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Interval or Moments: Which Carry More Information?
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Abstract In many practical situations, we do not have
enough observations to uniquely determine the corre-
sponding probability distribution, we only have enough

observations to estimate two parameters of this dis-
tribution. In such cases, the traditional statistical ap-
proach is to estimate the mean and the standard de-

viation. Alternatively, we can estimate the two bounds
that form the range of the corresponding variable and
thus, generate an interval. Which of these two ap-

proaches should we select? A natural idea is to select the
most informative approach, i.e., an approach in which
we need the smallest amount of additional information

to obtain the full information about the situation. In
this paper, we follow this idea and come up with the
following conclusion: in practical situations in which a

95% confidence level is sufficient, interval bounds are
more informative; however, in situations in which we
need higher confidence, the moments approach is more

informative.
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1 Formulation of the Problem

It is important to take measurement uncertainty into
account. Most information about the physical world

comes either directly from measurements, or by pro-
cessing measurement results.

Because of the importance of measurement results,
it is extremely important to take into account that the
result x̃ of measuring a quantity x is, in general, dif-

ferent from the actual (unknown) value of this quan-
tity. In other words, we need to take into account
that, in general, we have a non-zero measurement error

∆x
def
= x̃− x; see, e.g., Rabinovich (2005).

How to get information about measurement uncer-
tainty. A usual way to get information about the mea-
surement uncertainty of a given measuring instrument

(MI) is to calibrate this MI, i.e., to perform several mea-
surements of the same quantity (or quantities) with this
MI and with a much more accurate MI that serves as

a “standard” (Rabinovich (2005)). Since the standard
MI has much higher accuracy than our MI, the value
x̃s obtained by this standard MI is much closer to the

actual value x that the original measurement result x̃.
Since |x̃s − x| ≪ |x̃− x|, we have ∆x = x̃− x ≈ x̃s − x̃.
Thus, the difference x̃s − x̃ between the measurement

results can serve as a good approximation for the (un-
known) measurement error ∆x.

How to describe measurement uncertainty: ideal case.
The more information we have about the measurement

error ∆x, the better. Ideally, it is desirable to know, for
each measuring instrument, which value ∆x are pos-
sible, and what is the frequency with which different

possible values of ∆x occur. In precise terms, ideally,
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we would like to know the probability distribution on

the set of all possible values ∆x.

Practical limitations. Real-life measuring instruments
have different probability distributions, often non-

Gaussian; see, e.g., Novitskii et al. (1991); Orlov
(1991). To exactly describe the corresponding distribu-
tion, we need to know the values of several parameters

describing this distribution.
The more parameters we need to determine, the

more observations we need to determine the values of

all these parameters (Sheskin (2007)). In practice, it
is rarely possible to have many calibrations, so usually,
we can determine two parameters; see, e.g., Rabinovich

(2005).

Which two parameters should we select: interval or mo-

ments? Usually, the parameters that we select are:

– either the first two moments of the distribution (or,
equivalently, the mean E and the standard devia-
tion σ),

– or the smallest and the largest values, i.e., the range
[x, x] of possible values.

Crudely speaking, moments correspond to the statis-

tical approach to uncertainty, while the range corre-
sponds to the interval approach to uncertainty; see, e.g.,
Jaulin et al. (2001); Moore (2009).

Which of the approaches should we choose?

What we do in this paper. There have been attempts
to analyze the above problem in different practical sit-

uations; see, e.g., Beer et al. (2011). In this paper,
we answer this question in the general context, by an-
alyzing which of these two approaches contains more

information.
Before we answer this question, we need to recall

how the amount of information is usually gauged.

2 How to Gauge Amount of Information: A

Brief Reminder

General idea. The traditional Shannon’s notion of the

amount of information is based on defining information
as the (average) number of “yes”-“no” (binary) ques-
tions that we need to ask so that, starting with the

initial uncertainty, we will be able to completely deter-
mine the object.

After each binary question, we can have 2 possible

answers. So, if we ask q binary questions, then, in prin-
ciple, we can have 2q possible results. Thus, if we know
that our object is one of n objects, and we want to

uniquely pinpoint the object after all these questions,

then we must have 2q ≥ n. In this case, the smallest

number of questions is the smallest integer q that is
≥ log2(n). This smallest number is called a ceiling and
denoted by ⌈log2(n)⌉.

For discrete probability distributions, we get the
standard formula for the average number of questions
−
∑
pi · log2(pi). For the continuous case, we can esti-

mate the average number of questions that are needed
to find an object with a given accuracy ε – i.e., divide
the whole original domain into sub-domains of radius ε

and diameter 2ε.

For example, if we start with an interval [a, b] of
width b− a, then we need to subdivide it into

n ∼ b− a

2ε

sub-domains, so we must ask

log2(n) ∼ log2(b− a)− log2(ε)− 1

questions. In the limit, the term that does not depend
on ε leads to log2(b − a). For continuous probability

distributions, we get the standard Shannon’s expression
log2(n) ∼ S − log2(2ε), where

S = −
∫
ρ(x) · log2 ρ(x) dx.

Let us describe this idea in more detail.

Discrete case: no information about probabilities Let us
start with the simplest situation when we know that we
have n possible alternatives A1, . . . , An, and we have no

information about the probability (frequency) of dif-
ferent alternatives. Let us show that in this case, the
smallest number of binary questions that we need to

determine the alternative is indeed q
def
= ⌈log2(n)⌉.

We have already shown that the number of ques-
tions cannot be smaller than ⌈log2(n)⌉; so, to complete
the derivation, we need to show that it is sufficient to

ask q questions.

Indeed, let’s enumerate all n possible alternatives
(in arbitrary order) by numbers from 0 to n − 1, and

write these numbers in the binary form. Using q binary
digits, one can describe numbers from 0 to 2q−1. Since
2q ≥ n, we can describe each of the n numbers by us-

ing only q binary digits. So, to uniquely determine the
alternative Ai out of n given ones, we can ask the fol-
lowing q questions: “is the first binary digit 0?”, “is the

second binary digit 0?”, etc, up to “is the q-th digit 0?”.



Interval or Moments: Which Carry More Information? 3

Case of a discrete probability distribution. Let us now

assume that we also know the probabilities p1, . . . , pn of
different alternatives A1, . . . , An. If we are interested in
an individual selection, then the above arguments show

that we cannot determine the actual alternative by us-
ing fewer than log2(n) questions. However, if we have
many (N) similar situations in which we need to find

an alternative, then we can determine allN alternatives
by asking ≪ N · log2(n) binary questions.

To show this, let us fix i from 1 to n, and estimate
the number of events Ni in which the output is i.

This number Ni is obtained by counting all the
events in which the output was i, so

Ni = ni1 + ni2 + . . .+ niN ,

where nk equals to 1 if in k-th event the output is i
and 0 otherwise. The average E(nik) of nik equals to
pi ·1+(1−pi)·0 = pi. The mean square deviation σ[nik]

is determined by the formula

σ2[nik] = pi · (1− E(nik))
2 + (1− pi) · (0− E(nik))

2.

If we substitute here E(nik) = pi, we get σ2[nik] =

pi · (1 − pi). The outcomes of all these events are con-
sidered independent, therefore nik are independent ran-
dom variables. Hence the average value of Ni equals to

the sum of the averages of nik:

E[Ni] = E[ni1] + E[ni2] + . . .+ E[niN ] = N · pi.

The mean square deviation σ[Ni] satisfies a likewise

equation

σ2[Ni] = σ2[ni1] + σ2[ni2] + . . . = N · pi · (1− pi),

so σ[Ni] =
√
pi · (1− pi) ·N .

For big N the sum of equally distributed indepen-

dent random variables tends to a Gaussian distribution
(the well-known Central Limit Theorem), therefore for
big N , we can assume that Ni is a random variable

with a Gaussian distribution. Theoretically a random
Gaussian variable with the average a and a standard
deviation σ can take any value. However, in practice,

if, e.g., one buys a voltmeter with guaranteed 0.1V stan-
dard deviation, and it gives an error 1V, it means that
something is wrong with this instrument. Therefore it

is assumed that only some values are practically possi-
ble. Usually a “k-sigma” rule is accepted that the real
value can only take values from a− k0 · σ to a+ k0 · σ,
where k0 is 2, 3, or 4. So in our case we can conclude
that Ni lies between N · pi − k0 ·

√
pi · (1− pi) ·N and

N ·pi+k0 ·
√
pi · (1− pi) ·N . Now we are ready for the

formulation of Shannon’s result.

Remark 1 In this quality control example, the choice of

the parameter k0 matters, but, as we’ll see, in our case
the results do not depend on k0 at all.

Definition 1

– Let a real number k > 0 and a positive integer n
be given. The number n is called the number of out-
comes.

– By a probability distribution, we mean a sequence
{pi} of n real numbers, pi ≥ 0,

∑
pi = 1. The value

pi is called a probability of i-th event.

– Let an integer N is given; it is called the number of
events.

– By a result of N events we mean a sequence rk,

1 ≤ k ≤ N of integers from 1 to n. The value rk is
called the result of k-th event.

– The total number of events that resulted in the i-th

outcome will be denoted by Ni.
– We say that the result of N events is consistent with

the probability distribution {pi} if for every i, we

have N · pi − k0 · σi ≤ Ni ≤ N + k0 · σi, where

σi
def
=

√
pi · (1− pi) ·N.

– Let’s denote the number of all consistent results by
Ncons(N).

– The number ⌈log2(Ncons(N))⌉ will be called the

number of questions, necessary to determine the re-
sults of N events and denoted by Q(N).

– The fraction
Q(N)

N
will be called the average num-

ber of questions.
– The limit of the average number of questions when

N → ∞ will be called the information.

Proposition 1 When the number of events N tends to
infinity, the average number of questions tends to

S(p)
def
= −

∑
pi · log2(pi).

Remark 2

– This Shannon’s result says that if we know the prob-
abilities of all the outputs, then the average number

of questions that we have to ask in order to get a
complete knowledge equals to the entropy of this
probabilistic distribution.

– As we promised, this average number of questions
does not depend on the threshold k0.

– Since we somewhat modified Shannon’s definitions,

we cannot use the original Shannon’s proof. For
reader’s convenience, a new proof (first presented
in Kreinovich et al. (2010)) is reproduced in the

Proofs section.
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Case of a continuous probability distribution. After a

finite number of “yes”-“no” questions, we can only dis-
tinguish between finitely many alternatives. If the ac-
tual situation is described by a real number, then, since

there are infinitely many different possible real num-
bers, after finitely many questions, we can only get an
approximate value of this number.

Once we fix the accuracy ε > 0, we can talk about
the number of questions that are necessary to determine
a number x with this accuracy ε, i.e., to determine an

approximate value r for which |x− r| ≤ ε.

Once an approximate value r is determined, possible

actual values of x form an interval [r−ε, r+ε] of width
2ε. Vice versa, if we have located x on an interval [x, x]
of width 2ε, this means that we have found x with the

desired accuracy ε: indeed, as an ε-approximation to x,

we can then take the midpoint
x+ x

2
of the interval

[x, x].

Thus, the problem of determining x with the ac-
curacy ε can be reformulated as follows: we divide

the real line into intervals [xi, xi+1] of width 2ε (so
that xi+1 = xi + 2ε), and by asking binary questions,
find the interval that contains x. As we have shown,

for this problem, the average number of binary ques-
tion needed to locate x with accuracy ε is equal to
S = −

∑
pi · log2(pi), where pi is the probability that

x belongs to i-th interval [xi, xi+1].

In general, this probability pi is equal to∫ xi+1

xi
ρ(x) dx, where ρ(x) is the probability distribu-

tion of the unknown values x. For small ε, we have
pi ≈ 2ε · ρ(xi), hence log2(pi) = log2(ρ(xi)) + log2(2ε).
Therefore, for small ε, we have

S = −
∑

ρ(xi) · log2(ρ(xi)) ·2ε−
∑

ρ(xi) ·2ε · log2(2ε).

The first sum in this expression is the integral sum for
the integral

S(ρ)
def
= −

∫
ρ(x) · log2(x) dx

(this integral is called the entropy of the probability
distribution ρ(x)); so, for small ε, this sum is approx-

imately equal to this integral (and tends to this in-
tegral when ε → 0). The second sum is a constant
log2(2ε) multiplied by an integral sum for the interval∫
ρ(x) dx = 1. Thus, for small ε, we have

S ≈ −
∫
ρ(x) · log2(x) dx− log2(2ε).

So, the average number of binary questions that are
needed to determine x with a given accuracy ε, can be
determined if we know the entropy of the probability

distribution ρ(x).

Partial information about probability distribution: dis-

crete case. In many real-life situations, as we have men-
tioned, instead of having complete information about
the probabilities p = (p1, . . . , pn) of different alter-

natives, we only have partial information about these
probabilities – i.e., we only know a set P of possible
values of p.

If it is possible to have p ∈ P and p′ ∈ P , then it
is also possible that we have p with some probability
α and p′ with the probability 1 − α. In this case, the

resulting probability distribution α · p + (1 − α) · p′ is
a convex combination of p and p′. Thus, it it reason-
able to require that the set P contains, with every two

probability distributions, their convex combinations –
in other words, that P is a convex set; see, e.g., (Walley
1991).

Definition 2

– By a probabilistic knowledge, we mean a convex set
P of probability distributions.

– We say that the result of N events is consistent with
the probabilistic knowledge P if this result is consis-
tent with one of the probability distributions p ∈ P .

– Let’s denote the number of all consistent results by
Ncons(N).

– The number ⌈log2(Ncons(N))⌉ will be called the

number of questions, necessary to determine the re-
sults of N events and denoted by Q(N).

– The fraction
Q(N)

N
will be called the average num-

ber of questions.
– The limit of the average number of questions when
N → ∞ will be called the information.

Definition 3 By the entropy S(P ) of a probabilistic

knowledge P , we mean the largest possible entropy

among all distributions p ∈ P ; S(P )
def
= max

p∈P
S(p).

Proposition 2 When the number of events N tends
to infinity, the average number of questions tends to
the entropy S(P ).

Remark 3 This proposition was also first proved in

Kreinovich et al. (2010); its proof is reproduced in the
Proofs section.

Partial information about probability distribution: con-

tinuous case. In the continuous case, we also often en-
counter situations in which we only have partial in-
formation about the probability distribution; one such

case is the case of p-boxes. In such situations, instead
of a knowing the exact probability distribution ρ(x),
we only know a (convex) class P that contains the (un-

known) distribution.
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In such situations, we can similarly ask about the

average number of questions that are needed to deter-
mine x with a given accuracy ε.

Once we fix an accuracy ε and a subdivision of the

real line into intervals [xi, xi+1] of width 2ε, we have
a discrete problem of determining the interval contain-
ing x. Due to Proposition 1, for this discrete problem,

the average number of “yes”-“no” questions is equal
to the largest entropy S(p) among all the correspond-
ing discrete distributions pi =

∫ xi+1

xi
ρ(x) dx. As we

have mentioned, for small ε, S(p) ∼ S(ρ) − log2(2ε),
where S(ρ) = −

∫
ρ(x) · log2(ρ(x)) dx is the entropy

of the corresponding continuous distribution. Thus, the

largest discrete entropy S(p) comes from the distribu-
tion ρ(x) ∈ P for which the corresponding (continuous)
entropy S(ρ) attains the largest possible value.

3 Analysis of the Problem

A problem: reminder. We want to find out which of the
two representations is more informative: a representa-

tion by the first two moments (or, equivalently, by the
mean E and standard deviation σ) and a representa-
tion by an interval [x, x]. For both representations, in

order to uniquely determine the actual value x, we need
to gather additional information. So, in which of these
two representations do we need to gather more infor-

mation?

Toward a reformulation of the problem in precise terms.
As we have mentioned in the previous section, the

amount of information can be naturally gauged by the
average number of questions that we need to ask to
determine the actual situation.

According to the above results, once we know the
class P of possible probability distributions, this aver-
age number of questions S(P ) can be determined as

the largest entropy S(ρ) of all probability distributions
ρ from the given class P .

So, to answer our question, it is sufficient to compare

the values S(P ) corresponding to the two representa-
tions.

To make a comparison, we need to relate the bounds

x and x with the values E and σ. In the case of normal
distribution, with confidence 95%, the actual value of
the random variable x is contained in the confidence

interval [E − 2σ,E + 2σ]. With confidence 99.9%, the
actual value is contained in the interval [E−3σ,E+3σ].
With confidence 1−10−8, the actual value is in the six-

sigma interval [E − 6σ,E + 6σ]; see, e.g., Rabinovich
(2005); Sheskin (2007). Thus, it makes sense to con-
sider an interval [E− k0 ·σ,E+ k0 ·σ], for some appro-

priate value k0.

In many practical problems, the two-sigma level of

confidence is reasonable. The corresponding 5% level is
a threshold that is used in many practical applications
– to decide when a new medicine is better than the

previous one, to decide whether the new medicine or,
more generally, a new strategy has an effect, to decide
whether a new theory is confirmed by observations, etc.;

see, e.g., Sheskin (2007).

However, there are problems in which a higher level
of confidence is needed. For example, in a manned
spaceflight, when a minor technical problem can lead

to a disaster, we need at least 3σ level corresponding to
< 0.1% probability of errors. In chip design, the confi-
dence in individual chip elements should be even higher:

the reliability of computer means that all the cells are
reliable, and to make sure that all millions of cells work
correctly, we need to make sure that the probability of

failure of an individual cell is ≪ 10−6. In such situa-
tions, the six-sigma level of confidence is used.

For Gaussian distributions, it makes sense to take
k0 = 2, k0 = 3, or k0 = 6, depending on the confi-

dence level with which we want to bound the possible
values. As we have mentioned, in practice, the distribu-
tion is often non-Gaussian. In this case, we may have

heavy tails, i.e., distributions for which the probability
of high deviations is much larger than for the Gaussian
distribution. In this case, to cover all possible values of

x with a given confidence, we need to consider larger
values k0.

Now, we are ready to perform the necessary compu-
tations.

Remark 4 When we look for the distribution with the

largest entropy in a given class, a natural way to find
the largest value is to differentiate the expression for the
entropy and to equate the corresponding derivative to

0. From this viewpoint, instead of the binary logarithms
log2(x), it is more convenient to use natural logarithms
ln(x), because the natural logarithm is easier to differ-

entiate: its derivative is
1

x
. Since log2(x) =

ln(x)

ln(2)
, these

two logarithms – and thus, the corresponding values of
entropy – differ by a constant factor. When we compare

two entropies, multiplying both by a positive constant
does not change which one is better. With this in mind,
in the following text, we will use a version of Shannon’s

entropy that uses natural logarithms.

Estimating S(P ): interval case. Let us start with the

interval case, when all we know is that the actual value
x belongs to the interval [x, x] = [E−k0 ·σ,E+k0 ·σ]. In
this case, the class P consists of all possible probability

distributions ρ(x) which are located on this interval,
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i.e., for which ρ(x) = 0 for all values x outside this

interval.
It is known that in this class, the distribution ρ with

the largest entropy S(ρ) is the uniform distribution; see,

e.g., Jaynes (2003).
Indeed, we need to maximize the entropy S(ρ) =

−
∫
ρ(x) · ln(ρ(x)) dx under the constraints ρ(x) ≥ 0

and
∫
ρ(x) dx = 1. The unknown here are the values

ρ(x) corresponding to different points x. We can use
Lagrange multiplier method to reduce the constraint

optimization problem to the unconstrained optimiza-
tion problem of maximizing the combination

−
∫
ρ(x) · ln(ρ(x)) dx+ λ ·

(∫
ρ(x) dx− 1

)
for an appropriate value λ. Differentiating this objec-

tive function with respect to ρ(x) and equating the
derivative to 0, we get − ln(ρ(x)) − 1 + λ = 0, hence
ln(ρ(x)) = 1−λ and ρ(x) = exp(1−λ). This value is the
same for all x, so this is indeed a uniform distribution.

From the condition
∫ x

x
ρ(x) dx = 1 (that the total

probability is 1) we conclude that (x − x) · ρ(x) = 1,

hence ρ(x) =
1

x− x
. For this probability distribution,

the entropy has the form

−
∫ x

x

ρ(x) · ln(ρ(x)) =
∫ x

x

1

x− x
· ln(x− x) dx =

(x− x) · 1

x− x
· ln(x− x) = ln(x− x).

Describing the range in terms of E and σ, we conclude
that in the interval case,

Sint(P ) = ln(2 · k0 · σ) = ln(σ) + ln(2 · k0).

Estimating S(P ): case of moments. In the moments
case, the class P consists of all probability distributions

with given first and second moments E =
∫
x · ρ(x) dx

and M = E2 + σ2 =
∫
x2 · ρ(x) dx.

It is known that in this class, the distribution ρ with

the largest entropy S(ρ) is the normal distribution; see,
e.g., Jaynes (2003).

Indeed, we need to maximize the entropy S(ρ) =

−
∫
ρ(x) · ln(ρ(x)) dx under the constraints ρ(x) ≥ 0,∫

ρ(x) dx = 1,
∫
x·ρ(x) dx = E, and

∫
x2 ·ρ(x) dx =M .

We can use Lagrange multiplier method to reduce the

constraint optimization problem to the unconstrained
optimization problem of maximizing the combination

−
∫
ρ(x) · ln(ρ(x)) dx+ λ0 ·

(∫
ρ(x) dx− 1

)
+

λ1 ·
(∫

x · ρ(x) dx− E

)
+

λ2 ·
(∫

x2 · ρ(x) dx−M

)
for appropriate values λi. Differentiating this objective
function with respect to ρ(x) and equating the deriva-

tive to 0, we get

− ln(ρ(x))− 1 + λ0 + λ1 · x+ λ2 · x2 = 0,

hence

ln(ρ(x)) = 1− λ0 − λ1 · x− λ2 · x2,

and ρ(x) is, thus, a Gaussian distribution. Since we
know the mean E and the standard deviation, this dis-
tribution takes the form

ρ(x) =
1√

2 · π · σ
· exp

(
− (x− E)2

2σ2

)
.

Shannon’s entropy S(ρ) is an expected value of

ψ(x)
def
= ln(ρ(x)).

For the above Gaussian distribution,

ψ(x) = ln(
√
2 · π · σ) + 1

2
· (x− E)2

σ2
.

Here, E is the mean, so the expected value of (x−E)2

is, by definition, the variance σ2. Thus, the expected
value S(P ) of the function ψ(x) takes the form

S(P ) = ln(
√
2 · π · σ) + 1

2
· σ

2

σ2
= ln(

√
2 · π · σ) + 1

2
.

Thus, we arrive at the following expression for S(P ) for

the moments case:

Smom(P ) = ln(σ) + ln(
√
2 · π) + 1

2
.

Resulting comparison. We want to choose a represen-

tation for which the remaining number of binary ques-
tions is the smallest possible. Thus, we should select
the moments if and only if Smom(P ) < Sint(P ). Substi-

tuting the above expressions for Smom(P ) and Sint(P ),
we conclude that the moments method is better if and
only if

ln(σ) + ln(
√
2 · π) + 1

2
< ln(σ) + ln(2 · k0),

i.e., if and only if

ln(
√
2 · π) + 1

2
< ln(2 · k0).

By applying exp(x) to both sides of this inequality, we

can obtain the following equivalent simpler inequality:
√
2 · π ·

√
e < 2 · k0,

i.e.,

k0 >

√
π · e
2

≈ 2.066.

So, when k0 = 2, the interval representation is better;
when k0 ≥ 3, the moments representation is more in-

formative.
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4 Conclusions

We are interested in selecting the most informative rep-
resentation. It turns out that from this viewpoint, which
of the two representation to use – the moments repre-

sentation or the interval representation – depends on
what is the desired level of confidence.

In practical problems in which we 95% confidence is
satisfactory, an interval representation is more informa-

tive. To be more precise, interval representation is only
slightly more informative, but still more informative,
and in many situations, when measurements are diffi-

cult and we want to extract as much information from
them as possible, any possibility to gain additional in-
formation is welcome.

On the other hand, in problems in which we need

higher levels of confidence, the moments representation
is more informative.
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5 Proofs

Proof of Shannon’s result. Let’s first fix some valuesNi,
that are consistent with the given probabilistic distri-

bution. Due to the inequalities that express the consis-

tency demand, the ratio fi =
Ni

N
tends to pi asN → ∞.

Let’s count the total number C of results, for which for

every i the number of events with outcome i is equal to
this Ni. Once we know C, we will be able to compute
Ncons by adding these C’s.

Actually we are interested not in Ncons itself, but in

Q(N) = ⌈log2(Ncons)⌉, and moreover, in lim

(
Q(N)

N

)
.

So we’ll try to estimate not only C, but also log2(C)

and lim
log2(C)

N
.

To estimate C means to count the total number of
sequences of length N , in which there are N1 elements,
equal to 1, N2 elements, equal to 2, etc. It is known

that this number is equal to

C =
N !

N1! ·N2! · . . . ·Nn!

To simplify computations, we can use the well-known
Stirling formula

k! ∼
(
k

e

)k

·
√
2π · k.

Then, we get

C ≈

(
N

e

)N √
2π ·N(

N1

e

)N1

·
√
2π ·N1 · . . . ·

(
Nn

e

)Nn

·
√
2π ·Nn

Since
∑
Ni = N , terms eN and eNi cancel each other.

To get further simplification, we substitute Ni =
N ·fi, and correspondingly NNi

i as (N ·fi)N ·fi = NN ·fi ·
fi

N ·fi . Terms NN is the numerator and

NN ·f1 ·NN ·f2 · . . . ·NN ·fn = NN ·f1+N ·f2+...+N ·fn = NN

in the denominator cancel each other. Terms with
√
N

lead to a term that depends on N as c ·N−(n−1)/2. So,
we conclude that

log2(C) ≈ −N · f1 · log2(f1)− . . .−N · fn log2(fn)−

n− 1

2
· log2(N)− const.

When N → ∞, we have
1

N
→ 0,

log2(N)

N
→ 0, and

fi → pi, therefore

log2(C)

N
→ −p1 · log2(p1)− . . .− pn · log2(pn),
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i.e.,
log2(C)

N
tends to the entropy of the probabilistic

distribution.

Now, that we have found an asymptotics for C, let’s

compute Ncons and
Q(N)

N
. For a given probabilistic dis-

tribution {pi} and every i, possible values of Ni form an

interval of length Li
def
= 2k0·

√
pi · (1− pi)·

√
N . So there

are no more than Li possible values of Ni. The maxi-

mum value for pi·(1−pi) is attained when pi =
1

2
, there-

fore pi·(1−pi) ≤
1

4
, and hence Li ≤ 2k·

√
N

4
=
k0
2
·
√
N .

For every i from 1 to n there are at most
k0
2

·
√
N pos-

sible values of Ni, so the total number of possible com-

binations of N1, . . . , Nn is smaller than

(
k0
2

·
√
N

)n

.

Let us denote this number of combinations by N(p).

The total number Ncons of consistent results is the
sum of N(p) different values of C (values that corre-

spond to N(p) different combinations of N1, N2, . . . ,
Nn). Let’s denote the biggest of these values C by Cmax.
Since Ncons is the sum of N(p) terms, and each of these

terms is not larger than the largest of them Cmax, we
conclude that Ncons ≤ N(p) ·Cmax. On the other hand,
the sum Ncons of non-negative integers is not smaller

than the largest of them, i.e., Cmax ≤ Ncons. Combin-
ing these two inequalities, we conclude that

Cmax ≤ Ncons ≤ N(p) · Cmax.

Since N(p) ≤
(
k0
2

·
√
N

)n

, we conclude that

Cmax ≤ Ncons ≤
(
k0
2

·
√
N

)n

· Cmax.

Turning to logarithms, we find that

log2(Cmax) ≤ log2(Ncons) ≤

log2(Cmax) +
n

2
· log2(N) + const.

Dividing by N , tending to the limit N → ∞ and using

the fact that
log2(N)

N
→ 0 and the (already proved)

fact that
log2(Cmax)

N
tends to the entropy S, we con-

clude that lim
Q(N)

N
= S. The proposition is proven.

⊓⊔

Proof of Proposition 2. By definition, a result is consis-
tent with the probabilistic knowledge P if and only if it
is consistent with one of the distributions p ∈ P . Thus,

the set of all the results which are consistent with P

can be represented as a union of the sets of all the re-

sults consistent with different probability distributions
p ∈ P . In the proof of Shannon’s theorem, we have
shown that for each p ∈ P , the corresponding number

is asymptotically equal to exp(N · S(p)).
To be more precise, for every N , the number C of

results with given frequencies {fj} (fj ≈ pj) has al-

ready been computed in the proof of Shannon’s theo-

rem: lim
log2(C)

N
= −

∑
fj · log2(fj).

The total number of the results Ncons which are con-
sistent with a given probabilistic knowledge P is equal

to the sum of Nco different values of C that correspond
to different fj . For a given N , there are at most N + 1
different values of N1 = N · f1 (namely, values N1 =

0, 1, . . . , N), at most N + 1 different values of N2, etc.,
totally at most (N + 1)n different sets of {fj}. So, we
get an inequality Cmax ≤ Ncons ≤ (N+1)n ·Cmax, from

which we conclude that lim
Q(N)

N
= lim

log2(Cmax)

N
.


