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Abstract

Formal verification approaches that check software correctness against formal specifications have been shown to improve program de-

pendability. Tools such as Specification Pattern System (SPS) and Property Specification (Prospec) support the generation of formal

specifications. SPS has defined a set of patterns (common recurring properties) and scopes (system states over which a pattern must hold)

that allows a user to generate formal specifications by using direct substitution of propositions into parameters of selected patterns and

scopes. Prospec extended SPS to support the definition of patterns and scopes that include the ability to specify parameters with multiple

propositions (referred to as composite propositions or CPs), allowing the specification of sequential and concurrent behavior. Prospec

generates formal specifications in Future Interval Logic (FIL) using direct substitution of CPs into pattern and scope parameters. While

substitution works trivially for FIL, it does not work for Linear Temporal Logic (LTL), a highly expressive language that supports speci-

fication of software properties such as safety and liveness. LTL is important because of its use in the model checker Spin, the ACM 2001

system Software Award winning tool, and NuSMV. This paper introduces abstract LTL templates to support automated generation of LTL

formulas for complex properties in Prospec. In addition, it presents formal proofs and testing to demonstrate that the templates indeed

generate the intended LTL formulas.
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1. Introduction

Today more than ever, society depends on complex software

systems to fulfill personal needs and to conduct business. Software

is an integral part of many mission and safety critical systems. In

transit systems, for example, software is used in railway signal-

ing, train control, fault detection, and notification systems among

other things [26]. Implanted drug delivery pumps, pacemakers

and defibrillators, and automated cancer cell and DNA-based di-

agnostics systems are examples of medical equipment built around

embedded software systems [10]. The National Aeronautics and

Space Administration (NASA) Space Shuttle program, a multi-

billion dollar program built on computer software and hardware,

is an example of a safety critical system that could lead to the loss

of life and huge finances if it fails.

Because of society’s dependence on computers, it is vital to as-

sure that software systems behave as intended. The estimated cost

due to software errors in the aerospace industry alone was $6 bil-

lion in 1999 [17]. The numbers are even more alarming when

considering that software errors cost U.S. economy $59.5 billion

annually [15]. It is imperative that the software industry continue

to invest in software assurance approaches, techniques, and tools.

Although the use of formal verification methods such as model

checking [7], theorem proving [16], and runtime monitoring [24]

has been shown to improve the dependability of programs, soft-

ware development professionals have yet to adopt them. The rea-

sons for this hesitance include the high level of mathematical so-

phistication required for reading and/or writing formal specifica-

tions needed for the use of these approaches [6].

Linear Temporal Logic (LTL) [11] is a prominent formal speci-

fication language that is highly expressive and widely used in for-

mal verification tools such as the model checkers SPIN [7] and

NuSMV [1]. LTL is also used in the runtime verification of Java

programs [8].

Formulas in LTL are constructed from elementary propositions

and the usual Boolean operators for not, and, or, imply (¬, ∧, ∨,

→, respectively). In addition, LTL provides the temporal opera-

tors next (X), eventually (�), always (�), until, (U), weak until

(W), and release (R). These formulas assume discrete time, i.e.,

states s = 0, 1, 2, . . . The meaning of the temporal operators is

straightforward:1

• The formula Xp holds at state s if p holds at the next state

s + 1,

• the formula p U q holds at state s, if there is a state s′ ≥ s at

1In this work we only consider the first four of these operators
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which q is true and, if s′ is such a state, then p is true at all

states si for which s ≤ si < s′,

• the formula �p holds at state s if p is true at some state s′ ≥ s,

and

• the formula �p holds at state s if p is true at all states s′ ≥ s.

One problem with LTL is that, when specifying software prop-

erties, the resulting LTL expressions can become difficult to write

and understand. For example, consider the following LTL spec-

ification: �(a → �(p ∧ �((¬a) ∧ ¬p))), where a denotes “Train

approaches the station.” and p denotes “Train passes the station.”

It is not immediately obvious that the specification describes the

following: “If a train approaches the station, then the train will

pass the station and, after it passes, the train does not approach or

pass the station.”

To assist users in the generation of LTL specifications, Dwyer et

al. [3, 4] defined a set of patterns to represent the most commonly

used formal properties. The work also defined a set of scopes of

system execution where the pattern of interest must hold. Each

pattern and scope combination can be mapped to specifications

in multiple formal languages including LTL. Using the notions of

patterns and scopes a user can define system properties in LTL

without being an expert in the language. Section 2 provides more

details on SPS’ patterns and scopes.

In SPS, patterns and scopes parameters are defined using atomic

propositions (i.e., each pattern and scope parameter is defined us-

ing a single proposition with a single truth value). To extend the

expressiveness of SPS, Mondragon et al. [12, 13] developed the

Property Specification (Prospec) tool. Prospec attempts to ex-

tended SPS through the definition of a set of composite propo-

sitions (CP) classes with the intent of using these to define pattern

and scope parameters. A complete description of Mondragon’s

composite proposition classes can be found in Section 2.

Although SPS provides LTL formulas for basic patterns and

scopes (ones that use single, “atomic”, propositions to define pa-

rameters) and Mondragon et al. [13] provided LTL semantics for

the CP classes as described in Table 1. below, in most cases it is

not adequate to simply substitute the LTL description of the CP

class into the basic LTL formula for the pattern and scope com-

bination. We delay the introduction of a formal example of this

inadequacy after Section 2 where we describe the notions of pat-

tern, scope, and CP in more details.

This work aims at creating high-level LTL templates that can be

used to define LTL formulas for complex system properties. These

LTL templates take as an input a combination of of pattern, scope,

and CP classes that describe the desired property. The output of

the templates is an LTL formula that can be used by formal ver-

ification tools such as model checkers. However, in order to be

able to combine patterns, scopes, and CP classes to generate LTL

formulas, we first need to provide a precise definition of the se-

mantics of each pattern and scope when used in conjunction with

CP classes and vice versa. Providing these formal definitions is a

secondary goal of this paper.

The rest of the paper is organized as follows; Section 2 provides

the background of the work including SPS’ patterns and scopes, as

well as a more detailed description of the CP classes introduced by

Mondragon. Section 2 also includes an example to show the prob-

lems that can arise when using direct substitution within LTL. In

Section 3 we provide a formal definition of the meaning of patterns

and scopes when defined using CP classes. Section 4 introduced a

new LTL operators that will be used to simplify the abstract LTL

templates. Those LTL templates are described in Section 5 along

with an example of their use. In Section 6 we show the meth-

ods we used to validate that the LTL templates generate LTL that

meet the original meaning of the selected pattern, scope, and CP

combination. The paper concludes with summary and future work

followed by the references.

2. Background

This section provides the background information needed for

the rest of the paper. We describe the notions of patterns, scopes as

defined by Dwyer[3]. We also describe Mondragon’s CP classes

as well as provide a more formal description of these classes.

These formal descriptions of CP classes are necessary for describ-

ing the semantics of patterns and scopes that use CP classes, which

we introduce in Section 3.

2.1. Specification Pattern System (SPS)

Writing formal specification, particularly those involving time,

is difficult. The Specification Pattern System (SPS) [3] provides

patterns and scopes to assist the practitioner in formally specify-

ing software properties. Patterns capture the expertise of devel-

opers by describing solutions to recurrent problems. Each pattern

describes the structure of specific behavior and defines the pat-

tern’s relationship with other patterns. Patterns are associated with

scopes that define the portion of program execution over which the

property holds.

The main patterns defined by SPS are: Universality, Absence,

Existence, Precedence, and Response. The descriptions given

below are taken verbatim from the SPS website [4].

• Absence(P): To describe a portion of a system’s execution

that is free of certain event or state (P).

• Universality(P): To describe a portion of a system’s execu-

tion which contains only states that have the desired property

(P). Also known as Henceforth and Always.

• Existence(P): To describe a portion of a system’s execution

that contains an instance of certain events or states (P). Also

known as Eventually.

• Precedence(P,Q): To describe relationships between a pair

of events/states where the occurrence of the first (Q) is a nec-

essary pre-condition for an occurrence of the second (P). We

say that an occurrence of the second is enabled by an occur-

rence of the first.

• Response(P,Q): To describe cause-effect relationships be-

tween a pair of events/states. An occurrence of the first (P),

the cause, must be followed by an occurrence of the second

(Q), the effect. Also known as Follows and Leads-to.

In SPS, each pattern is associated with a scope that defines the

extent of program execution over which a property pattern is con-

sidered. There are five types of scopes defined in SPS: Global,

Be f ore R, A f ter L, Between L And R, and A f ter L Until R.
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Global denotes the entire program execution; Be f ore R denotes

the execution before the first time the condition R holds; A f ter L

denotes execution after the first time L holds; Between L And R

denotes the execution between intervals defined by L and R; and

A f ter L Until denotes the execution between intervals defined by

L and R and, in the case when R does not occur, until the end of

execution.

The SPS website provides patterns and scopes for formal spec-

ification languages such as Linear Temporal Logic (LTL), Com-

putational Tree Logic (CTL), and Graphical Interval Logic (GIL).

These formulas are provided for patterns and scopes involving sin-

gle (atomic) propositions, i.e., patterns and scopes in which P, Q,

L, and R each of which occur at a single state of execution. The

website also provides examples of properties that can be defined

using these patterns and scopes. For example, the property “When

a connection is made to the SMTP server, all queued messages in

the OutBox mail will be transferred to the server” can be defined

using the Existence P pattern within the Be f ore R scope, where

R stands for “all queued messages in the OutBox mail are trans-

ferred to the server” and P stands for “connection is made to the

SMTP server”. Using SPS, we obtain the following LTL formula

for this property: (�¬R)∨ (¬R U (P∧¬R)). A complete list of the

LTL formulas for SPS’ pattern/scope combinations can be found

in [4].

2.2. Composite Propositions (CP)

In practical applications, we often need to describe properties

where one or more of the pattern or scope parameters are made of

multiple propositions, i.e., composite propositions (CP). For ex-

ample, the property ”every time data is sent at state si, data is read

at state s j ≥ si, the data is processed at state sk ≥ s j, and data

is stored at state sl ≥ sk.” This property can be described using

the Existence P pattern within the Between L and R scope where

L stands for “data is sent”, R stands for “date is stored” and P is

composed of multiple propositions p1 and p2 (data is read and data

is processed, respectively).

To describe such patterns, Mondragon et al. [13] extended SPS

by introducing a classification for defining sequential and concur-

rent behavior to describe pattern and scope parameters. Specifi-

cally, the work formally described several types of CP classes and

provided formal descriptions of these CP classes in LTL.

Some of the corresponding patterns can be described in Future

Interval Logic (FIL) language, a language that is similar to LTL,

but less expressive than LTL. For example, FIL cannot describe a

practical property that an event p must hold at the next state. The

corresponding translations have been implemented in the Property

Specification tool (Prospec) [12], which uses patterns and scopes

involving composite propositions to generate formal specifications

in FIL.

In comparison to LTL, FIL has two limitations: first, due to

the limited expressiveness of FIL, not all patterns and scopes in-

volving composite propositions can be represented; second, FIL is

not as widely used in formal verification tools, so the use of FIL

restricts the software engineer’s ability to use the resulting spec-

ifications. It is, therefore, important to provide a translation of

all possible patterns and scopes involving composite propositions

into the more expressive (and more widely used) language LTL. It

is also important to show that these translations are correct for all

patterns and scopes. The rest of this paper concentrates on provid-

ing the LTL templates for all pattern, scope, and CP combinations.

We also validate these templates using formal proofs for templates

of all patterns within the Global scope and we used model check-

ing based testing technique for validating the remaining templates.

2.2.1. Composite Propositions: A Formal Description

Mondragon et al. [13] defined eight CP classes to describe se-

quential and concurrent behavior. CP classes are categorized to

be either of condition type (denoted with a subscript C) or event

type (denoted with a subscript E). A condition is a proposition that

holds over multiple consecutive states, where an event represents a

change in the truth value of a proposition in two consecutive states.

The four CP classes of condition type are defined as follows:

• AtLeastOneC(p1, . . . , pn) holds at state s if at least one propo-

sition pi, where 1 ≤ i ≤ n, is true at state s

• ParallelC(p1, . . . , pn) holds at state s if all propositions pi,

where 1 ≤ i ≤ n, are true at state s

• ConsecutiveC(p1, . . . , pn) holds at state s if p1 is true at state

s, p2 is true at state s+1, . . . , and pn is true at state s+ (n−1)

• EventualC(p1, . . . , pn) holds at state s1 if p1 is true at state s1,

p2 is true at some state s2 > s1, . . . , and pn is true at some

state sn > sn−1

The four CP classes of type event are

AtLeastOneE(p1, . . . , pn), ParallelE(p1, . . . , pn),

ConsecutiveE(p1, . . . , pn), and EventualE(p1, . . . , pn) can be de-

fined in terms of a new class of auxiliary formulas TH(p1, . . . , pn).

These CP classes are of type hold. The main motivation for TH is

that in CP of type condition, we only require each pi to hold at a

certain state si, and we do not make any assumptions about other

propositions p j ( j � i) at state si. In some practical applications, it

is important to require that pi become true in the prescribed order,

i.e., that not only pi becomes true in state si, but that it is false

until then. In addition to using CP classes of type hold to define

CP classes of type event, CP classes of type hold make it easier to

define the general LTL formulas in Section 6, which is the main

goal of this work. The four CP classes of hold type are defined as

follows:

• AtLeastOneH(p1, . . . , pn) is defined equivalently to

AtLeastOneC

• ParallelH(p1, . . . , pn) is defined equivalently to ParallelC

• ConsecutiveH(p1, . . . , pn) means that:

– p1 is true at state s1 = s, and p2 . . . pn are false at s1,

– p2 is true at state s2 = s + 1, and p3 . . . pn are false at

s2,

– . . . ,

– pn−1 is true at state sn−1 = s + (n − 1) and pn is false at

sn−1

– and pn is true at state sn = s + (n)

• EventualH(p1, . . . , pn) means that:
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Table 1: Description of CP Classes in LTL

CP Class LTL Description (PLT L)

AtLeastOneC p1 ∨ . . . ∨ pn

AtLeastOneH p1 ∨ . . . ∨ pn

AtLeastOneE (¬p1 ∧ . . . ∧ ¬pn) ∧ ((¬p1 ∧ . . . ∧ ¬pn) U (p1 ∨ . . . ∨ pn))

ParallelC p1 ∧ . . . ∧ pn

ParallelH p1 ∧ . . . ∧ pn

ParallelE (¬p1 ∧ . . . ∧ ¬pn) ∧ ((¬p1 ∧ . . . ∧ ¬pn) U (p1 ∧ . . . ∧ pn))

ConsecutiveC (p1 ∧ X(p2 ∧ (. . . (∧Xpn)) . . .))

ConsecutiveH (p1∧¬p2∧ . . .∧¬pn∧X(p2∧¬p3∧ . . .∧¬pn∧X(. . .∧X(pn−1∧

¬pn ∧ Xpn)) . . .))

ConsecutiveE (¬p1∧ . . .∧¬pn)∧ ((¬p1∧ . . .∧¬pn) U (p1∧¬p2∧ . . .∧¬pn∧

X(p2 ∧ ¬p3 ∧ . . . ∧ ¬pn ∧ X(. . . ∧ X(pn−1 ∧ ¬pn ∧ Xpn)) . . .)))

EventualC (p1 ∧ X(¬p2 U (p2 ∧ X(. . . ∧ X(¬pn−1 U (pn−1 ∧

X(¬pn U pn)))) . . .)))

EventualH (p1 ∧¬p2 ∧ . . .∧¬pn ∧ ((¬p2 ∧ . . .∧¬pn) U (p2 ∧¬p3 ∧ . . .∧

¬pn ∧ (. . . ∧ (pn−1 ∧ ¬pn ∧ (¬pn U pn)) . . .))))

EventualE (¬p1∧ . . .∧¬pn)∧ ((¬p1∧ . . .∧¬pn) U (p1∧¬p2∧ . . .∧¬pn∧

((¬p2∧ . . .∧¬pn) U (p2∧¬p3∧ . . .∧¬pn∧ (. . .∧ (pn−1∧¬pn∧

(¬pn U pn)) . . .)))))

– at state s1 = s, the proposition p1 is true and the follow-

ing propositions p2, . . . , pn are false; these propositions

p2, . . . , pn remain false until some future state s2 > s1

where only p2 becomes true;

– . . .

– at state si > si−1 (1 < i < n), the proposition pi is true

and the following propositions pi+1, . . . , pn are false;

these propositions pi+1, . . . , pn remain false until some

future state si+1 > si in which pi+1 is true and the re-

maining propositions pi+2 . . . pn are false;

– . . .

– At state sn−1 > sn−2, the proposition pn−1 is true and

proposition pn is false;

– finally, at state sn > sn−1, the proposition pn is true.

CP classes of type event are defined using the above definition

of CP classes of type hold as follows:

Definition 1. We say that a CP of type event (i.e, TE(p1, . . . , pn))

holds at state s if at this state, all propositions pi are false, and

they remain false until some future state s′ when the composite

proposition TH(p1, . . . , pn) becomes true.

For example, a composite proposition AtLeastOneE(p1, . . . , pn)

holds at state s if all the propositions p1, . . . , pn are false at s, and

at least one of these propositions p1, . . . , pn is true at some future

state s′ > s. Table 1 provides a formal description of the above

mentioned CP classes in LTL. We use the notation PLT L to refer to

the LTL formula describing a CP class.

2.2.2. Problem with Direct Substitution

As mentioned above, SPS provides LTL formulas for every pat-

tern/scope combination, and Mondragon et. al/ provides LTL for-

mulas for every CP class. However, directly substituting a pattern

or a scope parameter by the LTL formula for the desired CP class

might generate an LTL formula that does not match the original

meaning of the property. The following example shows the prob-

lem with direct substitution.

Consider the following property: “The delete button is en-

abled in the main window only if the user is logged in as ad-

ministrator and the main window is invoked by selecting it from

the Admin menu”. This property can be described using the

Existence(EventualC(p1, p2)) Be f ore(r) where p1 is “the user

logged in as an admin”, p2 is “the main window is invoked”, and

r is “the delete button is enabled”. As mentioned above, the LTL

formula for the Existence(P) Be f ore(R) is “(�¬R) ∨ (¬R U (P ∧

¬R))”, and the LTL formula for the CP class EventualC , as de-

scribed in Table 1, is (p1 ∧ X(¬p2 U p2)). By replacing P by

(p1 ∧ X(¬p2 U p2)) in the formula for the pattern and scope, we

get the formula: “(�¬R)∨(¬R U ((p1∧X(¬p2 U p2))∧¬R)). This

formula however, asserts that either R never holds or R holds after

the formula (p1 ∧ X(¬p2 U p2)) becomes true. In other words, the

formula asserts that it is an acceptable behavior if R (“the delete

button is enabled”) holds after p1 (“the user logged in as an ad-

min”) holds and before p2 (“the main window is invoked”) holds,

which should not be an acceptable behavior.

As seen by the above example, the temporal nature of LTL and

its operators means that direct substitution could lead to the de-

scription of behaviors that do not match the actual intent of the

specifier. For this reason, it is necessary to provide abstract LTL

formulas that can be used as templates for the generation of LTL

specifications for all patterns, scopes, and CP classes combina-

tions, which is a goal of this paper.

3. Formal Description of Patterns and Scopes Using Compos-

ite Propositions

As shown in Section 2, SPS provided LTL formulas for all 25

combinations of patterns and scopes. However, these definitions

are only adequate for patterns and scopes with a single proposition

for each parameter. In order to define LTL templates for patterns

and scopes defined using CP classes, it is important to provide a

precise description of what these patterns and scopes mean when

defined using CP classes and not only by a single proposition.

3.1. Patterns Involving Single and Composite Propositions:

Motivations and Definitions

As we mentioned in Section 1.2, Dwyer et al.[3] defined the

notions of patterns and scopes to assist in the definition of for-

mal specifications. Patterns provide common solutions to recur-

ring problems, and scopes define the extent of program execution

where the pattern is evaluated. In this work we are concerned with

the following patterns:

• Absence of P,

• Existence of P,

• Q Precedes P,

• Q S trictly Precedes P, and

• Q Responds to P.

Note that the S trict Precedence pattern was defined by Mon-

dragon et al. [13], and it represents a modification of the

Precedence pattern as defined by Dwyer et al. The following

subsections describe these patterns when defined using single and

composite propositions.
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3.1.1. Absence and Existence: Precise Descriptions.

The Absence of P means that the (single or composite) property

P never holds, i.e., for every state s, P does not hold at s. In

the case of CP classes, this simply means that PLT L (as defined in

Table 1 for each CP class) is never true. The LTL template formula

corresponding to the Absence of P is:

�¬PLT L (1)

The Existence of P means that the (single or composite) prop-

erty P holds at some state s in the computation. In the case of

CP classes, this simply means that PLT L is true at some state of

the computation. The LTL template formula corresponding to the

Existence of P is:

�PLT L (2)

3.1.2. Precedence, Strict Precedence, and Response: Precise

Definition

For single proposition, the meaning of “precedes”, “strictly pre-

cedes”, and “responds” is straightforward:

• q precedes p means that every time property p holds, property

q must hold either in a previous state or at the same state;

• q strictly precedes p means that every time property p holds,

property q must hold in a previous state;

• q responds to p means that every time property p holds, prop-

erty q must hold either at the same state or at a later state.

To extend the above meanings to CP, we need to explain what

“after” and “before” mean in the case of CP. While single propo-

sitions are evaluated in a single state, CP, in general, deal with a

sequence of states or a time interval (this time interval may be de-

generate, i.e., it may consist of a single state). Specifically, for

every CP P = T (p1, . . . , pn), there is a beginning state bP – the

first state in which one of the propositions pi becomes true, and

an ending state eP – the first state in which the condition T is ful-

filled. For example, for ConsecutiveC , the ending state is the state

s + (n − 1) when the last statement pn holds; for AtLeastOneC ,

the ending state is the same as the beginning state – it is the first

state when one of the propositions pi holds for the first time. In

these terms, P occurs before Q if eP ≤ bQ and P occurs after Q if

bP ≥ eQ.

For each state s and for each CP P = T (p1 . . . , pn) that holds

at state s, we will define the beginning state bP(s) and the ending

state eP(s). The following is a description of bP and eP for the CP

classes of types condition and event defined in Table 1 (to simplify

notations, wherever it does not cause confusion, we will skip the

state s and simply write bP and eP):

• For the CP class P = AtLeastOneC(p1, . . . , pn) that holds at

state s, bP(s) = eP(s) = s.

• For the CP class P = AtLeastOneE(p1, . . . , pn) that holds at

state s, bP(s) = eP(s), i.e., the first state s′ > s at which one

of the propositions pi becomes true.

• For the CP class P = ParallelC(p1, . . . , pn) that holds at state

s, bP(s) = eP(s) = s.

• For the CP class P = ParallelE(p1, . . . , pn) that holds at state

s, bP(s) = eP(s), i.e., the first state s′ > s at which all the

propositions pi become true.

• For the CP class P = ConsecutiveC(p1, . . . , pn) that holds at

state s, bP(s) = s and eP(s) = s + (n − 1).

• For the CP class P = ConsecutiveE(p1, . . . , pn) that holds at

state s, bP(s) is the first state s′ > s at which the proposition

p1 becomes true, and eP(s) = s′ + (n − 1).

• For the CP class P = EventualC(p1, . . . , pn) that holds at state

s1, bP(s1) = s1, and eP(s1) is the first state sn > s1 in which

the last proposition pn is true and the previous propositions

p2, . . . , pn−1 were true at the corresponding states s2, . . . , sn−1

for which s < s2 < . . . < sn−1 < sn.

• For the CP class P = EventualE(p1, . . . , pn) that holds at state

s, bP(s) is the first state s1 at which the first proposition p1

becomes true, and eP(s) is the first state sn in which the last

proposition pn becomes true.

Now that we have defined the meaning of before and after in the

case of CP, we can give precise definitions of Precedence, S trict

Precedence, and Response with Global scope:

Definition 2. Let P and Q be CP classes. We say that Q precedes

P if once P holds at some state s, then Q also holds at some state

s′ for which eQ(s′) ≤ bP(s). This simply indicates that Q precedes

P iff the ending state of Q is the same as the beginning state of P

or it is a state that happens before the beginning state of P.

Definition 3. Let P and Q be CP classes. We say that Q strictly

precedes P if once P holds at some state s, then Q also holds

at some state s′ for which eQ(s′) < bP(s). This simply indicates

that Q strictly precedes P iff the ending state of Q is a state that

happens before the beginning state of P.

Definition 4. Let P and Q be CP classes. We say that Q responds

to P if once P holds at some state s, then Q also holds at some

state s′ for which bQ(s′) ≥ eP(s). This simply indicates that Q

responds to P iff the beginning state of Q is the same as the ending

state of P or it is a state that follows the ending state of P.

3.1.3. Non-Global Scopes Involving Composite Propositions:

Motivations and Definitions

So far we have discussed patterns within the Global scope. In

this section, we provide a formal definition of the other scopes

described in Section 1.2. We also provide semantics for these pat-

terns.

We start by providing formal definitions of scopes that use CP

as their parameters. These definitions use the notions of beginning

and ending states as defined in Section 3.2.

• For the “Be f ore R”, there is exactly one scope – the interval

[0, bR(s f )), where s f is the first state when R becomes true.

Note that the scope contains the state where the computation

starts, but it does not contain the state associated with bR(s f ).
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Table 2: Description of Patterns Within Scopes

Pattern Description)

Existence We say that there is an existence of P within a scope S if P

s-holds at some state within this scope.

Absence We say that there is an absence of P within a scope S if P never

s-holds at any state within this scope.

Precedence We say that Q precedes P within the scope s if once P s-holds

at some state s, then Q also s-holds at some state s′ for which

eQ(s′) ≤ bP(s).

S trict

Precedence

We say that Q strictly precedes P within the scope s if once P

s-holds at some state s, then Q also s-holds at some state s′ for

which eQ(s′) < bP(s).

Response We say that Q responds to P within the scope s if once P s-holds

at some state s, then Q also s-holds at some state s′ for which

bQ(s′) ≥ eP(s).

• For the scope “A f ter L”, there is exactly one scope – the

interval [eL(s f ),∞), where s f is the first state in which L be-

comes true. This scope, includes the state associated with

eL(s f ).

• For the scope “Between L and R”, a scope is an interval

[eL(sL), bR(sR)), where sL is the state in which L holds and

sR is the first state > eL(sL) when R becomes true. The inter-

val contains the state associated with eL(sL) but not the state

associated with bR(sR).

• For the scope “A f ter L Until R”, in addition to scopes cor-

responding to “Between L and R”, we also allow a scope

[eL(sL),∞), where sL is the state in which L holds and for

which R does not hold at state s > eL(sL).

Using the above definitions of scopes made up of CP, we can

now define what it means for a CP class to hold within a scope.

Definition 5. Let P be a CP class, and let S be a scope. We say

that P s-holds (meaning, P holds in the scope S ) in S if PLT L holds

at state sp ∈ S and eP(sP) ∈ S (i.e. ending state eP(sp) belongs to

the same scope S ).

Table 2 provides a formal description of what it means for a

pattern to hold within a scope.

Now that we have defined what it means for a pattern to hold

within the different types of scopes, we are ready to provide the

LTL description of the five patterns within the scopes (”Be f ore

R”, ”A f ter L”, ”Between L And R”, and ”A f ter L Until R”).

4. Need for New Operators

To describe LTL templates for patterns and scopes with CP

classes, we need to define new “and” operators that will be used to

simplify the specification of the LTL templates described in Sec-

tion 5. While it is still possible to define the LTL templates without

the use of these new operators, their use will result in a signifi-

cantly shorter and more understandable templates.

In non-temporal logic, the formula A∧B simply means that both

A and B are true. In particular, if we consider a non-temporal for-

mula A as a particular case of LTL formulas, then A means simply

that the statement A holds at the given state, and the formula A∧B

means that both A and B hold at this same state.

In general an LTL formula A holds at state s if some “subfor-

mula” of A holds in s and other subformulas hold in other states.

For example, the formula p1∧Xp2 means that p1 holds at the state

s while p2 holds at the state s + 1; the formula p1 ∧ X � p2 means

that p1 holds at state s and p2 holds at some future state s2 > s,

etc. The statement A ∧ B means that different subformulas of A

hold at the corresponding different states but B only holds at the

original state s. For patterns involving CP, we define an “and”

operation that ensures that B holds at all states in which different

subformulas of A hold. For example, for this new “and” operation,

(p1 ∧ Xp2) and B would mean that B holds both at the state s and

at the state s+ 1 (i.e., the correct formula is (p1 ∧ B∧ X(p2 ∧ B))).

Similarly, (p1 ∧ X � p2)and B should mean that B holds both at

state s and at state s2 > s when p2 holds. In other words, we want

to state that at the original state s, we must have p1 ∧ B, and that

at some future state s2 > s, we must have p2 ∧ B. This can be

described as (p1 ∧ B) ∧ X � (p2 ∧ B).

To distinguish this new “and” operation from the original LTL

operation ∧, we will use a different “and” symbol & to describe

this new operation. However, this symbol by itself is not suffi-

cient since people use & in LTL as well; so, to emphasize that our

“and” operation means “and” applied at several different moments

of time, we will use a combination &r of several & symbols.

In addition to the original “and” A∧B which means that B holds

at the original moment of time t and to the new “repeated and”

A &r, B meaning that B holds at all moments of time which are

relevant for the LTL formula A, we define two more operations.

• The new operation A &l B will indicate that B holds at the last

of A-relevant moments of time.

• The new operation A &−l B will indicate that B holds at the

all A-relevant moments of time except for the last one.

In the following text, we give formal definitions of these opera-

tions. Specifically, the definition of &r is given for general LTL

formulas; for &−l and &l, we will only give the definition for the

particular cases needed in our patterns (i.e, in the cases of “and-

ing” two CP classes).

4.1. The New Operator “&r”

Generally, in logic, recursive definitions of a formula lead to

a definition of a subformula – as one of the auxiliary formulas

in the construction of a given formula. Specifically, for our def-

inition of LTL formulas, we have the following definition of an

immediate subformula which leads to the recursive definition of a

subformula.

Definition 6. A formula P is an immediate subformula of the for-

mulas ¬P, P ∨ Q, Q ∨ P, P ∧ Q, Q ∧ P, P→ Q, Q→ P, XP, �P,

�P, P U Q, and Q U P.

Definition 7.

• A formula P is its own subformula.

• If a formula P is an immediate subformula of the formula Q,

then P is a subformula of Q.

• If P is a subformula of Q and Q is a subformula of R, then P

is a subformula of R.
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• Nothing else is a subformula.

Subformulas of a given formula P form a (parse) tree, in which

the formula P is a root, immediate subformulas are children, and

single propositions are leaves. For example, the LTL formula

¬p1 ∧ (¬p1 U p1) (the simplest case of AtLeastOneLT L
E

) has the

following subformula tree:

¬p1 ∧ (¬p1 U p1)

↙↘

¬p1 ¬p1 U p1

↓ ↙↘

p1 ¬p1 p1

↓

p1

Definition 8.

• An LTL formula that does not contain any LTL temporal op-

erations X, �, �, and U, is called a propositional formula.

• A propositional formula P that is a subformula of an LTL

formula Q is called a propositional subformula of Q.

• A formula P is called a maximal propositional subformula of

the LTL formula Q if it is a propositional subformula of Q and

it is not a subformula of any other propositional subformula

of Q.

For example, a formula ¬p1 is a propositional subformula of

the LTL formula (¬p1 ∧ ¬p2) ∧ ((¬p1 ∧ ¬p2) U (p1 ∨ p2)) (an-

other particular case of AtLeastOneLT L
E

) but it is not its maximal

propositional subformula – because it is a subformula of another

propositional subformula ¬p1∧¬p2. On the other hand, ¬p1∧¬p2

is a maximal propositional subformula.

Now, we are ready to formally define the meaning of P &r Q.

Informally, we replace each maximal propositional subformula P′

of the formula P with P′ ∧ Q.

• If P is a propositional formula, then P &r Q is defined as P ∧

Q.

• If P is not a propositional formula, P is of the type ¬R,

and R &r Q is already defined, then P &r Q is defined as

¬(R &r Q).

• If P is not a propositional formula, P is of the type R ∨ R′,

and formulas R &r Q and R′&r Q are already defined, then

P &r Q is defined as (R &r Q) ∨ (R′&r Q).

• If P is not a propositional formula, P is of the type R ∧ R′,

and formulas R &r Q and R′&r Q are already defined, then

P &r Q is defined as (R &r Q) ∧ (R′&r Q).

• If P is not a propositional formula, P is of the type R → R′,

and formulas R &r Q and R′&r Q are already defined, then

P &r Q is defined as (R &r Q)→ (R′&r Q).

• If P is of the type XR, and R &r Q is already defined, then

P &r Q is defined as X(R &r Q).

• If P is of the type �R, and R &r Q is already defined, then

P &r Q is defined as �(R &r Q).

• If P is of the type �R, and R &r Q is already defined, then

P &r Q is defined as �(R &r Q).

• If P is of the type R U R′, and formulas R &r Q and

R′&r Q are already defined, then P &r Q is defined as

(R &r Q) U (R′&r Q).

For example, when P is the formula

(¬p1∧¬p2∧. . .∧¬pn)∧((¬p1∧¬p2∧. . .∧¬pn) U (p1∨p2∨. . .∨pn))

(general case of AtLeastOneLT L
E

), then P &r Q is the formula

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧ Q)∧

((¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧ Q) U ((p1 ∨ p2 ∨ . . . ∨ pn) ∧ Q))

4.2. The New Operators “&−l” and “&l”

While we provided a general definition of the operator &r, we

only define the two new operators “&−1” and “&l”in terms of CP

classes. In other words, we provide definitions for (A &−1 B) and

(A &lB) in the cases where A and B are both CP classes. This

definition does not extend to any A and B such that A and B are

LTL formulas but not CP classes.

Definition 9. the operator “&−l” is defined as follows:

• When P is of the type TC(p1, . . . , pn) or TH(p1, . . . , pn), with

T = Parallel or T = AtLeastOne, then P &−l A is defined as

P ∧ A.

• When P is of the type TC(p1, . . . , pn), with T = Consecutive

or T = Eventual, then P &l A is defined as TC(p1 ∧

A, . . . , pn−1 ∧ A, pn).

• When P is of the type TH(p1, . . . , pn), with T = Consecutive

or T = Eventual, then P &−l A is defined as

TC(p1 ∧ ¬p2 ∧ . . . ∧ ¬pn ∧ A, . . . , pn−1 ∧ ¬pn ∧ A, pn).

• When P is of the type TE(p1, . . . , pn), then P &−l A is defined

as

(¬p1 ∧ . . . ∧ ¬pn ∧ A)∧

((¬p1 ∧ . . . ∧ ¬pn ∧ A) U (TH(p1, . . . , pn) &−lA)).

Definition 10. the operator “&l” is defined as follows:

• When P is of the type TC(p1, . . . , pn) or TH(p1, . . . , pn), with

T = Parallel or T = AtLeastOne, then P &l A is defined as

P ∧ A.

• When P is of the type TC(p1, . . . , pn), with T =

Consecutive or T = Eventual, then P &l A is defined as

TC(p1, . . . , pn−1, pn ∧ A).

• When P is of the type TH(p1, . . . , pn), with T = Consecutive

or T = Eventual, then P &l A is defined as

TC(p1 ∧ ¬p2 ∧ . . . ∧ ¬pn, . . . , pn−1 ∧ ¬pn, pn ∧ A).

• When P is of the type TE(p1, . . . , pn, then P &l A is defined as

(¬p1∧. . .∧¬pn)∧((¬p1∧. . .∧¬pn) U (TH(p1, . . . , pn) &lA)).
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Table 3: Template LTL Formulas for Patterns Within Global Scope

Pattern LTL Formula

Absence o f P �¬PLT L

Existence o f P �PLT L

Q Responds to P �(PLT L → (PLT L &l � QLT L)))

Q S trictly

Precedes PC

¬((¬(QLT L &r ¬PLT L)) U PLT L)

Q S trictly

Precedes PE

¬((¬(QLT L &r ¬(¬p1 ∧ . . .∧¬pn ∧X PLT L
H

))) U (¬p1 ∧ . . .∧

¬pn ∧ X PLT L
H

))

Q Precedes PC∗ ¬((¬QLT L) U (PLT L ∧ ¬QLT L))

Q Precedes PC+ ¬((¬(QLT L &−l ¬PLT L)) U PLT L)

Q Precedes

PE∗

¬((¬(QLT L ∧ ¬(¬p1 ∧ . . .∧¬pn ∧ X PLT L
H

))) U (¬p1 ∧ . . .∧

¬pn ∧ X PLT L
H
∧ ¬QLT L))

Q Precedes

PE+

¬((¬(QLT L &−l ¬(¬p1∧ . . .∧¬pn∧X PLT L
H

))) U (¬p1∧ . . .∧

¬pn ∧ X PLT L
H

))

5. General LTL Formulas for Patterns and Scopes With CP

The previous sections laid the foundation for defining high-level

LTL templates that can be used to define LTL specifications for all

pattern/scope/CP combinations. We provided a clear description

of the meaning of each CP class, as well as the meaning of pattern

and scopes that use CP classes to define their parameters. We also

defined new LTL operators to simplify the LTL templates. This

section provides the high-level LTL Templates for pattern/scope

combinations defined using CP classes. We start by defining the

formulas within the Global and Be f ore R scopes. These formulas

will be used to define the formulas for patterns within the remain-

ing scopes.

It is important to note that in previous work [18] we modified

some of the original LTL formulas for patterns and scopes pro-

vided by the SPS website. The new LTL formulas were shown

to be more efficient for use with model checking. The modified

LTL formulas (which were shown to be equivalent to the origi-

nal SPS formulas) generate fewer states in the Buchi automaton

used by model checkers such as Spin. This reduction in the num-

ber of states result in faster and more efficient model checking of

systems.

5.1. Formulas for Patterns Within Global and Before R

Scopes

Tables 3 and 4 provide the abstract LTL formulas for patterns

within the Global and Be f ore R scopes respectively. Note that the

subscripts C and E attached to each CP indicate whether the CP

class is of type condition or event, respectively. In the case where

no subscript is available, then this indicates that the type of the CP

class is not relevant and that the formula works for both types of

CP classes. Also, in Table 3, the terms PLT L, LLT L, RLT L, QLT L

refer to the LTL formula representing the CP class as described in

Table 1.

Finally, note that there are two LTL templates for

Q Precedes PC , and the Q Precedes PE pattern in Table 3.

The first of these formulas (annotated with the superscript *) Q

is of type AtLeastOneC or ParallelC , while in the other template

(annotated with the superscript +) Q is of types other than

AtLeastOneC or ParallelC .

5.2. Formulas for Patterns Within the Remaining Scopes

Pattern formulas for the scopes “A f ter L”, “Between L And R”,

and “A f ter L Until R” can be generated using the formulas for

the Global and Be f ore R scopes described in Tables 3 and 4. In

this section, we use the symbol PLT L
G

to refer to formulas for the

specific pattern within the Global scope, and we use the symbol

PLT L
<R

to refer to formulas for the specific pattern within the Be f ore

R scope. Table 5 provides description of the abstract LTL formulas

for patterns within the A f ter L, Between L And R, and A f ter L

Until R scopes.

Table 4: LTL Templates for Patterns Within Be f ore R Scope

Pattern LTL Formula)

Absence o f P

Be f ore RC

¬((¬RLT L) U ((PLT L&r¬RLT L)&l � RLT L))

Absence o f P

Be f ore RE

(�RLT L) → ¬((¬((¬r1 ∧ . . . ∧ ¬rn) ∧

X(RLT L
H

))) U (PLT L&r¬RLT L
H

))

Existence o f P

Be f ore RC

¬((¬(PLT L&r¬RLT L)) U RLT L)

Existence o f P

Be f ore RE

(�RLT L)→ ((¬((¬r1∧. . .∧¬rn)∧X(RLT L
H

))) U (PLT L&r¬RLT L
H

))

Q Precedes PC

Be f ore RC

(�RLT L)→ ((¬(PLT L&r¬RLT L)) U ((QLT L&−l¬PLT L)∨ RLT L))

Q Precedes PE

Be f ore RC

(�RLT L)→ ((¬((¬p1∧. . .∧¬pn)∧¬RLT L∧X(PLT L
H

&r¬RLT L)))

U ((QLT L&−l¬(PLT L
H

)) ∨ RLT L))

Q Precedes PC

Be f ore RE

(�RLT L) → (((¬(PLT L&r¬RLT L
H

)) U ((QLT L&−l¬PLT L)∨

((¬r1 ∧ . . . ∧ ¬rn) ∧ XRLT L
H

))))

Q Precedes PE

Be f ore RE

(�RLT L)→ ((¬((¬p1∧. . .∧¬pn)∧¬RLT L
H
∧X(PLT L

H
&r¬RLT L

H
)))

U ((QLT L&−l¬PLT L
H

) ∨ ((¬r1 ∧ . . . ∧ ¬rn) ∧ XRLT L
H

)))

Q S trictly

Precedes PC

Be f ore RC

(�RLT L)→ ((¬(PLT L&r¬RLT L)) U ((QLT L&r¬PLT L) ∨ RLT L))

Q S trictly

Precedes PE

Be f ore RC

(�RLT L)→ ((¬((¬p1∧. . .∧¬pn)∧¬RLT L∧X(PLT L
H

&r¬RLT L)))

U ((QLT L&r¬(PLT L
H

)) ∨ RLT L))

Q S trictly

Precedes PC

Be f ore RE

(�RLT L)→ (((¬(PLT L&r¬RLT L
H

)) U ((QLT L&r¬PLT L)∨ ((¬r1∧

. . . ∧ ¬rn) ∧ XRLT L
H

))))

Q S trictly

Precedes PE

Be f ore RE

(�RLT L)→ ((¬((¬p1∧. . .∧¬pn)∧¬RLT L
H
∧X(PLT L

H
&r¬RLT L

H
)))

U ((QLT L&r¬PLT L
H

) ∨ ((¬r1 ∧ . . . ∧ ¬rn) ∧ XRLT L
H

)))

Q Responds

to P Be f ore RC

¬((¬RLT L) U ((PLT L&r¬RLT L)&l((¬(QLT L&r¬RLT L)) U RLT L)))

Q Responds

to P Be f ore RE

¬((¬((¬r1 ∧ ¬ r2 ∧ . . . ∧ ¬ rn) ∧ X(RLT L
H

)))

U ((PLT L&r¬RLT L
H

)&l((¬(QLT L&r¬RLT L
H

)) U RLT L
H

)))

Table 5: LTL Templates for Patterns Within the Remaining Scopes

Scope LTL Formula

A f ter L ¬((¬LLT L) U (LLT L&l¬P
LT L
G

))

Between L

and RC

�((LLT L&l¬RLT L)→ (LLT L&lP
LT L
<R

))

Between L

and RE

�(LLT L → (LLT L&lP
LT L
<R

))

A f ter L

Until RC

�((LLT L&l¬RLT L)→ (LLT L&l((P
LT L
<R
∧ ((¬ � RLT L)→ PLT L

G
)))))

A f ter L

Until RE

�((LLT L)→ (LLT L&l((P
LT L
<R
∧ ((¬ � RLT L)→ PLT L

G
)))))

The following is an example of how these general LTL formulas

can be used. Let us assume that the desired property can be de-
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scribed by the Response (P,Q) pattern within the Between L and R

scope. In addition, let us assume that L is of type ParallelC (l1, l2),

P is of type ConsecutiveC (p1, p2), Q is of type ParallelC (q1, q2),

and R is of type AtLeastOneC (r1, r2). To get the desired LTL for-

mula for the Response (P,Q) pattern within the Between L and R

scope, we first need to get the formula for this pattern within the

Be f ore R scope (i.e. we need to find PLT L
<R

). The general LTL for-

mula corresponding to this pattern, scope, and CP classes combi-

nation is the one next to last in Table 4. The resulting LTL formula

(PLT L
<R

) for Response (P,Q) Be f ore R is:

¬((¬(r1 ∨ r2)) U (((p1 ∧ (¬(r1 ∨ r2)) ∧ X((p2 ∧ ¬(r1 ∨ r2))

∧(((¬((q1 ∧ q2 ∧ ¬(r1 ∨ r2)))) U (r1 ∨ r2))))))))

We can then use this formula PLT L
<R

to generate the LTL formula

for the Response (P,Q) Between L And R. Using the second gen-

eral LTL formula in Table 5, the resulting formula is:

�((l1 ∧ l2 ∧ ¬(r1 ∨ r2))→ ((l1 ∧ l2 ∧ (PLT L
<R ))))

or

�((l1 ∧ l2 ∧ ¬(r1 ∨ r2))→

((l1∧ l2∧ (¬((¬(r1∨ r2)) U (((p1∧ (¬(r1∨ r2))∧X((p2∧¬(r1∨ r2))

∧(((¬((q1 ∧ q2 ∧ ¬(r1 ∨ r2)))) U (r1 ∨ r2))))))))))))

6. Validation of LTL Templates

This section describes the validation of the defined LTL tem-

plates for all pattern, scope, and CP classes combinations. We use

formal proofs to validate the correctness of the templates for pat-

terns within the Global scope. We introduce a novel approach for

testing the LTL templates for the remaining patterns using model

checking. The smaller number of templates for the Global scope

was the motivating factor in formally proving the correctness of

these templates. On the other hand the larger number of templates

for the remaining scopes meant there was a need for some form of

automated validation technique through testing.

6.1. Formal Proofs of Correctness of Patterns Within Global

Scope

As mentioned above, the formulas for patterns within the

Global scope were verified using formal proofs. The proofs used

the definitions of patterns within the Global scope provided in Sec-

tion 3.

Theorem 1. For every pattern within the Global scope, the corre-

sponding LTL formula is equivalent to the formal definition of the

pattern in first order logic

In order to prove this theorem, it is necessary to prove the cor-

rectness of each of the formulas in Table 3. In this section, we only

show the proof for Q Responds to P. The remaining proofs can

be found in Appendix A. Also note that we consider the proofs of

correctness of the LTL templates for the Existence and Absence

patterns are straightforward and as a result are not shown in this

work.

6.1.1. Theorem 1.1: The LTL formula “�(PLTL
→ (PLTL &l �

QLTL))” is equivalent to the formal definition of the pat-

tern “Q Responds to P” in Global scope.

Proof:

1◦. According to Definition 4, “Q responds to P” means that if

P holds at some moment s, then Q holds at some moment s′ for

which bQ(s′) ≥ eP(s). Formally, we can describe this property as

follows:

∀s (P(s)→ ∃s′ (Q(s′) ∧ bQ(s′) ≥ eP(s))) (3)

We want to prove that this formula is equivalent to the correspond-

ing LTL formula

�(P→ (P &l � Q)) (4)

Comment.. To make the proof more readable, we describe the

LTL formula PLT L corresponding to P simply as P. We already

know that the formulas P and PLT L are equivalent, so from the

logical viewpoint these simplified notations are well justified.

Similarly, we describe the LTL formula QLT L corresponding to

Q simply as Q.

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (4) in terms of quantifiers.

2.1◦. By the definition of the “always” operator �, the formula

�A means that A holds at all moments of time s, i.e., that ∀s A(s).

So, the above formula (4) is equivalent to

∀s (P(s)→ (P &l � Q)(s)) (5)

2.2◦. The connective (A &l B)(s) was defined as meaning that

A holds at the moments s and B holds at the last of A-relevant

moments of time, i.e., at the moment eA(s). Thus, the formula (4)

can be equivalently reformulated as

∀s (P(s)→ (P(s) ∧ (�Q)(eP(s)))). (6)

In this implication, if P(s) holds, then of course P(s) automatically

holds, so we can delete this term from the right-hand side of the

implication and simplify the above formula to

∀s (P(s)→ (�Q)(eP(s))). (7)

2.3◦. By the definition of the “eventually” operator �, the for-

mula �A means that A holds either at the current moment of time s,

or at some later moment of time s′′ > s, i.e., that ∃s′′ (A(s′′)∧ s′′ ≥

s).

Thus, the formula (4) is equivalent to

∀s (P(s)→ ∃s′′ (Q(s′′) ∧ s′′ ≥ eP(s))). (8)

3◦. Since the LTL formula (4) is equivalent to (8), to complete

our proof we only need to prove the equivalence between (3) and

(8).

3.1◦. Let us first prove that (8) implies (3).

Indeed, let us assume that (8) holds, and that P(s) holds for

some moment of time s. Then, the formula (8) implies that for

some s′′ ≥ s, we have Q(s′′) and s′′ ≥ eP(s).
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We have defined bA(s) as the first moment of time ≥ s for which

a certain condition holds. Thus, we always have bA(s) ≥ s.

In particular, we have bQ(s′′) ≥ s′′. From s′′ ≥ eP(s), we can

now conclude that bQ(s′′) ≥ eP(s). Thus, for s′ = s′′, we have

bQ(s′) ≥ eP(s) and Q(s′). So, we have proven the formula (3).

3.2◦. Let us now prove that (3) implies (8).

Indeed, assume that (3) holds, and P(s) holds for some moment

of time s. Then, according to (3), there exists a moment s′ for

which bQ(s′) ≥ eP(s) and Q(s′).

By definition of bA(s), we can easily conclude that the formula

A always holds at the moment bA(s): A(bA(s)). Thus, for s′′ =

bQ(s), we have Q(s′′) and s′′ ≥ eP(s). So, we have proven the

formula (8).

The equivalence is proven and hence Theorem 1.1 is proven.

We use the same approach of using first order logic to prove

the correctness of the remaining seven templates in Table 3. The

remaining proofs are available in Appendix B

6.2. Model Checking-Based Testing of Templates

This section describes a novel approach to validating LTL for-

mulas using model checking for the remaining scopes. While for-

mal proofs were used to validate templates for the Global scope,

this model checking approach was used to validate the remain-

ing templates. We first used this approach in [19] to validate the

correctness of the original LTL formulas for patterns and scope

combinations (with no CP) as defined by SPS and the Prospec

tool [12]. Using the approach we were able to discover some dis-

crepancies in these original formulas[19]. This new approach has

also been used in the teaching of formal specifications and LTL

[22, 23].

Model checking is a formal technique for verifying finite-state

concurrent systems by examining the consistency of the system

against system specifications for all possible executions of the

system. The process of model checking consists of three tasks:

modeling, specification, and verification.

Modeling. The modeling phase consists of converting the

design into a formalism accepted by the model checker. In some

cases, modeling is simply compiling the source code representing

the design. In most cases, however, the limits of time and memory

mean that additional abstraction is required to come up with

a model that ignores irrelevant details. In SPIN, the model is

written in the Promela language [7].

Specification. As part of model checking a system, it is

necessary to specify the system properties to be checked. Proper-

ties are usually expressed in a temporal logic. The use of temporal

logic allows for reasoning about time, which becomes important

in the case of reactive systems. In model checking, specifications

are used to verify that the system satisfies the behavior expressed

by the property.

Verification. Once the system model and properties are

specified, the model checker verifies the consistency of the model

and specification. The model checker relies on building a finite

model of the system and then traversing the system model to

verify that the specified properties hold in every execution of

the model [2, 7]. If there is an inconsistency between the model

and the property being verified, a counter example, in form of

execution trace, is provided to assist in identifying the source of

the error. Figure 1 shows the process of model checking.

Figure 1: Model checking process.

6.2.1. Overview

As opposed to using a model checker like SPIN2 to test the cor-

rectness of the model, the technique described in this section uses

a simple model to test whether an LTL specification holds for a

given trace of computation. A trace of computation is a sequence

of states that depicts the propositions that hold in each state. In

this technique, the model produces a simple finite state automaton

with exactly one possible execution and a small number of states.

The user models a trace of computation by assigning truth val-

ues to the propositions of the LTL formula for a particular state.

For example, a user may examine one or more combinations of the

following: a proposition holds in the first state, a proposition holds

in the last state, a proposition holds in multiple states, a proposi-

tion holds in one state and not the next, an interval (scope) is built,

an interval is not built, and nested intervals exist. This assign-

ment of values is referred to as a test. The user runs SPIN using

the Promela code, the test case, and the LTL specification. Each

run assists the user in validating a formula by checking expected

results against actual results. The simplicity of the model makes

inspection of the result feasible.

6.2.2. Steps for Model Checking-Based Testing

The Promela code consists of a do-loop that begins with the

initial value of i set to zero, and terminates when i reaches a pre-

defined value called limit. Setting limit to the value 20 means that

the model has a total of 20 states starting with the state i0 and

ending with the state i19. The Promela code is given in Figure 2.

The steps for applying the technique are as follows:

1) Insert the simple Promela model into the model checker.

2) Specify the LTL formula to be tested.

3) Use conditions to assign the states in which propositions

from the LTL formula are set to true.

2In this work we use SPIN as the model checker of choice. However the ap-

proach works well with any other model checker including SMV and NuSMV
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#define limit 20

byte i = 0;

active proctype seq( ) {

do

:: (i < limit)→ i = i+1;

:: (i == limit)→ break;

od; }

Figure 2: Promela Code of the Simple Model

The Promela code remains the same in all test cases. In the third

step above, the values of the propositions are set by assigning each

proposition a truth value based on the variable i in the Promela

model. For example, in Test 1 shown in Figure 3, P is true in

the fifth state, and R is true in the eighth state. To assert P in the

fifth state, we set P to be the truth value of the condition (i ==

4) (note that the model starts with i set to zero). Similarly, we

define R by the truth value of the condition (i == 7). Note that for

this test case, P and R are only true in the fifth and eighth states

respectively. However, it is possible to specify for a proposition to

be true in more than one state using the “∨” “or” operator as is the

case for R in Test 2 in Figure 3.

The complete list of test suites for the patterns and scope is

available in [21]. The test suite consists of a set of test cases for

each scope, where a test case is a set of assignments for the propo-

sitions in the LTL formula under test, such that a particular trace

of computation is created. In the following trace of computation:

“- - - Q - - P - - - - R - - - - - - - -”

Q is true in the fourth state, P is true in the seventh state, and R

is true in the twelfth state. Note that each character in the string

represents a state, and a dash (-) implies that none of the propo-

sitions is true at that state. A letter symbol, e.g., Q, P, and R in

this example, denotes that the proposition is true in the designated

state. Displaying more than one letter between parentheses im-

plies that the propositions represented by the letters are valid at

that state. For instance, (PQ) denotes that P and Q both hold in

the same state. It is worth mentioning that the test cases were se-

lected using the equivalence classes and boundary value analysis

testing strategies based on the patterns and scopes.

Test 1 : - - - - P - - R - - - - - - - - - - - Test 2 : - - - - - R - - P - - R - - - - - - - -

Pattern: Existence of P Pattern: Existence of P

Scope: Before R Scope: Before R

Formula: (�R)→ ((¬R)U(P ∧ ¬R)) Formula: (�R)→ ((¬R)U(P ∧ ¬R))

P: (i == 5) P: (i == 8)

R: (i == 8) R: (i == 5 ∨ i == 11)

Expected Result: No violation Expected Result: Violation

Figure 3: Sample Test Cases

6.2.3. Results of Testing

Vela [25] implemented a module in Prospec using the LTL tem-

plates to generate a complete set of LTL formulas for all pattern,

scope, and CP combinations. The LTL templates can generate

LTL formulas for over 34,000 different combinations. Munoz

[14] used the model checking-based testing approach to check

that the intended LTL formulas were generated. The work in [14]

used the equivalence classes and boundary value analysis testing

approaches[5] to generate represented test cases as traces of com-

putations.

Equivalence class analysis partitions possible inputs into classes

from which exemplars can be selected. This approach assumes

that an input from a partition is equally likely to expose an error

as any other input from that partition. For example, the inputs rep-

resenting the following traces of computation, “L - - - P - - -” and

“L - - - - - - P - -”, belong to the same equivalence class for testing

the generated LTL formula for Existence o f P A f ter L; as a result,

only one will need to be tested.

Boundary analysis, on the other hand, works by selecting test

cases to test input limits. For each limit, test cases are created

to execute a value immediately to the left of that limit, a value

immediately to the right of that limit, and a value that is exactly

at that limit. For example, to test the Existence o f P Be f ore R,

we ran the following traces “- - R P - - - -”, “- - P R - - - -”, and “- -

(R P) - - - -”.

The automated test generation algorithm in [14] generated over

3.8 million test cases. Of all the test cases ran to test the implemen-

tation of the LTL templates, 98% matched the expected results. All

the test cases that failed, did so because of mismatched open/close

parenthesis pairs in the implementation of the templates [14].

7. Summary and Future Work

The use of formal methods in software development has shown

potential in increasing the dependability of the developed systems.

With the increased use of formal verification techniques in the

software development, it is important that software engineers are

able to automatically generate complex formal specifications be-

cause of the complexity of defining formal specifications manu-

ally. Furthermore, it is imperative that they have confidence that

the formal specifications accurately reflect the intended meaning

of their properties. SPS and Prospec are example tools that au-

tomatically generate LTL formulas for use in formal verification

tools such as the Spin model checker.

This paper provides formal descriptions of complex formulas

that use composite propositions. In addition, it presents formal

descriptions of the patterns and scopes defined by Dwyer et al.

[3] when using CP classes. Specifically, the paper provides the

following:

• LTL templates that can be used to generate LTL specifications

of properties defined by patterns, scopes, and CP classes.

These templates have been used in the generation of LTL for-

mulas as part of the new Prospec 2.0 tool [9, 25].

• General technique for using first order logic to prove correct-

ness of LTL specifications.

• Novel approach for using model checking for the validation

of LTL formulas against user’s (specifier) initial intent. This

new approach was used to validate the correctness of the LTL

templates and the corresponding LTL formulas [14].

As part of the future work, we intend to provide some form of

graphical presentations of the test cases used to validated the

defined templates. We believe that this will allow the users of

Prospec to validate that the LTL formulas generated by Prospec
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using the above mentioned templates do indeed match the origi-

nal property. Finally, we plan on using the same approach to de-

fine and validate abstract templates for Computation Tree Logic

(CTL), which is another commonly used language for specifying

software properties.
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Appendix A. Remaining Proofs

In this Appendix we provide the proofs of correctness of the

LTL Templates in Table 3.

Theorem 1.2:

The LTL formula

“¬((¬(QLT L &r ¬PLT L)) U PLT L)”

is equivalent to the formal definition of the pattern “Q S trictly

Precedes P” in Global scope for P of type Condition.

Proof:

1◦. According to Definition 10, “Q S trictly Precedes P” means

that if P holds at some moment t, then Q also holds at some mo-

ment t′ for which eQ(t′) < bP(t). Formally, we can describe this

property as follows:

∀s (P(s)→ ∃s′ (Q(s′) ∧ eQ(s′) < bP(s))) (A.1)

We want to prove that this formula is equivalent to the correspond-

ing LTL formula

¬((¬(Q &r ¬P)) U P) (A.2)

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (A.2) in terms of quantifiers.

2.1◦. The LTL formula (A.2) is a negation of the expression

(¬(Q &r ¬P)) U P. (A.3)

By the definition of the “until” operator U, the formula A U B

holds at moment 0 if there exists a moment of time s such that

B(s) holds at this moment of time, and A is true for all previous

moments of time.

So, the auxiliary expression (A.3) means that there exists a mo-

ment s such that P(s) is true and ¬(Q &r ¬P) holds for all the

previous moments of time s′′ < s, i.e., that

∃s (P(s) ∧ ∀s′′ < s¬(Q &r ¬P)(s′′)). (A.4)

12



2.2◦. We have shown that the auxiliary expression (A.3) is

equivalent to the formula (A.4). The LTL formula (A.2) is equiv-

alent to the negation of the auxiliary expression (A.3), hence it is

equivalent to the negation of the formula (A.4).

If we use de Morgan rules to move negation inside the formula,

we conclude that the LTL formula (A.2) is equivalent to the for-

mula

∀s (P(s)→ ∃s′′ < s (Q &r ¬P)(s′′)). (A.5)

2.3◦. Since the LTL formula (A.2) is equivalent to (A.5), to

complete our proof we only need to prove the equivalence between

(A.1) and (A.5).

3◦. Let us first prove that both in the formula (A.1) and in the

formula (A.5), instead of a universal quantifier over s, it is suffi-

cient to only consider the first moment of time sP at which P be-

comes true. In other words, we will prove that the formula (A.1)

is equivalent to

∃s′ (Q(s′) ∧ eQ(s′) < bP(sP)), (A.6)

and the formula (A.5) is equivalent to

∃s′′ < sP (Q &r ¬P)(s′′). (A.7)

3.1◦. Let us first prove that the formula (A.1) is equivalent to

(A.6).

The fact that (A.1) implies (A.6) is straightforward. Indeed,

since the implication (A.1) holds for all moment of time s at which

P holds, it should also hold for the first moment of time sP when

P is true. Thus, (A.1) indeed implies (A.6).

Vice versa, let us assume (A.6) holds, i.e., that there exists a

moment s′ for which Q(s′) holds and eQ(s′) < bP(sP). Let s be

any moment of time at which P holds. Let us show that for this

new moment of time s, we can take the same moment s′ and we

will have Q(s′) holds and eQ(s′) < bP(s).

By our choice of s′, we have Q(s′), so the only thing that re-

mains to prove is that eQ(s′) < bP(s). By definition of sP as the

first moment of time at which P holds, we conclude that sP ≤ s.

Thus, we have bP(sP) ≤ bP(s), so from eQ(s′) < bP(sP) we can

conclude that eQ(s′) < bP(sP) ≤ bP(s) and eQ(s′) < bP(s). The

statement is proven.

3.2◦. Similarly, we can prove that the formula (A.5) is equiva-

lent to (A.7).

4◦. So, to prove our result, it is sufficient to prove that the for-

mula (A.6) is equivalent to (A.7).

4.1◦. Let us first prove that (A.6) implies (A.7).

Indeed, let us assume that the formula (A.6) is true, i.e., that

there exists a s′ for which Q(s′) and eQ(s′) < bP(sP). Since the

composite proposition P is of type condition, it is true at the mo-

ment bP(sP), so bP(sP) = sP. Since eQ(s′) < bP(sP) = sP, all

Q-relevant moments of time, i.e., all moments of time between s′

and eQ(s′), occur before sP. We know that sP is the first moment

of time at which P holds, so in all previous moments of time, P is

false.

Thus, we can conclude that P is false at all Q-relevant moments

of time. Let us now show that (A.7) holds for s′′ = s′. Indeed, by

definition of the new connective &r, the expression Q &r ¬P hold

at a moment s′ if Q holds at this moment s′ (which is true), and

¬P holds at all Q-relevant moments of time, i.e., at all moments

of time between s′ and eQ(s′). So, (A.7) is indeed true.

4.2◦. Let us now prove that (A.7) implies (A.6).

Let us assume that the formula (A.7) is true, i.e., that there ex-

ists a s′′ < sP for which (Q &r ¬P)(s′′), i.e., for which Q(s′′) is

true, and ¬P holds for all Q-relevant moments of time, i.e., for all

moments of time between s′′ and eQ(s′′).

By definition, sP is the first moment of time at which P holds,

so P is false at all moments of time s < sP. In particular, since

s′′ < sP, P is false at all moments of time s ≤ s′′. We have

also shown that P is false at all moments of time between s′′ and

eQ(s′′). Thus, P is false at all moments of time s ≤ eQ(s′′). Since

P is true at the moment sP, this means that this moment sP cannot

precede or be equal to eQ(s′′); thus, eQ(s′′) < sP.

We have already shown that sP = bP(sP), hence eQ(s′′) <

bP(sP). So, we have a moment s′′ at which Q(s′′) and eQ(s′′) <

bP(sP). In other words, for this moment s′′ as s′, the formula (A.6)

holds.

So, (A.7) implies (A.6), and thus, these formulas are indeed

equivalent. The equivalence is proven and hence Theorem 1.2 is

proven.

Theorem 1.3:

The LTL formula

“¬((¬(QLT L &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ X PLT L
H

))) U (¬p1 ∧ . . . ∧

¬pn ∧ X PLT L
H

))”

is equivalent to the formal definition of the pattern “Q S trictly

Precedes P” in Global scope for P of type event.

Proof:

1◦. Let us prove that for the case when P is of type event, the

formula “Q S trictly Precedes P” (expressed by the formula (A.1))

is equivalent to the corresponding LTL formula

¬((¬(Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))) U

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H

)) (A.8)

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (A.8) in terms of quantifiers.

2.1◦. The LTL formula (A.8) is a negation of the expression

(¬(Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H )) U

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H

)). (A.9)

By the definition of the “until” operator U, the formula A U B

holds at moment 0 if there exists a moment of time s such that

B(s) holds at this moment of time, and A is true for all previous

moments of time.

So, the auxiliary expression (A.9) means that there exists a mo-

ment s such that

¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s) (A.10)
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is true and

¬(Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H )) (A.11)

holds for all the previous moments of time s′′ < s, i.e., that

∃s (¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s)∧

∀s′′ < s¬(Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′)). (A.12)

2.2◦. We have shown that the auxiliary expression (A.9) is

equivalent to the formula (A.12). The LTL formula (A.8) is equiv-

alent to the negation of the auxiliary expression (A.9), hence it is

equivalent to the negation of the formula (A.12).

If we use de Morgan rules to move negation inside the formula,

we conclude that the LTL formula (A.8) is equivalent to the for-

mula

∀s ((¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s))→

∃s′′ < s (Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′)). (A.13)

2.3◦. Since the LTL formula (A.8) is equivalent to (A.13), to

complete our proof we only need to prove the equivalence between

(A.1) and (A.13).

3◦. Let us first prove that both in the formula (A.1) and in the

formula (A.13), instead of a universal quantifier over s, it is suf-

ficient to only consider the first moment of time sP at which the

formula (A.10) becomes true. In other words, we will prove that

the formula (A.1) is equivalent to

∃s′ (Q(s′) ∧ eQ(s′) < bP(sP)), (A.14)

and the formula (A.13) is equivalent to

∃s′′ < sP (Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′). (A.15)

3.1◦. Let us first prove that the formula (A.1) is equivalent to

(A.14).

Similarly to the previous proof (of the case when P is of type

condition), we can prove that in the formula (A.1) it is sufficient

to consider the first moment of time fP at which P becomes true.

In other words, we can prove that the formula (A.1) is equivalent

to the formula

∃s′ (Q(s′) ∧ eQ(s′) < bP( fP)), (A.16)

According to the definition of an event P and of the beginning

moment of time bP, the formula P holds at a moment s if at some

moment bP(s) ≥ s, we have

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H )(bP(s)) (A.17)

and all single propositions pi are false for all the moments of time

between s and bP(s). If P holds at s, then this property P is true

for all moments s′ between s and bP(s); for all these moments s′,

the starting point bP(s′) is the same – the moment bP(s).

So, for s = fP, the moment bP( fP) coincides with the first mo-

ment of time sP when the expression (A.10) becomes true. For

this moment, bP(sP) = sP. Thus, the formula (A.1) indeed implies

(A.14), and, moreover, bP(sP) = sP.

Vice versa, let us assume that (A.14) holds, i.e., there exists a

moment s′ for which Q(s′) and eQ(s′) < bP(sP). We have already

proven that bP(sP) = bP( fP), so we have eQ(s′) < bP( fP).

Let s be any moment of time at which P holds. Let us show that

for this new moment of time s, we can take the same moment s′

and we will have Q(s′) holds and eQ(s′) < bP(s).

By our choice of s′, we have Q(s′), so the only thing that re-

mains to prove is that eQ(s′) < bP(s). By definition of fP as the

first moment of time at which P holds, we conclude that fP ≤ s.

Thus, we have bP( fP) ≤ bP(s), so from eQ(s′) < bP( fP) we can

conclude that eQ(s′) < bP( fP) ≤ bP(s) and eQ(s′) < bP(s). The

statement is proven.

3.2◦. Similarly, we can prove that the formula (A.13) is equiva-

lent to (A.15).

4◦. So, to prove our result, it is sufficient to prove that the for-

mula (A.14) is equivalent to (A.15).

4.1◦. Let us first prove that (A.14) implies (A.15).

Indeed, let us assume that the formula (A.14) is true, i.e., that

there exists a s′ for which Q(s′) and eQ(s′) < bP(sP). We have

already mentioned that we have bP(sP) = sP. Since eQ(s′) <

bP(sP) = sP, all Q-relevant moments of time, i.e., all moments

of time between s′ and eQ(s′), occur before sP. We know that sP is

the first moment of time at which (A.10) holds, so in all previous

moments of time, (A.10) is false.

Thus, we can conclude that (A.10) is false at all Q-relevant mo-

ments of time. Let us now show that (A.15) holds for s′′ = s′.

Indeed, by definition of the connective &r, the expression

Q &r ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ) (A.18)

holds at a moment s′ if Q holds at this moment s′ (which is true),

and the negation of (A.10) holds at all Q-relevant moments of

time, i.e., at all moments of time between s′ and eQ(s′). So, (A.15)

is indeed true.

4.2◦. Let us now prove that (A.15) implies (A.14).

Let us assume that the formula (A.15) is true, i.e., that there

exists a s′′ < sP for which Q(s′′) is true, and the negation of (A.10)

holds for all Q-relevant moments of time, i.e., for all moments of

time between s′′ and eQ(s′′).

By definition, sP is the first moment of time at which (A.10)

holds, so (A.10) is false at all moments of time s < sP. In partic-

ular, since s′′ < sP, (A.10) is false at all moments of time s ≤ s′′.

We have also shown that (A.10) is false at all moments of time be-

tween s′′ and eQ(s′′). Thus, (A.10) is false at all moments of time

s ≤ eQ(s′′). Since (A.10) is true at the moment sP, this means

that this moment sP cannot precede or be equal to eQ(s′′); thus,

eQ(s′′) < sP.

Since bP(sP) = sP, we thus have Q(s′′) and eQ(s′′) < bP(sP). In

other words, for this moment s′′ as s′, the formula (A.14) holds.

So, (A.15) implies (A.14), and thus, these formulas are indeed

equivalent. The equivalence is proven and hence Theorem 1.3 is

proven.

Theorem 1.4:

The LTL formula

“¬((¬QLT L) U (PLT L ∧ ¬QLT L))”
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is equivalent to the formal definition of the pattern “Q Precedes

P” in Global scope for P of type condition and Q is of type

AtLeastOneC or ParallelC .

Proof:

1◦. According to Definition 11, “Q Precedes P” means that if

P holds at some moment t, then Q also holds at some moment t′

for which eQ(t′) ≤ bP(t). Formally, we can describe this property

as follows:

∀s (P(s)→ ∃s′ (Q(s′) ∧ eQ(s′) ≤ bP(s))) (A.19)

When Q is of type AtLeastOneC or ParallelC , then Q(s′) means

that bQ(s′) = eQ(s′) = s′. So, the property (A.19) is equivalent to

the following simplified formula

∀s (P(s)→ ∃s′ (Q(s′) ∧ s′ ≤ bP(s))) (A.20)

We want to prove that this formula is equivalent to the corre-

sponding LTL formula

¬((¬Q) U (P ∧ ¬Q)) (A.21)

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (A.21) in terms of quantifiers.

2.1◦. The LTL formula (A.21) is a negation of the expression

(¬Q) U (P ∧ ¬Q) (A.22)

By the definition of the “until” operator U, the formula A U B

holds at moment 0 if there exists a moment of time s such that

B(s) holds at this moment of time, and A is true for all previous

moments of time.

So, the auxiliary expression (A.22) means that there exists a

moment s such that P(s) is true, ¬Q(s) is true, and ¬Q holds for

all the previous moments of time s′′ < s, i.e., that

∃s (P(s) ∧ ¬Q(s) ∧ ∀s′′ < s¬Q(s′′)). (A.23)

2.2◦. We have shown that the auxiliary expression (A.22)

is equivalent to the formula (A.23). The LTL formula (A.21)

is equivalent to the negation of the auxiliary expression (A.22),

hence it is equivalent to the negation of the formula (A.23).

If we use de Morgan rules to move negation inside the formula,

we conclude that the LTL formula (A.21) is equivalent to the for-

mula

∀s (P(s)→ (Q(s) ∨ ∃s′′ < s Q(s′′))). (A.24)

The fact that Q should be true either for the moment s or for some

moment s′′ < s can be described by saying that Q should be true

for some moment s′′ ≤ s:

∀s (P(s)→ ∃s′′ ≤ s Q(s′′)). (A.25)

2.3◦. Since the LTL formula (A.21) is equivalent to (A.25), to

complete our proof we only need to prove the equivalence between

(A.20) and (A.25).

3◦. Similarly to the case of “S trictly Precedes”, one can prove

that both in the formula (A.20) and in the formula (A.25), instead

of a universal quantifier over s, it is sufficient to only consider the

first moment of time sP at which P becomes true. In other words,

the formula (A.20) is equivalent to

∃s′ (Q(s′) ∧ s′ ≤ bP(sP)), (A.26)

and the formula (A.25) is equivalent to

∃s′′ ≤ sP Q(s′′). (A.27)

Indeed, since P is of type C, we have bP(sP) = sP and therefore,

the formulas (A.26) and (A.27) are identical – and hence, equiv-

alent. The equivalence is proven and hence Theorem 1.4 is proven.

Theorem 1.5:

The LTL formula

“¬((¬(QLT L ∧ ¬(¬p1 ∧ . . . ∧ ¬pn ∧ X PLT L
H

))) U (¬p1 ∧ . . . ∧

¬pn ∧ X PLT L
H
∧ ¬QLT L))”

is equivalent to the formal definition of the pattern “Q Precedes

P” in Global scope for P of type event and Q is of type

AtLeastOneC or ParallelC .

Proof:

1◦. Let us prove that for the case when P is of type event,

the formula “Q Precedes P” (expressed by the formula (A.20))

is equivalent to the corresponding LTL formula

¬((¬(Q ∧ ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))) U

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ∧ ¬Q)) (A.28)

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (A.28) in terms of quantifiers.

2.1◦. The LTL formula (A.28) is a negation of the expression

((¬(Q ∧ ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))) U

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ∧ ¬Q)). (A.29)

By the definition of the “until” operator U, the formula A U B

holds at moment 0 if there exists a moment of time s such that

B(s) holds at this moment of time, and A is true for all previous

moments of time.

So, the auxiliary expression (A.29) means that there exists a

moment s such that

¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s) ∧ ¬Q(s) (A.30)

is true and

¬(Q ∧ ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ) ∧ ¬Q(s′′)) (A.31)

holds for all the previous moments of time s′′ < s, i.e., that

∃s (¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s) ∧ ¬Q(s)∧

∀s′′ < s¬(Q∧¬(¬p1∧ . . .∧¬pn∧XPLT L
H ∧¬Q))(s′′)).(A.32)
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2.2◦. We have shown that the auxiliary expression (A.29)

is equivalent to the formula (A.32). The LTL formula (A.28)

is equivalent to the negation of the auxiliary expression (A.29),

hence it is equivalent to the negation of the formula (A.32).

If we use de Morgan rules to move negation inside the formula,

we conclude that the LTL formula (A.28) is equivalent to the for-

mula

∀s ((¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s))→

Q(s)∨∃s′′ < s (Q(s′′)∧¬(¬p1∧. . .∧¬pn∧XPLT L
H ))(s′′)).(A.33)

If Q(s) is true, then, since (¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H

)(s))

holds, we have

Q(s) ∧ ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H )(s). (A.34)

Thus, in the formula (A.33), we can combine the cases Q(s) and

s′′ < s into a single case s′′ ≤ s:

∀s ((¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s))→

∃s′′ ≤ s (Q(s′′) ∧ ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′)). (A.35)

2.3◦. Since the LTL formula (A.28) is equivalent to (A.35), to

complete our proof we only need to prove the equivalence between

(A.29) and (A.35).

For the case of “S trictly Precedes”, we have proven a similar

equivalence, with the only difference that there we had < instead

of ≤. One can similarly show that the same equivalence holds for

≤ as well. The equivalence is proven and hence Theorem 1.5 is

proven.

Theorem 1.6:

The LTL formula

The LTL formula “¬((¬(QLT L &−l ¬PLT L)) U PLT L)”

is equivalent to the formal definition of the pattern “Q Precedes

P” in Global scope for P of type condition and Q is of types other

than AtLeastOneC or ParallelC .

Proof:

1◦. We need to prove that the first order formula (A.19) is equiv-

alent to the corresponding LTL formula

¬((¬(Q &−l ¬P)) U P) (A.36)

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (A.36) in terms of quantifiers.

2.1◦. The LTL formula (A.36) is a negation of the expression

(¬(Q &−l ¬P)) U P. (A.37)

By the definition of the “until” operator U, the formula A U B

holds at moment 0 if there exists a moment of time s such that

B(s) holds at this moment of time, and A is true for all previous

moments of time.

So, the auxiliary expression (A.37) means that there exists a

moment s such that P(s) is true and ¬(Q &−l ¬P) holds for all the

previous moments of time s′′ < s, i.e., that

∃s (P(s) ∧ ∀s′′ < s¬(Q &−l ¬P)(s′′)). (A.38)

2.2◦. We have shown that the auxiliary expression (A.37)

is equivalent to the formula (A.38). The LTL formula (A.36)

is equivalent to the negation of the auxiliary expression (A.37),

hence it is equivalent to the negation of the formula (A.38).

If we use de Morgan rules to move negation inside the formula,

we conclude that the LTL formula (A.36) is equivalent to the for-

mula

∀s (P(s)→ ∃s′′ < s (Q &−l ¬P)(s′′)). (A.39)

2.3◦. Since the LTL formula (A.36) is equivalent to (A.39), to

complete our proof we only need to prove the equivalence between

(A.19) and (A.39).

3◦. Similarly to the case of “S trictly Precedes”, we can prove

that both in the formula (A.19) and in the formula (A.39), instead

of a universal quantifier over s, it is sufficient to only consider the

first moment of time sP at which P becomes true. In other words,

the formula (A.19) is equivalent to

∃s′ (Q(s′) ∧ eQ(s′) ≤ bP(sP)), (A.40)

and the formula (A.39) is equivalent to

∃s′′ < sP (Q &−l ¬P)(s′′). (A.41)

4◦. So, to prove our result, it is sufficient to prove that the for-

mula (A.40) is equivalent to (A.41).

4.1◦. Let us first prove that (A.40) implies (A.41).

By definition of the new connective &−l, the property A &−l B

holds at the moment s if A holds at this moment s and B holds at

all A-relevant moments of time with the possible exception of the

last moment eA(s). In other words, B should hold at all moments

of time s′′ from s (included) to eA(s) (excluded): s ≤ s′′ < eA(s).

Let us assume that the formula (A.40) is true, i.e., that there ex-

ists a s′ for which Q(s′) and eQ(s′) ≤ bP(sP). Since the composite

proposition P is of type condition, it is true at the moment bP(sP),

so bP(sP) = sP. Since eQ(s′) ≤ bP(sP) = sP, all moments of time

s′′ for which s′ ≤ s′′ < eP(s′), occur before sP. We know that

sP is the first moment of time at which P holds, so in all previous

moments of time, P is false.

Thus, we can conclude that Q is true at s′ and that P is false at

all moments of time t for which s′ ≤ t < eQ(s′). By definition of

&−l, this means that Q &−l ¬P holds at the moment s′. So, (A.41)

is indeed true.

4.2◦. Let us now prove that (A.41) implies (A.40).

Let us assume that the formula (A.41) is true, i.e., that there

exists a s′′ < sP for which (Q &−l ¬P)(s′′), i.e., for which Q(s′′) is

true, and ¬P holds for all moments of time t for which s′′ ≤ t <

eQ(s′′).

By definition, sP is the first moment of time at which P holds,

so P is false at all moments of time s < sP. In particular, since

s′′ < sP, P is false at all moments of time s ≤ s′′. We have also

shown that P is false at all moments of time t for which s′′ ≤ t <

eQ(s′′). Thus, P is false at all moments of time s < eQ(s′′). Since

P is true at the moment sP, this means that this moment sP cannot

precede eQ(s′′); thus, eQ(s′′) ≤ sP.

16



We have already shown that sP = bP(sP), hence eQ(s′′) ≤

bP(sP). So, we have a moment s′′ at which Q(s′′) and eQ(s′′) ≤

bP(sP). In other words, for this moment s′′ as s′, the formula

(A.40) holds.

So, (A.41) implies (A.40), and thus, these formulas are indeed

equivalent. The equivalence is proven and hence Theorem 1.6 is

proven.

Theorem 1.7:

The LTL formula

“¬((¬(QLT L &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ X PLT L
H

))) U (¬p1 ∧ . . . ∧

¬pn ∧ X PLT L
H

))”

is equivalent to the formal definition of the pattern “Q Precedes

P” in Global scope for P of type event and Q is of types other

than AtLeastOneC or ParallelC .

Proof:

1◦. Let us prove that for the case when P is of type event,

the formula “Q Precedes P” (expressed by the formula (A.19))

is equivalent to the corresponding LTL formula

¬((¬(Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))) U

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H )) (A.42)

2◦. To prove the desired equivalence, let us first reformulate the

LTL formula (A.42) in terms of quantifiers.

2.1◦. The LTL formula (A.42) is a negation of the expression

(¬(Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))) U

(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ). (A.43)

By the definition of the “until” operator U, the formula A U B

holds at moment 0 if there exists a moment of time s such that

B(s) holds at this moment of time, and A is true for all previous

moments of time.

So, the auxiliary expression (A.43) means that there exists a

moment s such that

¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s) (A.44)

is true and

¬(Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H )) (A.45)

holds for all the previous moments of time s′′ < s, i.e., that

∃s ((¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s))∧

∀s′′ < s¬(Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′)). (A.46)

2.2◦. We have shown that the auxiliary expression (A.43)

is equivalent to the formula (A.46). The LTL formula (A.42)

is equivalent to the negation of the auxiliary expression (A.43),

hence it is equivalent to the negation of the formula (A.46).

If we use de Morgan rules to move negation inside the formula,

we conclude that the LTL formula (A.42) is equivalent to the for-

mula

∀s ((¬p1(s) ∧ . . . ∧ ¬pn(s) ∧ (XPLT L
H )(s))→

∃s′′ < s (Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′)). (A.47)

2.3◦. Since the LTL formula (A.42) is equivalent to (A.47), to

complete our proof we only need to prove the equivalence between

(A.19) and (A.47).

3◦. Similarly to the “S trictly Precedes” case, we can prove that

both in the formula (A.19) and in the formula (A.47), instead of a

universal quantifier over s, it is sufficient to only consider the first

moment of time sP at which the formula (A.44) becomes true. In

other words, we will prove that the formula (A.19) is equivalent to

∃s′ (Q(s′) ∧ eQ(s′) ≤ bP(sP)), (A.48)

and the formula (A.47) is equivalent to

∃s′′ < sP (Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ))(s′′). (A.49)

4◦. So, to prove our result, it is sufficient to prove that the for-

mula (A.48) is equivalent to (A.49).

4.1◦. Let us first prove that (A.48) implies (A.49).

Indeed, let us assume that the formula (A.48) is true, i.e., that

there exists a s′ for which Q(s′) and eQ(s′) ≤ bP(sP). We have

already mentioned that we have bP(sP) = sP. Since eQ(s′) ≤

bP(sP) = sP, all moments of time t for which s′ ≤ t < eQ(s′)

occur before sP. We know that sP is the first moment of time at

which (A.44) holds, so in all previous moments of time, (A.44) is

false.

Let us now show that (A.49) holds for s′′ = s′. Indeed, by

definition of the connective &−l, the expression

Q &−l ¬(¬p1 ∧ . . . ∧ ¬pn ∧ XPLT L
H ) (A.50)

holds at a moment s′ if Q holds at this moment s′ (which is true),

and the negation of (A.44) holds at all moments of time t for which

s′ ≤ t < eQ(s′). So, (A.49) is indeed true.

4.2◦. Let us now prove that (A.49) implies (A.48).

Let us assume that the formula (A.49) is true, i.e., that there

exists a s′′ ≤ sP for which Q(s′′) is true, and the negation of (A.44)

holds for all moments of time t for which s′′ ≤ t < eQ(s′′).

By definition, sP is the first moment of time at which (A.44)

holds, so (A.44) is false at all moments of time s < sP. In partic-

ular, since s′′ ≤ sP, (A.44) is false at all moments of time s < s′′.

We have also shown that (A.44) is false at all moments of time t

for which s′′ ≤ t < eQ(s′′). Thus, (A.44) is false at all moments of

time s < eQ(s′′). Since (A.44) is true at the moment sP, this means

that this moment sP cannot precede eQ(s′′); thus, eQ(s′′) ≤ sP.

Since bP(sP) = sP, we thus have Q(s′′) and eQ(s′′) ≤ bP(sP). In

other words, for this moment s′′ as s′, the formula (A.48) holds.

So, (A.49) implies (A.48), and thus, these formulas are indeed

equivalent. The equivalence is proven and hence Theorem 1.7 is

proven.

By proving theorems 1.1 to 1.7 we have proven Theorem 1,

which is the main Theorem in this paper.
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