its values in all the neighboring points. To formally describe
this notion, we therefore need to describe which locations are
neighbors and which are not. This notion of neighborhood
is a symmetric relation on the set G of all locations. In
mathematical terms, with this relation, the set of locations
becomes a graph. Thus, we arrive at the following description
of all the locations.

Definition 1. Let G be a finite undirected graph.
• The vertices of the graph G will be called locations.
• If vertices x, y ∈ G are connected by an edge, we will

call them neighbors and denote it by x ∼ y.
• Let S ⊆ G be a subset of the graph G. We say locations

x, y ∈ S are S-connected if there exists a S-connecting
sequence, i.e., a sequence x0 = x ∈ S, x1 ∈ S, . . . ,
xm−1 ∈ S, xm = y ∈ S for which xi ∼ xi+1 for all i.

• We say that a subset S ⊆ G is connected if every two
locations x, y ∈ S are S-connected.

• We say that a function f : G → IR has a local minimum
at location x if f(x) ≤ f(y) for all neighbors y of the
location x.

• We say that a function f : G → IR has a local maximum
at location x if f(x) ≤ f(y) for all neighbors y of the
location x.

Describing the results of realistic (imprecise) measure-
ments. The above definitions describe local extrema of a
precisely known function. In practice, measurements are never
absolutely accurate, so we can only find the value f(x) of
the desired function with some accuracy ε > 0. In other

words, for each location x, instead of the exact (unknown)
value f(x), we get a measurement result f0(x) (usually, a
rational number) which is ε-close to f(x): |f(x)−f0(x)| < ε.
This means that for every location x, the only information
that we have about the value f(x) is that it belongs to the
interval (f0(x)−ε, f0(x)+ε). Thus, we arrive at the following
definition.

Definition 2. Let G be a graph.
• By a measurement result, we mean a pair f = ⟨f0, ε⟩

consisting of a rational-valued function f0 : G → IR and
a rational number ε > 0;

– for each x ∈ G, the value f0(x) is called a measured
value;

– the value ε is called a measurement accuracy.
A measurement result will also be called an interval-
valued function and denoted

f(x) = (f0(x)− ε, f0(x) + ε).

• We say that a function f : G → IR is consistent with the
interval-valued function f(x) = (f0(x)− ε, f0(x) + ε) if
f(x) ∈ (f0(x) − ε, f0(x) + ε) for every location x. We
will denote this consistency by f ∈ f .

What does it mean to locate a local extremum. A natural
idea is to find the smallest connected subset S ⊆ G on which
every function f ∈ f attains a local extremum.

Definition 3. Let G be a graph, and let f be an interval-valued
function on this graph. We say that a connected set S is a local
minimum set of f if the following two properties are satisfied:

• every function f ∈ f attains a local minimum at some
location x ∈ S; moreover, each location xm ∈ S at which
f attains its smallest value on S is a local minimum of
f on G;

• for every smaller set S′ ⊂ S, S′ ̸= S, there exists a
function f ∈ f that does not have any local minimum on
the set S.

Comment. For example, if the set S consists of a single
location x0, the first condition means that for every function
f ∈ f , the value f(x0) is smaller than or equal to the value
at all neighboring points y ∼ x0. When the set S consists of
several locations x1, x2, etc., different functions f ∈ f may
attain local minimum at different locations xi ∈ S.

A similar definition can be given for local maxima.

Definition 4. Let G be a graph, and let f be an interval-valued
function on this graph. We say that a connected set S is a local
maximum set of f if the following two properties are satisfied:

• every function f ∈ f attains a local maximum at some
location x ∈ S; moreover, each location xm ∈ S at which
f attains its largest value on S is a local maximum of f
on G;

• for every smaller set S′ ⊂ S, S′ ̸= S, there exists a
function f ∈ f that does not have any local maximum on
the set S.



No, we are ready to formulate our main results.

Theorem 1. There exists a polynomial-time algorithm that,
given an interval-valued function on a graph, returns all its
local minimum sets.

Theorem 2. There exists a polynomial-time algorithm that,
given an interval-valued function on a graph, returns all its
local maximum sets.

The corresponding algorithms are easy to describe.

Algorithm 1. By trying all locations x ∈ G, we can find all
local minima xℓ of the function f0(x). For each such local
minimum, we again try all locations x ∈ G and find the set
Sℓ = {x : f0(x) < f0(xℓ) + 2ε}. From this set, we select
the subset S′

ℓ consisting of all locations x ∈ Sℓ which are
Sℓ-connected to xℓ. If for all the locations x from the set S′

ℓ,
we have f0(x) ≥ f0(xℓ), then this set S′

ℓ is returned as one
of the desired local minimum sets S.

Algorithm 2. By trying all locations x ∈ G, we can find all
local maxima xℓ of the function f0(x). For each such local
maximum, we again try all locations x ∈ G and find the set
Sℓ = {x : f0(x) > f0(xℓ) − 2ε}. From this set, we select
the subset S′

ℓ consisting of all locations x ∈ Sℓ which are
Sℓ-connected to xℓ. If for all the locations x from the set S′

ℓ,
we have f0(x) ≤ f0(xℓ), then this set S′

ℓ is returned as one
of the desired local maximum sets S.

III. PROOFS

1◦. One can easily check that local maxima sets of an interval
function ⟨f0, ε⟩ = (f0(x) − ε, f0(x) + ε) are exactly local
minimum sets of the interval function

⟨−f0, ε⟩ = (−f0(x)− ε,−f0(x) + ε).

Because of this reduction, it is sufficient to prove the result
about the local minimum sets.

For this case, we need to prove:
• that the algorithm is indeed polynomial-time,
• that every set generated by this algorithm is indeed a local

minimum set, and
• that every local minimum set appears in the list of sets

generated by our algorithm.

2◦. Let us first prove that our algorithm is indeed polynomial-
time, i.e., its number of computational steps does not exceed
the polynomial of a size of the input.

2.1◦. The input to this algorithm included:
• a graph G, i.e., the list of vertices v1, . . . , vn and a

description of edges, and
• an interval-valued function, i.e., a list of rational numbers

f0(v1), . . . , f0(vn), and ε.
The egdes can be described by an adjacency matrix, i.e., by
matrix describing, for each i and j, whether the i-th and
the j-th locations vi and vj are neighbors. Alternatively, the
edges can be described by listing, for each location vi, all
its neighbors. In both cases, the description requires O(n2)

values. In all the cases, the size of the input is larger than
C · n is smaller than C · n2.

We will prove that the computation time t for our algorithm
is bounded by a polynomial of n: t ≤ P (n). Since the size
s of the input is ≥ C · n, this will be guarantee that this
computation time is also bounded by a polynomial of s.

Let us analyze our algorithm stage-by-stage.

2.2◦. At the first stage of our algorithm we test all n locations
vi ∈ G, and for each of them, we check whether this location
vi is a local minimum of the function f0(x), i.e., whether
f0(vi) ≤ f0(y) for all the neighbors y of the location vi. For
each location, there are ≤ n neighbors, so this testing takes
≤ C ·n computational steps. We perform this testing for each
of n points, so the total number of computational steps on this
stage is bounded by n · (C · n) = O(n2).

As a result of this stage, we get a list of locations which
are local minima of the function f0(x). The number of such
locations is smaller than or equal to the total number n of
possible locations.

2.3◦. On the second step, for each of the local minima xℓ

of the function f0(x), we form the set Sℓ = {x : f0(x) <
f0(xℓ) + 2ε}, i.e., we mark all the locations x for which
f0(x) < f0(xℓ) + 2ε. For each local minimum location xℓ,
this marking can be done by testing all n possible locations
x, so this marking takes O(n) steps.

We do this for all ≤ n local minima, so the total number
of steps is ≤ n ·O(n) = O(n2).

2.4◦. Now, for each local minimum xℓ of the function f0(x),
we need to select only those locations x ∈ Sℓ which are Sℓ-
connected to xℓ. By definition, the connectedness relation is a
transitive closure of the neighborhood relation ∼, so we can
use standard graph algorithms to find all such such points (see,
e.g., [1]):

• we start my marking the location xℓ;
• at each step, we checked whether each unmarked location

from set Sℓ is a neighbor of one of the marked locations
from this set, and if yes, we mark it too.

On each iteration, there are ≤ n unmarked locations and ≤ n
marked locations, so this takes ≤ n2 steps.

Once no new locations are marked, we stop. At each
iteration except for the last one, at least one location is newly
marked. So, the number of iterations cannot exceed the number
n of locations. Thus, we have n iterations each of which takes
≤ n2 steps, to the total of ≤ n3 steps.

We do it for all ≤ n local minimum xℓ, so the total number
of computational steps on this stage is ≤ n · n3 = n4.
We have therefore proved that the above algorithm is indeed
polynomial-time.

3◦. Let us now prove that every set S′
ℓ generated by this

algorithm is indeed a local minimum set. By definition, this
means that the following two properties are satisfied:

• every function f ∈ f attains a local minimum at some
location x ∈ S′

ℓ; moreover, each location xm ∈ S′
ℓ



at which f attains its smallest value on S′
ℓ is a local

minimum of f on G;
• for every smaller set S′ ⊂ S′

ℓ, S
′ ̸= S′

ℓ, there exists a
function f ∈ f that does not have any local minimum on
the set S.

Let us prove these two properties one by one.

3.1◦. Let us first prove that each location xm ∈ S′
ℓ at which f

attains its smallest value on S′
ℓ is a local minimum of f on G.

Once we prove this statement, it will follow that every function
f ∈ f attains a local minimum at some location x ∈ S′

ℓ:
indeed, it attains its local minimum at a point xm at which f
attains its smallest value on the set S′

ℓ.

Let xm be a point at which the function f attains its
smallest possible value at the set S′

ℓ. Thus, if y ∈ S′
ℓ, then

f(xm) ≤ f(y). Let us show that this location xm is indeed a
local minimum of the function f on the graph G, i.e., that
f(xm) ≤ f(y) for all neighbors y ∼ xm. To prove this
statement, let us consider two possible cases: y ∈ Sℓ and
y ̸∈ Sℓ.

3.1.1◦. Let us first consider the first case, when y ∈ Sℓ. By
definition of the set S′

ℓ, the location xm is Sℓ-connected to the
location xℓ, i.e., there is a Sℓ-connecting sequence xℓ ∼ x1 ∼
. . . ∼ xm of elements from the set Sℓ. We know that y is an
element of the set Sℓ, and that y is a neighbor of the location
xm. Thus, by adding the element y ∼ xm to the end of the
above Sℓ-connecting sequence, we get a new Sℓ-connecting
sequence xℓ ∼ x1 ∼ . . . ∼ xm ∼ y whose existence shows
that the location y also belongs to the set S′

ℓ. By our selection
of xm, we know that f(xm) ≤ f(y) for all elements y ∈ S′

ℓ.
So, for the case when y ∈ Sℓ, the inequality is proven.

3.1.2◦. Let us now consider the second case, when y ̸∈ Sℓ.
By definition of the set Sℓ as the set of all the locations x
for which f0(x) < f0(xℓ) + 2ε, the fact that y ̸∈ Sℓ means
that this inequality is not satisfied for the location y, i.e., that
f0(y) ≥ f0(xℓ) + 2ε.

We know that the function f(x) is consistent with the
interval-valued function (f0(x)−ε, f0(x)+ε). Thus, for x = y,
we conclude that f(y) > f0(y)− ε. So,

f(y) >> f0(y)− ε ≥ (f0(xℓ) + 2ε)− ε = f0(xℓ) + ε,

and f(y) > f0(xℓ)− ε. Similarly, we conclude that f0(xℓ) +
ε > f(xℓ), hence f(y) > f0(xℓ) + ε > f(xℓ) and f(y) >
f(xℓ).

The location xℓ is in the set Sℓ and it is Sℓ-connected to
itself, so it belongs to the set S′

ℓ. Since the function f attains
its smallest value on S′

ℓ on the location xm and xℓ ∈ S′
ℓ, this

means that f(xℓ) ≥ f(xm).
From f(y) > f(xℓ) and f(xℓ) ≥ f(xm), we can now

deduce the desired inequality f(y) ≥ f(xm).

3.1.3◦. The desired inequality f(y) ≥ f(xm) is proven in both
cases, when y ∈ Sℓ and when y ̸∈ Sℓ. Thus, the location xm

is indeed a local minimum of the function f on the graph G.

3.2◦. Let us first prove that for every smaller set S′ ⊂ S′
ℓ,

S′ ̸= S′
ℓ, there exists a function f ∈ f that does not have any

local minimum on the set S.

3.2.1◦. According to Algorithm 1, for all values x ∈ S′
ℓ, we

have f0(xℓ) ≤ f0(x) < f0(xℓ) + 2ε. Let us denote M
def
=

max
x∈S′

ℓ

f0(x). Then, we have f0(x) ≤ M for all x ∈ S′
ℓ and

M < f0(xℓ) + 2ε. Thus, f0(xℓ) > M − 2ε.

3.2.2◦. Let us denote m
def
=

f(xℓ) +M

2
. Let us prove that for

all x ∈ S′
ℓ, we have m−ε < f0(x) < m+ε (i.e., equivalently,

|f0(x)−m| < ε and f0(x)− ε < m < f0(x) + ε).
Indeed, for every x ∈ Sℓ, we have f0(x) < f0(xℓ)+2ε; by

definition of M , we have f0(x) ≤ M . By adding these two
inequalities and dividing both sides by two, we conclude that

f0(x) <
(f0(xℓ) + 2ε) +M

2
=

f0(xℓ) +M

2
+ ε = m+ ε.

Similarly, for all x ∈ S′
ℓ, we have f0(x) ≥ f0(xℓ). From this

inequality and from the above inequality f0(xℓ) > M − 2ε,
we conclude that f0(x) > M − 2ε. By adding this inequality
and the inequality f0(x) ≥ f0(xℓ) and dividing both sides by
two, we conclude that

f0(x) >
(M − 2ε) + f0(xℓ)

2
=

M + f0(xℓ)

2
− ε = m− ε.

The statement is proven.

3.2.3◦. Since the set S′ is non-empty, it contains a location
vin. Since S′ is a proper subset of the set S′

ℓ, there exists
a location vout ∈ S′

ℓ for which vout ̸∈ S′. By definition of
the set S′

ℓ, all the locations x, y ∈ S′
ℓ are S′

ℓ-connected; in
particular, the locations vin and vout are S′

ℓ-connected by a
Sℓ-connecting chain. At the one end of this chain, we have
a location in S′, at the other end, we have a location which
is not in S′. Thus, there must exist two neighboring locations
v+ ∼ v− from this connecting chain for which v+ ∈ S′ and
v− ̸∈ S′.

Since all locations from S′
ℓ are S′

ℓ-connected, for every
location x ∈ S′

ℓ, there exists a S′
ℓ-connecting chain that

connects x and v−; there may be several such chains. Let
d(x, v−) be the smallest number of neighborhood relations in
such a chain.

For x = v−, the shortest Sℓ-connecting chain consists of a
single element v−, so d(v−, v−) = 0. For x ̸= v−, we have
d(x, v−) > 0. In particular, for x = v+, we have d(v−, v+) =
1.

Let us pick a small value k > 0 and define a function f a
follows:

• for x ∈ S′
ℓ, we take f(x) = m+ k · d(x, v−);

• for all x ̸∈ S′
ℓ, we take f(x) = f0(x).

We have shown that m ∈ (f0(x)−ε, f0(x)+ε) for all x ∈ S′
ℓ.

So, for sufficiently small k, we have

f(x) ∈ (f0(x)− ε, f0(x) + ε)

for all x. Let us show, by contradiction, that thus defined
function f(x) does not attain a local minimum on any location



from the set S′. Indeed, for all x ∈ S′, we have d(x, v−) ≥ 1
and thus, f(x) ≥ m + k. Let x′ be the previous element to
x in the shortest S′

ℓ-connecting chain that connects v− and
x. Then, x ∼ x′ and d(x′, v−) = d(x, v−) − 1 < d(x, v−)
and thus, f(x′) < f(x). So, indeed, no location x ∈ S′ is
a local minimum, since for each such location, there exists a
neighboring location x′ at which the function f has a smaller
value. The statement is proven.

4◦. To complete the proof of our result, we need to show that
every local minimum set S appears in the list of sets generated
by our algorithm.

4.1◦. By Definition 3, the fact that S is a local minimum set
means that for every function f ∈ f , every location xm ∈ S
at which f attains its smallest value on the set S is a local
minimum of f . In particular, this is true for the function f0.
Let xℓ be the location at which the function f0 attains its
minimum on the set S; then f0(xℓ) ≤ f0(x) for all locations
x ∈ S.

4.2◦. For every location x ∈ S, there must exist a function
f ∈ f that attains its smallest value at this location x.

Indeed, otherwise, the set S−{x} will be a proper subset of
the set S on which each function f ∈ f has a local minimum,
in contradiction to the second part of the definition of a local
minimum set.

In particular, for this function f , we have f(x) ≤ f(xℓ).
Since f ∈ f , we have f0(x)−ε < f(x) and f(xℓ) < f0(xℓ)+
ε. From

f0(x)− ε < f(x) ≤ f(xℓ) < f0(xℓ) + ε,

we conclude that f0(x)−ε < f0(xℓ)+ε, and thus, that f0(x) <
f0(xℓ) + 2ε. So, the set S is a subset of the set Sℓ.

4.3◦. One can also prove that the set S is connected, i.e.,
that every two locations x, y ∈ S are connected by an Sℓ-
connecting chain in which every two consequent elements are
neighbors. Indeed, otherwise, the set S can be divided into
several connected components, subsets in which every two
locations can be thus connected, and one can prove that each
of these components will also be a local minimum set – in
contradiction to the second part of the definition of a local
minimum set.

Thus, S is a subset of the set S′
ℓ.

4.4◦. Let us prove that S coincides with the set S′
ℓ.

By definition of the set S′
ℓ as a connected component of

the set Sℓ, to prove this equality, it is sufficient to prove that
if a location v ∈ Sℓ is a neighbor to one of the locations
vin ∈ S, then v also belongs to the set S. We will prove
this by considering two possible cases: f0(v) ≥ f0(xℓ) and
f0(v) < f0(xℓ).

4.4.1◦. When f0(v) ≥ f0(xℓ), we can, similarly to Part 3.2 of

this proof, define the M
def
= max

x∈Sℓ

f0(x) and m
def
=

f(xℓ) +M

2
.

Then, for a sufficiently small k > 0, the following function f
is consistent with the given interval-valued function f :

• for x ∈ S and for x = v, we take f(x) = m+k ·d(x, v);
• for all x ̸∈ S, we take f(x) = f0(x).

On the set S, this function f attains the smallest possible
value at the location vin (or at any other location neighboring
with v) at which d(x, v) = 1 and f(vin) = m+ k. However,
this location is not a local minimum since at the neighboring
location v, this function f(x) attains a smaller value

f(v) = m < f(vin) = m+ k.

This contradicts to the definition of the local minimum set.

4.4.2◦. When f0(v) < f0(xℓ), then, for a sufficiently small
k > 0, the following function f is consistent with the given
interval-valued function f :

• for x ∈ S, we take f(x) = m+ k · d(x, v);
• for all x ̸∈ S, we take f(x) = f0(x).

On the set S, this function f attains the smallest possible
value at the location vin (or at any other location neighboring
with v) at which d(x, v) = 1 and f(vin) = m+ k. However,
this location is not a local minimum since at the neighboring
location v, this function f(x) attains a smaller value

f(v) < f0(xℓ) < m < f(vin) = m+ k.

This also contradicts to the definition of the local minimum
set.

4.4.3◦. So, the set S indeed coincides with the set S′
ℓ.

4.5◦. To complete the proof, let us show that this set S′
ℓ will

indeed be returned by our algorithm. Indeed, by definition of
the location xℓ, we have f0(x) ≥ f0(xℓ) for all locations x ∈
S. We have just proven that S = S′

ℓ. Thus, for all the locations
x from the set S′

ℓ, we have f0(x) ≥ f0(xℓ). According to our
algorithm, this means that this set S = S′

ℓ will indeed be
returned by our algorithm.

The theorem is proven.
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