Modal Intervals as a New Logical Interpretation of
the Usual Lattice Order Between Interval Truth
Values

Francisco Zapata
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
email fazg74 @gmail.com

Abstract—In the traditional fuzzy logic, we use numbers from
the interval [0, 1] to describe possible expert’s degrees of belief
in different statements. Comparing the resulting numbers is
straightforward: if our degree of belief in a statement A is larger
than our degree of belief in a statement B, this means that we
have more confidence in the statement A than in the statement
B. It is known that to get a more adequate description of the
expert’s degree of belief, it is better to use not only numbers «
from the interval [0, 1], but also subintervals [a,a] C [0, 1] of this
interval. There are several different ways to compare intervals.
For example, we can say that [a,a] < [b, b] if every number from
the interval [a, a] is smaller than or equal to every number from
the interval [b, b]. However, in interval-valued fuzzy logic, a more
frequently used ordering relation between interval truth values
is the relation [a,a] < [b,b] & a < b&a < b. This relation
makes mathematical sense — it make the set of all such interval
truth values a lattice — but, in contrast to the above relation, it
does not have a clear logical interpretation. Since our objective
is to describe logic, it is desirable to have a reasonable logical
interpretation of this lattice relation. In this paper, we use the
notion of modal intervals to provide such a logical interpretation.

I. FORMULATION OF THE PROBLEM

Traditional numerical truth values in fuzzy logic. In the
traditional approach to fuzzy logic (see, e.g., [3], [8]), the
degree of confidence (“truth value”) of each statement is
characterized by a number from the interval [0, 1]:
« the value 1 means that the expert is absolutely confident
in this statement;
« the value 0 means that the expert is absolutely confident
that this statement is false; and
o values between 0 and 1 describe typical situations when
the expert has some degree of confidence in the statement,
but he or she is not absolutely sure that this statement is
true.
These degrees of confidence are easy to compare: if our degree
of confidence d in a statement S is larger than our confidence
d’ in a statement S’, this means that we have more confidence
in the statement S than in the statement S’

Need to go beyond numerical truth values. Zadeh’s ides
of using numerical values to describe degrees of confidence

has led to many successful practical applications of fuzzy
techniques [3], [8]. Many of these applications start with
eliciting the corresponding degrees of confidence form the
experts.

There are many different ways to elicit such degrees. For
example, we can ask an expert to mark his or her confidence of
a scale, e.g., on a scale from 0 to 5, 0 meaning no confidence
at all, and 5 meaning absolute confidence. If an expert marks
his or her confidence by 3, then we estimate the corresponding
degree of confidence as 3/5 = 0.6.

Another possibility is to poll several experts; if out of 10
experts, 7 believe that the statement is true, we take 7/10 as
our degree of confidence in this statement. There are many
other ways of eliciting the corresponding degrees.

At first glance, all these techniques provide a number that
measures the expert’s degree of confidence — the same way
as the height in inches or centimeters measures the person’s
height. However, there is a big difference between these two
types of measurements: if we measure the height of a person
again and again, by using different rules, we get (more or less)
the same value — describing the actual height of this person. In
contrast, if we slightly different versions of the same elicitation
techniques, we get somewhat different values.

For example, if we ask a person to mark his or her
confidence on a scale from 0 to 5, then possible marks are
0, 1, 2, 3, 4, and 5, and the resulting degrees of confidence
are 0/5 =0, 1/5=0.2, 2/5 =04, 3/5 =0.6, 4/5 = 0.8, and 5/5
= 1.0. To get a better estimate, we can use a more detailed
scale, e.g., the scale from 0 to 6. However, with the new scale,
we get numbers 0/6 = 0, 1/6, 2/6 = 1/3, 3/6 = 0.5, 4/6 = 2/3,
5/6, and 6/6 = 1.0. With the exception of 0 and 1, none of
the previous values can appear in this new scale. So if, e.g.,
a person selected 3 on a scale from 0 to 5, and we got 0.6 as
the degree of confidence, on a new scale, we may get values
3/6 = 0.5 or 4/6 = 2/3 = 0.66..., but never the exact same
value 0.6.

To avoid this problem, we could ask the expert to make his
or her degree of confidence on a scale, for example, from 0
to 100, but this runs into a different problem: that people are



rarely able to meaningfully distinguish between, e.g., values
of 70 and 71 on this scale.

Similarly, when we poll 10 experts, we can only get values
0,0.1,0.2, ..., 1.0. If we want to get a more accurate estimate,
we can ask one more expert, but the resulting values 0, 1/11,
2/11, ..., 1 are all different from the previous values — with
the exception, of course, of the values 0 and 1.

In other words, the numerical values depend not only on
the actual expert’s degree of confidence, they also depend
on the technique that was used to elicit these degrees. For
example, the same value 0.5 coming from an on-a-scale-from-
0-to-something elicitation can mean different things.

« It can mean that we got 1 on a scale from 0 to 2. In this
scale, we basically consider three different options: O if
we are confident that the statement is false, 2 if we are
confident that the statement is true, and 1 in cases when
we are uncertain. Thus, the fact that the expert selected 1
simply means that the expert is not certain about this
statement, and it does not tell us much about the degree
of this uncertainty.

¢ On the other hand, this same value 0.5 could mean that
the expert selected 5 on a scale from 0 to 10. This is a
completely different story. Here, the expert had 9 values
describing uncertainty to choose from: 1, 2, ..., 9, and
the fact that the expert selected the midpoint 5 and not
any other value means that this expert probably has as
many reasons to believe in the original statement as in
its negation.

When we make decisions based on the expert’s degrees of
confidence in different statements, it is definitely desirable
to take into account the difference between the above two
situations. Since in both situations, we have the exact same
numerical value 0.5 of the expert’s uncertainty, this means
that we need to go beyond the numerical truth values.

Interval truth values. A natural way to go beyond numerical
truth values is to use interval truth values, when the expert’s
degree of confidence is described not by a number d from the
interval [0,1], but rather by a subinterval [d, d] of this interval
(31, [51, [6], [8].

Indeed, when a person select 3 on a scale from 0 t0 5, this
does not necessarily mean that his or her degree of confidence
corresponds exactly to the value 3, it simply means that this
degree is closer to 3 than to other marks (0, 1, 2, 4, and 5) on
scale. Values which are closer to 3 than to all other integers
are easy to describe: they form an interval [2.5,3.5]. Based
on our scale-from-0-to-5 request, we do not get the actual
expert’s degree of confidence, we only conclude that this actual
(unknown) degree is between 2.5/5 = 0.5 and 3.5/5 = 0.7,
i.e., that this degree is in the interval [0.5,0.7]. It is therefore
reasonable to return this interval as the available information
about the expert’s degree of confidence in a given statement.

Need to order interval truth values. The ultimate purpose of
processing expert knowledge — and, in particular, processing
degrees of belief in different statements — is to make decisions.
Let us consider a simple example. Suppose that we want to

achieve a certain objective. We know of two possible actions
each of which can lead to this objective with some confidence,
and we need to select the most promising action.

When the degree of confidence is described by a number,
this problem is easy to solve: for each of the actions, we
estimate the degree of confidence that this particular action
will lead to the desired objective, and we select the action for
which this degree is the largest possible.

However, when we use intervals to describe degrees of
belief, it is not always clear which of the two actions is
better. For example, suppose that for one of the actions, we
have no information about its possible consequences. In this
case, the interval-valued degree of belief is the whole interval
[0, 1]. Suppose also that for the second action, we have some
arguments for and against the success of this action, and we
have exactly as many arguments for as we have arguments
against. In this case, it is reasonable to take the midpoint 0.5
between 0 (“false”) and 1 (“true”) as the degree of belief in
the second statement. Which one should we prefer?

How to extend functions and operations from numbers
to intervals: general idea (a particular case of Zadeh’s
extension principle). We have an ordering relation between
numbers a from the interval [0,1]. We need to extend this
relation to subintervals [a, @) from this interval.

This is a problem typical in fuzzy techniques: we start with
a function f(z1,...,x,) defined for real numbers, and we
need to extend it to intervals X,,..., X, — or, more gener-
ally, to fuzzy numbers Xi,...,X,,. A natural way towards
such extension was developed by Lotfi Zadeh himself and is
therefore known as Zadeh’s extension principle.

With respect to intervals (and crisp sets in general) Zadeh’s
extension principle means the following. Suppose that we do
not know the exact values x; of the inputs. For each input ¢,
we only know the set X; of possible values. Then, a number
y is a possible value of the function f(z1,...,z,) if and
only if there are possible values z; € X, for which y =
f(x1,...,2,). So, as an answer, we return the set Y of all
such numbers v, i.e., the set

{f(z1,...,2n) 1 11 € X1, ..

This set is known as a range of the functions f(x1,...,2,)
on intervals Xi,...,X,, and it is usually denoted by
f(Xq,...,X,). The task of computing such a range for
different functions and different intervals constitutes so-called
interval computations; see, e.g., [2], [7].

Let us show how the above idea can help us expand the
ordering between numbers to ordering between intervals.

S Tn € X}

Possible representations of an ordering relation. It turns
out that what exactly extension to intervals we get depends
on how we represent the order. To show this, let us consider
three possible representations.

o The first is the standard representation, in which < is a
functions that transforms two numbers a and b into the
truth value of the relation a < b. In other words, this
function returns 1 if ¢ < b and it returns 0 if a £ b.



We call this representation standard, since our ultimate
objective is to process all this in computers, and this is
how ordering is represented in the computers.

o Instead of the ordering relation itself, we can consider
functions max(a, b) and min(a,b). Each of these func-
tions is also computer supported. Each of these functions
describe the ordering:

— once we have the function max(a, b), we can recon-
struct the relation @ < b as b = max(a, b);

— similarly, once we have the function min(a,b), we
can reconstruct the relation @ < b as a = min(a, b).

Let us show how these representations lead to different interval
extensions.

Zadeh’s extension principle approach applied to the origi-
nal ordering relation. The original function < starts with two
real numbers a and b and produces a (crisp) truth value, i.e., a
number from the set {0, 1} of crisp truth values. According to
the general definition of Zadeh’s extension principle, when we
start with sets a = [a, @] and b = [b, b] of possible values of a
and b, we thus get a ser < (a, b) of truth values, i.e., a subset
of the set {0,1}. Based on the definition, we can distinguish

three possible situations:
« if every element a € [a, ] is smaller than or equal than

every element b € [b, b], then the set < (a,b) consists of
only one value 1 (corresponding to “true”);

« if none of the elements a € [a,@] is smaller than or equal
than any element b € [b, b], then the set < (a, b) consists
of only one value 0 (corresponding to “false”);

« in all other case, the set < (a, b) contains both values 1
(“true”) and 0 (“false’), i.e., we have < (a,b) = {0, 1}.

In other words, here, a < b if and only every element a € a
is smaller than or equal to every element b € b:

Va € a¥b € b (a < b).

This relation is easy to describe in terms of the endpoints of
the intervals a and b: namely, an element a is smaller than or
equal to every element of the interval [b, b] if and only if it is
smaller than or equal to the smallest of these elements, i.e.,
the element b.

Thus, the above condition is satisfied if and only if every
element a of the interval a is smaller than or equal to a.

Similarly, every element a from the interval [a, @] is smaller
than or equal to b if and only if the largest of possible values
of a, i.e., the element @, is smaller than or equal to b. Thus,

[a,a) < [b,b] & a<b.

Zadeh’s extension principle applied to the function
max(a,b). The function max(a,b) is non-strictly increasing
in a and b, meaning that if @ < o and b < ¥, then
max(a,b) < max(a’,b’). Thus, when « is in the interval [a, @],

and b is in the interval [b, b], we can conclude that:

« the smallest possible value of max(a, b) is attained when
both a and b attain their smallest possible values, i.e.,

when a = a and b = b; the corresponding value of the
function max(a, b) is equal to max(a, b);
o the largest possible value of max(a,b) is attained when
both a and b attain their largest possible values, i.e., when
a = a and b = b; the corresponding value of the function
max(a, b) is equal to max(a, b).
Thus, the range max([a,d), [b,b]) of the function max(a, b)

on the intervals [a,a] and [b, b] is equal to
max([a, @], [b,b]) = [max(a,b), max(a,b)].

As we have mentioned, we can now define the relation a < b
between intervals as b = max(a, b). According to the above
formula, this ordering relation has the following form:

[a,a] < [b,b] < [b,b] = [max(a,b), max(a, b)] <

b = max(a, b) &b = max(a, b) <

a<b&a<hb.

This relation — actively used in interval-valued fuzzy logic —
is different from what we get by applying Zadeh’s extension
principle to the original ordering relation.

Zadeh’s extension principle applied to the function
min(a, b). The function min(a, ) is also non-strictly increas-
ing in a and b, meaning that if ¢ < «’ and b < ¥, then
min(a, b) < min(a’,d"). Thus, when a is in the interval [a, a),
and b is in the interval [b,b], we can conclude that:

o the smallest possible value of min(a,b) is attained when
both a and b attain their smallest possible values, i.e.,
when a = a and b = b; the corresponding value of the
function max(a, b) is equal to min(a, b);

o the largest possible value of min(a,b) is attained when
both a and b attain their largest possible values, i.e., when
a = a and b = b; the corresponding value of the function
max(a, b) is equal to min(a, b).

Thus, the range min([a, a], [b, b]) of the function min(a, b) on

the intervals [a,@] and [b, b] is equal to
min([a, a, [b, b]) = [min(a, b), min(a, b)].

As we have mentioned, we can now define the relation a < b
between intervals as a = min(a, b). According to the above
formula, this ordering relation has the following form:

[a,a) < [b,b] < [a,a] = [min(a,b), min(a, b)] <

This relation is exactly the same as we obtained from the
function max(a, b), and it is therefore different from what we
get by applying Zadeh’s extension principle to the original
ordering relation.

Comment. Operations max(a, b) and min(a, b) form a lattice,
so the corresponding ordering relation can be called a lattice
relation.



Problem: how to interpret the lattice order in logical
terms? Our objective is to develop the corresponding logic.
It is therefore desirable to have a logical interpretation of
the resulting ordering between intervals. For the first ordering
relation — obtained by applying Zadeh’s extension principle
directly to the order between real numbers — we have a
straightforward logical interpretation. However, for the lattice
order, we do not have such a direct logical interpretation.

What we do in this paper. In this paper, we show that modal
intervals — a practice-motivated generalization of intervals —
provide the desired logical explanation for the lattice order. To
provide such an explanation, we first need to recall what are
modal intervals.

II. MODAL INTERVALS: A BRIEF REMINDER

This section provides a brief description of modal intervals
as described in [1], [4].

Traditional interval computations: reminder. Let us assume
that a quantity z depends on quantities = (z1,...,x,), and
that we know the exact form of this dependence, i.e., we know
a continuous function z = f(z) = f(x1,...,2,). In practice,
we often do not know the exact values of the quantities x;,
we only know the intervals X; = [z;,7;] that contain these
values.

These intervals may come from measurements: when the
measurement result is z; and we know the upper bound A; on
(absolute value of) the measurement error Ax; def T; —x;, this
means that the actual (unknown) value z; can take any value
from the interval [Z; — A;, Z; + A;]. These intervals can also
come from manufacturing tolerances, when we recommend
the value z; of the corresponding quantity but allow deviations
+A,; from this recommended value. In this case also, the
resulting the resulting quantity x; can take any value from
the interval [Z; — A;, T; + A;].

In both cases, the only information that we have about z is
that z belongs to the interval

Z={f(x1,...,2n) 21 € X1,...,2, € X, } =

min f(z), max f(z)| ,
where we denoted X def X1 x ...X,,. This interval Z is
called the result of applying the function f to the intervals
X1,..., X, and denoted by f(X1,...,Xp).

In many practical situations, it is desirable to make the
interval Z as narrow as possible. For example, z may be the
direction of the airplane flight, and we want to maintain this
direction as accurately as possible. In the above setting, if we
want to decrease the width Z, we have to decrease the width
of the original intervals — e.g., measure the values x; more
accurately, or impose stricter tolerances on the manufacturing
process.

Logical reformulation of the traditional interval compu-
tation. First, we need to make sure that for all possible
combinations of z; € X;, the value z = f(x1,...,2,) is

contained in the interval Z. In other words, we want to make
sure that

Ve e Xy ... Vo, € X3z € Z (2= f(x1,...,20)).

Second, we need to make sure that Z is the narrowest interval
with this property. These two requirements guarantee that Z
is equal to the above range: Z = f(X).

Beyond the main problem of (traditional) interval compu-
tations — possibility of controlled variables: formulation
of the problem. In the traditional approach, we have no
control over the values of the input variables z;, we only know
that these values belong to the corresponding intervals X;. In
practice, often, the desired value z = f(x,u) depends not only
the variables x = (z1, ..., ;) over which we have no control,
it also depends on the additional variables v = (uy, ..., Um)
that we can control. Specifically, for each of these additional
variables u;, there is a range U;, and we can set up any value
within this range. We can use these additional variables to
narrow down the range Z = [z, Z] of the values z that can be
achieved.

In precise terms, we want to select an interval Z = [z, Z]
for which, for each combination x € X, there exists a control
u that would lead to the value f(x,u) € Z. Among all such
intervals Z, we want to select the one which is the narrowest.
In other words, we want to make sure that

Ve e XueU (f(x,u) € Z),
i.e., that
Vee XIueUIze Z(z= f(x,u)),

and that Z is the narrowest interval with this property.
How can we find such an interval Z?

Possibility of controlled variables: towards a solution to
the problem. For each = € X, the set of all possible values
f(z,u) forms an interval

F(z) <

min f(z, u), max f(z, u)

The existence of a control u for which one of these values
is from the interval Z is equivalent to requiring that that the
intervals F'(z) and Z have a common point. One can easily
check that the two intervals [a, @] and [b, b] have a common
point if and only if @ < b and b < @. For intervals F'(x) and
Z, this means that we must have

i <7z < .
inel[ljlf(x,u) <Zand z < rl?eagf(x,u)

These two inequalities much hold for every z € X. For z,
this means that the value Z must be larger than or equal to
Inill} f(x,u) for all z € X. This is equivalent to requiring that
ue

7 is larger than or equal to the largest of these values, i.e., that

Z > maxmin f(x,u).
2 max min f(z,u)

Similarly, the requirement that z must be smaller than or equal
to max f(x,u) for all x € X is equivalent to requiring that z
ue



is smaller than or equal to the smallest of these values, i.e.,
that

<
2= pngy S

Among all the intervals that satisfy these two inequalities,
we need to find the narrowest. It turns out that the selection
of the narrowest interval depends on the relation between the
two bounds. If

<
irél)r{l max f(z,u) max gém flz,u),

then the narrowest interval is when Z is equal to its lower
bound and z is equal to its upper bound, i.e., when

Z =z,z] = |minmax f(x,u), maxmlnf(x u)

zeX uelU zeX uelU

On the other hand, if the opposite inequality is satisfied, i.e.,
if

min max f(z,u) > maxmin f(x,u

zeX uelU f( ) reX uEUf( )

then we can have intervals Z with the desired property which
have width 0: namely, for any value z between these two
bounds, i.e., for any value z from the interval

Z =
{ﬂneag((inem £z, u), inel)l(llileax flz,u)|,

the one-point interval Z' = [z, z] satisfies the desired property.
Thus, we arrive at the following solution.

Case of controlled variables: solution. Once we have a
function f(z,u) and the ranges X and U, we compute the
two values

2z~ = minmax f(x,u) and 2T = maxmin T, U
rxe€X uelU f< ) zeX uEUf( )

If 2= < 2T, then the interval Z = |2
interval for which

Vee X3ze€ ZJueU (z= f(z,u)).

~, 27| is the narrowest

If 2= > 2%, then we have many such narrowest intervals —
namely, every interval [z, z] for z € [zT,27] is a one. This
can be described as follows:

Vee XVzeZIueU (z= f(z,u)).

Comment. The above solution is presented in [1], where the
pair consisting of the values 2z~ and 2% is called an f*-
extension of the original function f(x,u).

Reformulation in terms of modal intervals. In [1], logical
terms are used to distinguish between intervals X; over which
we have no control and intervals U; in which we can select
whichever value u; € U; we choose. To guarantee that the
value z of the desired quantity is within the given range, we
need to make sure that this property holds for all possible
values z; € X;, while for the controlled intervals, it is
sufficient to require that there exist values u; € U; that make
this property true. To emphasize this distinction, the authors

of [1] treat each interval as a pair of the interval itself and of
the corresponding quantifier:

« a traditional interval X; is considered as a pair (X;,V),
while
« a controlled interval is considered as a pair (U}, 3).

Such pairs are called modal intervals.
In these terms, the condition

Ve, € Xy ... V2, € X,,

Juy €Uy ... Jup, €Uy, Iz € Z (2= f(z,u))

can be reformulated as

Qllil € X1 e ann S Xn

Qllul € Ul s Q{mum € Um Jz € Z(Z = f('rau))7

where @; and Q; are the quantifiers attached to the corre-
sponding intervals. For the case when all the intervals are
traditional (non-controlled), we get the usual expression for
the range. Because of this example, we can treat the resulting
interval Z as the range defined over modal intervals:

Z = f((X1,V),..., (U, ).

The difference between the cases 2~ < zt and 2= > 2+
translates, as we have seen, into the difference between 3z € Z
and Vz € Z in the corresponding formulas. So, the authors of
[1] say that when z~ < z*, the range is the usual interval
(Z,¥), while for z= > 27T, the range is the interval (Z,3).

<Xn7v>7 <U17 3>7 e

Relation to Kaucher intervals. The above example shows
that the difference between the two types of intervals can also
be represented as the difference between the usual intervals,
for which 2z~ < z%t, and the “new” intervals for which z= >
2T It is therefore reasonable to represent these “new intervals”
as [z, 27T].

For example, the interval Z = ([2,4],V) is represented as a
usual interval [2, 4], while an interval ([2, 4], 3) is represented
as [4,2]. Such intervals have been previously introduced by
Kaucher.

This connection with Kaucher intervals is not accidental:
indeed, for arithmetic operations f(z,u), the f*-extensions
coincide with the operations of Kaucher arithmetic.

III. MODAL INTERVALS EXPLAIN LATTICE ORDER

Main idea. As we have mentioned, when we apply Zadeh’s
extension principle — i.e., the usual range estimation formula
- to the function < (a,b), we get the relation @ < b that
corresponds to the logical formula

Va € a¥b € b (a <b).

Our main idea is to consider situations when, instead of one
the original intervals [a,@)] and [b, b], we consider the “dual”
intervals [a@, a] and [b, b].

As we have mentioned earlier, replacing an interval by a
dual one means that we replace the corresponding universal



quantifier with an existential one. Thus, we get the following
two formulas:
Va € adbeb(a<b)

and
Vbeb3daca(a<b).

Let us consider these formulas one by one.

First formula. For each a, the existence of b € [b, b] for which
a is smaller than or equal to b is equivalent to a being smaller
than or equal to the largest possible element b of the b-interval.
Indeed:
e if @ < b for some b for which b < b < b then, by
transitivity, we get a < b;
o vice versa, if a < b, then a < b for some b € [b,b]:
namely, for b = b.
Now, the first formula can be equivalently formulated as
follows: every value a from the interval [a, @] is smaller than or
equal to b. Similarly to the previous paragraph, it is sufficient
to check this property for the largest possible value @ of the
quantity a. Indeed:
o if @ <0, this implies that for every value a < @, we have
a < 5;
e vice versa, if every number a from the interval [a,d]
satisfies the inequality a < b, then, in particular, this
inequality holds for the value @ € [a, a), i.e., we have

a<b.
Thus, the first formula is equivalent to @ < b.

Second formula. For each b, the existence of a € [a,a] for
which a is smaller than or equal to b is equivalent to b being
larger than or equal to the smallest possible element @ of the
a-interval. Indeed:
e if a < b for some a for which ¢ < a < @ then, by
transitivity, we get a < b;
e vice versa, if @ < b, then ¢ < b for some a € [a,qa):
namely, for a = @.
Now, the first formula can be equivalently formulated as

follows: every value b from the interval [b, b] is larger than or
equal to a. Similarly to the previous paragraph, it is sufficient
to check this property for the smallest possible value b of the

quantity b. Indeed:
o if a < b, this implies that for every value b > b, we have
a<b;
o vice versa, if every number b from the interval [b,b]
satisfies the inequality ¢ < b, then, in particular, this

inequality holds for the value b € [b, b], i.e., we have
a <b.

Thus, the second formula is equivalent to @ < b.

Combining the two formulas: the resulting logical inter-
pretation. The first formula is equivalent to a < b, the second
formula is equivalent to ¢ < b. Thus, the two formulas together
are equivalent to lattice order. So, we get the desired logical
interpretation of the lattice order.

This interpretation can be described — as with modal logic
— in control-type terms. Namely, the order ¢ < b means
that every element a € a is smaller than or equal to every
element b € b. In contrast, the lattice order is equivalent to
the following two statements:

o no matter what the actual value a € a is, once we know
this value, we can always select b € b for which a < b;

e vice versa, no matter what the actual value b € b is,
once we know this value, we can always select a € a for
which a < b.

Comment: possible generalizations of this interpretation. In
the above text, we considered intervals from the real line. In
this case, the relation

la,a] < [b,b] & (a < b&a <b)

iS]

forms a lattice — in the sense that for every two intervals,
there is the least upper bound and the greatest lower bound. A
similar definition can be formulated for a more general case,
when we consider intervals

[a,b}dﬁf{x:agxgb}

over an arbitrary partially ordered set. In this case, the above
relation is not longer a lattice, but we can still prove that it is
equivalent to

Vacadbeb(a<b)and Vb e bIa € a(a <D).
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