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Abstract

In many real-life situations, we have different types of data. For example, in geosciences, we have seismic data,

gravity data, magnetic data, etc. Ideally, we should jointly process all this data, but often, such a joint processing is

not yet practically possible. In such situations, it is desirable to “fuse” models (images) corresponding to different

types of data: e.g., to fuse an image corresponding to seismic data and an image corresponding to gravity data.

At first glance, if we assume that all the approximation errors are independent and normally distributed, then we

get a reasonably standard statistical problem which can be solved by the traditional statistical techniques such as

the Maximum Likelihood method. Surprisingly, it turns out that for this seemingly simple and natural problem,

the traditional Maximum Likelihood approach leads to non-physical results. To make the fusion results physically

meaningful, it is therefore necessary to take into account expert knowledge.

Model (and Image) Fusion: Formulation of a Problem
Need to combine data from different sources

In many areas of science and engineering, we have different sources of data. For example, in geophysics,

there are many sources of data for Earth models:

• first-arrival passive seismic data (from actual earthquakes); see, e.g., [8];
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• first-arrival active seismic data (from seismic experiments using man-made sources); see, e.g., [2, 5];

• gravity data; and

• surface waves; see, e.g., [9].

Datasets coming from different sources provide complimentary information. For example, different geophys-

ical datasets contain different information on earth structure:

• each measured gravity anomaly at a point is the result of the density distribution over a relatively large

region of the earth, so estimates based on gravity measurements provide information about densities

at both low and high depths;

• in contrast, each seismic data point (arrival time) comes from a trajectory (ray) a seismic wave travels

within the earth, so the resulting values only cover areas above the Moho surface, where these rays

propagate.

Usually, there are several different geophysical datasets available. At present, each of these datasets is often

processed separately, resulting in several different “models” – 2-D or 3-D images reflecting different aspects

of the studied phenomena. It is therefore desirable to combine data from different datasets.

Joint inversion: an ideal future approach

The ideal approach would be to use all the datasets to produce a single model (= image). At present,

however, in many research areas – including geophysics – there are no efficient algorithms for simultaneously

processing all the different datasets.

Designing such joint inversion techniques presents an important theoretical and practical challenge.

Model (image) fusion: main idea

While joint inversion methods are being developed, as a first step, we propose a practical solution: to fuse

all the models (images) coming from processing different datasets; see, e.g., [11–13,16].

How to fuse images: towards a precise formulation of the problem

To fuse the images, we need, for each spatial location j = 1, . . . , N , to fuse the intensities of different images

corresponding to this location. Each of these intensities estimates the actual (unknown) value of the desired

quantity (such as density) at the selected location. Let x̃
(1)
j , . . . , x̃

(n)
j be the values from different images
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corresponding to the same spatial location. Our objective is to merge these values into a single more accurate

estimate for the actual value xj of the desired quantity at this location; see, e.g., [15].

In many practical situations, the approximation errors ∆x
(i)
j

def
= x̃

(i)
j −xj corresponding to different images

are normally distributed; see, e.g., [15,17]. This fact that the approximation errors are normally distributed

can be justified by the Central Limit Theorem, according to which, under certain reasonable conditions,

the joint effect of many relatively small errors is (approximately) normally distributed; see, e.g., [17]. For

each model based on measurements of a certain type (e.g., gravity or seismic), not only the resulting error

of each measurement comes from many different error sources, but also each estimate comes from several

different measurements – thus further increasing the number of different error components contributing to

the estimation error.

Approximation errors corresponding to different images come from different sources, so it is reasonable

to assume that they are independent. Because of independence, to describe the joint distribution of all n ap-

proximation errors, it is sufficient to describe the probability distribution of each approximation error ∆x
(i)
j .

A normal distribution is uniquely determined by its mean and standard deviation. In principle, for each

image, the mean of the corresponding approximation error can be non-zero; in measurement terms, this

means that the approximation errors can have a systematic component. However, these components can

be eliminated if we appropriately calibrate the corresponding measuring instruments and data processing

algorithms. Because of this, in the following text, we can safely assume that the mean value of each

approximation error is 0.

Since the mean is thus fixed, to describe the probability distribution for each approximation error ∆x
(i)
j ,

it is sufficient to know the corresponding standard deviation. Sometimes, values corresponding to different

parts of the image are known with different accuracy. For example, in geosciences, since most measurements

are performed at the Earth’s surface, these measurements enable us to find the values at lower depths more

accurately than the values corresponding to deeper structures. To take this into account, let us divide the

image into several zones Zk, k = 1, . . . ,M , and let us assume that the accuracy is the same for all the

locations in each zone. In more precise terms, we assume that there are values σ
(i)
k , and that for each

location j ∈ Zk, the standard deviation is equal to σ
(i)
k .

In the following text, we will denote the total number of locations in zone k by Nk, and the total number

of locations by N .
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The resulting probability density for each estimation error ∆x
(i)
j , with j ∈ Zk, has the form

1
√
2 · π · σ(i)

k

· exp

−

(
∆x

(i)
j

)2

2 ·
(
σ
(i)
k

)2

 =
1

√
2 · π · σ(i)

k

· exp

−

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2

 ,

and the probability density ρ(x) corresponding to all N estimates x = (x1, . . . , xN ) in all the zones is (due

to independence) the product of these densities:

ρ(x) =
M∏
k=1

∏
j∈Zk

n∏
i=1

1
√
2 · π · σ(i)

k

· exp

−

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2

 .

Separating the terms in front of the exponentials and the exponential terms themselves, and using the fact

that exp(a) · exp(b) = exp(a+ b), we conclude that

ρ(x) =

 M∏
k=1

∏
j∈Zk

n∏
i=1

1
√
2 · π · σ(i)

k

 · exp

−
M∑
k=1

∑
j∈Zk

n∑
i=1

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2

 .

The expression for the first factor can be further simplified if we take into account that in this factor, the

term
√
2 · π is repeated as many times as there are locations, i.e., N times, and each term σ

(i)
k corresponding

to the k-th zone is repeated as many times as there are locations in this zone, i.e., Nk times. As a result,

the expression for the probability density ρ(x) takes the following form:

ρ(x) =
1(√

2 · π
)N ·

M∏
k=1

n∏
i=1

1(
σ
(i)
k

)Nk
· exp

−
M∑
k=1

∑
j∈Zk

n∑
i=1

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2

 .

Case when we know the accuracy of different images

In some cases, we know the accuracy of different images, i.e., we know the standard deviations σ(i). In this

case, the only unknown parameters are the actual value xj of the desired quantity at different locations. A

reasonable idea is to select the value for which the probability (density) ρ(x) is the largest, i.e., to use the

Maximum Likelihood method.

Since exp(z) is an increasing function, maximizing a function A · exp(−B(x)) is equivalent to minimizing

B(x), so we arrive at the following Least Squares approach: for each j ∈ Zk, we must find xj for which the

sum
n∑

i=1

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2 is the smallest possible.
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Differentiating this expression with respect to xj and equating the derivative to 0, we conclude that

xj =

n∑
i=1

x̃
(i)
j ·

(
σ
(i)
k

)−2

n∑
i=1

(
σ
(i)
k

)−2 .

Comment.

The accuracy of this fused estimate can be described by the standard deviation σk for which

σ−2
k =

n∑
i=1

(
σ
(i)
k

)−2

.

General case: a description

In practice, we often do not know the standard deviations σ
(i)
k . In this case, we need to estimate both the

actual values xj and the standard deviations σ
(i)
k from the observations x̃

(i)
j .

Comment

This is actually the most fundamental measurement situation. In reality, all we know are the results of

measuring different quantities with different measuring instruments. Our estimates of the actual values of

these quantities and our estimates of the accuracy of different measuring instruments must all be derived

from the measurement results.

Model (and Image) Fusion: A Seemingly Reasonable Solution
General case: a seemingly reasonable approach

In the general case, we have several parameters that we need to estimate: in addition to the desired values

xj , we have the standard deviations σ
(i)
k that we also need to estimate based on the measurement results.

To find the estimates of x = (x1, . . . , xN ) and σ = (σ
(1)
1 , . . . , σ

(i)
k , . . .), it seems reasonable to use the same

Maximum Likelihood method as before, i.e., to find the values xj and σ
(i)
k for which the above expression

ρ(x, σ) for the probability density attains its largest possible value.

General case: towards an algorithm

To find the resulting maximizing values, we can differentiate the probability density with respect to both xj

and σ
(k)
k and equate the corresponding derivatives to 0.
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Similarly to the case when we know the accuracies, we can simplify the computations if instead of maxi-

mizing the original function ρ(x, σ), we consider an equivalent problem of minimizing ψ(x, σ)
def
= − ln(ρ(x, σ)).

From the above expression for the probability density, we get the following expression for the new objective

function ψ(x, σ):

ψ(x) = N · ln(
√
2 · π) +

M∑
k=1

n∑
i=1

Nk · ln
(
σ
(i)
k

)
+

M∑
k=1

∑
j∈Zk

n∑
i=1

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2 .

We already know that differentiating this expression with respect to xj and equating the derivative to 0

leads to the expression xj =

n∑
i=1

x̃
(i)
j ·

(
σ
(i)
k

)−2

n∑
i=1

(
σ
(i)
k

)−2 .

Let us now show what will happen if we differentiate the objective function ψ(x, σ) with respect to σ
(i)
k

and equate the derivative to 0. The only terms of the objective function ψ(x) that depends on σ
(i)
k are the

terms

Nk · ln
(
σ
(i)
k

)
+

∑
j∈Zk

(
x̃
(i)
j − xj

)2

2 ·
(
σ
(i)
k

)2 ,

i.e., the terms

Nk · ln
(
σ
(i)
k

)
+

1

2 ·
(
σ
(i)
k

)2 ·
∑
j∈Zk

(
x̃
(i)
j − xj

)2

.

Differentiating these terms with respect to σ
(i)
k and equating the result to 0, we get

Nk · 1

σ
(i)
k

− 1(
σ
(i)
k

)3 ·
∑
j∈Zk

(
x̃
(i)
j − xj

)2

= 0,

i.e.,

Nk · 1

σ
(i)
k

=
1(

σ
(i)
k

)3 ·
∑
j∈Zk

(
x̃
(i)
j − xj

)2

.

We want to use this equation to find the value σ
(i)
k . To do that, we move all the terms containing σ

(i)
k to

one side, and all other terms to another side. Specifically, we multiply both sides of this equation by
(
σ
(i)
k

)3

and divide both sides by Nk. As a result, we get the following equation:(
σ
(i)
k

)2

=
1

Nk
·
∑
j∈Zk

(
x̃
(i)
j − xj

)2

.

This equation makes perfect sense: it says that
(
σ
(i)
k

)2

is the mean square deviation between the actual

values xj from the k-th zone and the measurement results x̃
(i)
j obtained by the i-th instrument for locations

from this zone.
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General case: main idea of an algorithm

Thus, a seemingly reasonable idea is to do the following:

Since we have no prior information about the accuracy of different images, in the initial approximation,

we assume that all the images are of the same accuracy, i.e., that all the values σ
(i)
k are equal. In other

words, as a first approximation σ
(i)
k,0 to the values σ

(i)
k , we take σ

(i)
k,0 = σ for some σ > 0. Based on these

values σ
(i)
k0 , we use the above formula for xj to find the first approximation xj,1 to the intensity values xj .

One can see that the result of applying this formula does not change when we multiply all the values

σ
(i)
k by the same constant. This means it does not matter what initial value σ we take, we can as well take

σ = 1.

Now, based on the estimates xj1 for xj , we can use the above formula for σ
(i)
k to find the resulting

approximation σ
(i)
k,1 to the accuracies σ

(i)
k .

Now that we know more accurate estimates σ
(i)
k,1 for the standard deviations σ

(i)
k than the initial estimates

σ
(i)
k,0 = σ, we can use these more accurate estimates and produce better approximations xj,2 to the actual

intensities xj . Based on these better approximations for xj , we can compute better approximations for σ
(i)
k .

We can repeat this iterative procedure several times to get more and more accurate approximations.

Let us describe the resulting algorithm in precise terms.

Algorithm: description

This is an iterative algorithm. We start with the initial approximate values σ
(i)
k,0 = 1. On each stage

p = 1, 2, . . . of this algorithm:

• first, we use the values σ
(i)
k,p−1 to compute xj,p−1 =

n∑
i=1

x̃
(i)
j ·

(
σ
(i)
k,p−1

)−2

n∑
i=1

(
σ
(i)
k,p−1

)−2 ;

• then, we compute the next approximation to the standard deviations as follows:

(
σ
(i)
k,p

)2

=
1

Nk
·
∑
j∈Zk

(
x̃
(i)
j − xj,p

)2

.

Iterations continue until these values converge, i.e., until the differences |xi,p − xi,p−1| and
∣∣∣σ(i)

k,p − σ
(i)
k,p−1

∣∣∣
become smaller than some pre-defined value δ > 0.
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Comment

The first two iterations of this algorithm are actively used in astrometry, when we determine the coordinates

xj of stars and other distant astronomical objects; see, e.g., [14]. For many objects, we have measurements

performed by different telescopes; the accuracies σ
(i)
k with which different telescopes i measures coordinates

are not exactly known.

Since these accuracies σ
(i)
k are not known, at first, we assume that all the telescopes are equally accurate,

i.e., take σ
(i)
k,0 = σ for some σ > 0. Based on these approximate values, we find an approximate coordinates

xj,1 of all the stars j. Since σ
(i)
k,0 = const, the corresponding formula for xj,1 means that for each star, we

simply take the arithmetic average of all the observations.

Once we have these approximate coordinates, we can compute a better approximation σ
(i)
k,1 to the accu-

racies of different telescopes. Now that we know these accuracies, we can get a better approximation xj,2 to

the actual coordinates – by giving more weight to more accurate observations.

Image and Model Fusion: Unexpected Counterintuitive Behavior of Traditional Statis-
tical Techniques
Surprisingly, the results of applying the above algorithm do not make any physical sense

In astrometry, computations usually stop after the second iteration. Intuitively, as we have mentioned, the

more iterations we perform, the more accurate the resulting estimates. So, to achieve the best possible

accuracy, we decided to continue the above iterations.

The result was completely unexpected: the process did converge, but instead of converging to physically

meaningful values of xj and σ
(i)
k , our iterations converged to a set of values for which one of the standard

deviations σ
(i)
k is 0, and each value xj is equal to the corresponding measurement result x̃

(i)
j . In other words,

no matter what we started with, our conclusion was that one of the measuring instruments is absolutely

accurate. Instead of fusing the measurement results, we simply select one of these results.

This conclusion does not make any physical sense – we know that none of the measuring instruments is

perfect.

Toy example

To get a better understanding of what is going on, we decided to apply the algorithm to a simple (toy)

example. Let us assume that we are measuring a single quantity x1 by using three measuring instruments,

and we get three different values x̃
(i)
1 . Without losing generality, let us sort these three values in increasing
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order: x̃
(1)
1 < x̃

(2)
1 < x̃

(3)
1 . Let us denote, by x0, the midpoint x0 =

x̃
(1)
1 + x̃

(3)
1

2
of the resulting range

of values, and by ∆, the radius (half-width) ∆ =
x̃
(3)
1 + x̃

(1)
1

2
of this range. In these notations, we have

x̃
(1)
1 = x0 −∆ and x̃

(3)
1 = x0 +∆.

Let us first consider the simplest case when the three values are equally spaced, i.e., when the middle

value x̃
(2)
1 coincides with the midpoint x0. On the first iteration, we compute the arithmetic mean of all

three measurement results x0 − ∆, x0, and x0 + ∆. This mean is equal to x11 = x0. Now, we compute

estimates σ
(i)
k,1. In this case, the above formula leads to σ

(i)
k,1 =

∣∣∣x̃(i)j − xj,1

∣∣∣ , so we get σ
(1)
k,1 = ∆, σ

(2)
k,1 = 0, and

σ
(3)
k,1 = ∆. Since σ

(1)
k,1 > 0, σ

(2)
k,1 = 0, and σ

(3)
k,1 > 0, and on the next iteration x1,2, the weights with which we

add different measurement results x̃
(i)
1 are proportional to

(
σ
(i)
k,1

)−2

, we only take into account the second

measurement result, i.e., we get x1,2 = x̃
(2)
1 = x0. One can see that now, the process converges – the next

iteration does not change anything. Thus, we indeed conclude that one of the accuracies becomes 0 and the

actual value coincides with the result of the corresponding measurement.

Maybe this conclusion was caused by the fact that we assumed that middle value x̃
(2)
1 exactly coincides

with the midpoint x0? Let us try a more general case, when this middle value can be anywhere between

x0 − ∆ and x0 + ∆, i.e., when it is equal to x0 + θ · ∆, for some θ ∈ (−1, 1). In this case, the arithmetic

means of these three values is equal to

(x0 −∆) + (x0 + θ ·∆) + (x0 +∆)

3
= x0 +

θ

3
·∆.

We thus get σ
(i)
1,1 = ∆ ·

(
1 +

1

3
· θ
)
, σ

(i)
2,1 = ∆ · 2

3
· θ, and σ(i)

3,1 = ∆ ·
(
1− 1

3
· θ
)
. As a result, we get

x1,2 = x0 +∆ ·

− 1(
1 +

1

3
· θ
)2 +

θ(
2

3
· θ
)2 +

1(
1− 1

3
· θ
)2

1(
1 +

1

3
· θ
)2 +

1(
2

3
· θ
)2 +

1(
1− 1

3
· θ
)2

.

For small θ, in the first approximation, the main term in the numerator is equal to
θ(

2

3
· θ
)2 , and the main

term in the denominator is equal to
1(

2

3
· θ
)2 , so we get x1,2 ≈ x0 + θ ·∆, i.e., x1,2 ≈ x̃

(2)
1 . Thus, the fused

value (almost) coincides with the result of the second measurement, and on the next iteration, we conclude

that the corresponding standard deviation σ
(2)
1,2 =

∣∣∣x̃(2)1 − x1,2

∣∣∣ is (almost) 0.
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On the next iteration, the difference between the estimate x1,2 and the second measurement result x̃
(2)
1

becomes even smaller, and in the limit, we get x1,2 = x̃
(2)
1 .

General case

Maybe the problem is with the iterative algorithm, and the actual maximum of the likelihood function is

attained at a more physically meaningful solution? Alas, as we will show, the maximum of the likelihood

function is attained exactly at the above physically meaningless solution.

Indeed, let us pick a real number ε > 0. Let us select some i0 (e.g., i0 = 1), and, for all locations j, take

xj = x̃
(i0)
j + ε and σ

(i0)
k = ε. For all other i ̸= i0, we take σ

(i0)
k = 1. In this case,

(x̃
(i0)
j − xj)

2

2 · (σ(i0)
k )2

=
ε2

2ε2
=

1

2
,

and for i ̸= i0, we get

(x̃
(i)
j − xj)

2

2 · (σ(i)
k )2

=
(x̃

(i)
j − (x̃

(i0)
j + ε))2

2
→

(x̃
(i)
j − x̃

(i0)
j )2

2

as ε→ 0.

So, when ε→ 0, the exponential term

exp

−
M∑
k=1

∑
j∈Zk

n∑
i=1

(x̃
(i)
j − xj)

2

2 · (σ(i)
k )2


tends to a finite (and non-zero) value

exp

−
M∑
k=1

∑
j∈Zk

1

2
+

∑
i ̸=i0

(x̃
(i)
j − x̃

(i0)
j )2

2

 .

On the other hand, since σ
(i0)
k = ε→ 0, the first factor in the above expression for ρ(x), i.e., the expression

M∏
k=1

∏
j∈Zk

n∏
i=1

1
√
2 · π · σ(i)

k

,

tends to infinity. Thus, the largest possible – infinite – value of ρ(x) is attained when xj coincides with one

of the measurement results: xj = x̃
(i0)
j .

So, if we use the Maximum Likelihood method, then, instead of fusing different images – as we wanted

– we now select one of these images. This is not what we wanted. In other words, in the general case, the

Maximum Likelihood method does not lead to a physically meaningful result.

How to Make Fused Images Physically Meaningful: Heuristic Solutions

Let us first describe two heuristic solutions that can help us arrive at physically meaningful image fusion.
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Limiting number of iterations

The first idea is to do what researchers do in astrometry: only perform the first two iterations.

This idea is similar to what often happens in asymptotic series (see, e.g., [4]) when we have a divergent

series in which the sum of the first few terms is a very good approximation to the desired computations.

Such asymptotic series are ubiquitous in quantum field theory; see, e.g., [1].

Maximum Entropy Approach: idea

When the above iterations converge, we get the values xj and σ
(i)
k for which xj =

n∑
i=1

x̃
(i)
j ·

(
σ
(i)
k

)−2

n∑
i=1

(
σ
(i)
k

)−2 and

(
σ
(i)
k

)2

=
1

Nk
·
∑
j∈Zk

(
x̃
(i)
j − xj

)2

.

As we have mentioned, in general, this system has several solutions: for example, we can select any

measuring instrument i0 and take xj = x̃
(i0)
j and σ

(i0)
k = 0 for all j and k. As we will see, in addition to

these solutions, we can also have physically meaningful solutions, for which σ
(i)
k > 0 for all i and k.

The idea is to select, among all such solutions, the one for which the entropy of the corresponding

probability distribution S
def
= −

∫
ρ(x) · ln(ρ(x)) dx is the largest. The idea that in the case of uncertainty,

we should select a distribution with the largest entropy is actively used in probability and statistics; see,

e.g., [6].

Why Maximum Entropy idea works here

Let us explain why the Maximum Entropy idea always leads to a solution for which σ
(i)
k > 0 for all i and k.

Indeed, here, all the measurement errors are independent random variables. It is known that for independent

variables, the entropy of a joint distribution is equal to the sum of the entropies of individual distributions.

Each individual distribution is Gaussian, with the probability distribution

ρ(x) =
1√

2π · σ
· exp

(
− (x− µ)2

2σ2

)
.

By definition of the expected value E[f(x)]
def
=

∫
ρ(x) · f(x) dx, the entropy S of this distribution is the

expected value E[ψ(x)] of the function

ψ(x) = − ln(ρ(x)) = ln
(√

2π
)
+ ln(σ) +

(x− µ)2

2σ2
.

11



Here, ln (
√
z) =

1

2
· ln(z), and the expected value of (x−µ)2 is, by definition, equal to the variance σ2. Thus,

we get

E

[
(x− µ)2

2σ2

]
=

σ2

2σ2
=

1

2
,

and so,

S = E[ψ(x)] =
1

2
· ln(2π) + ln(σ) +

1

2
.

When σ → 0, we get ln(σ) → −∞. Thus, if one of the values σ
(i)
k is equal to 0, the corresponding entropy

is equal to −∞ and therefore, the whole sum is equal to −∞, i.e., to the smallest possible value. So, when

the entropy is the largest, we have to have S > −∞, and hence, we have σ
(i)
k > 0 for all i and k.

Example of a physically meaningful solution

Let us show, on the above toy example, that the above system of equations has a physically meaningful

solution, i.e., a solution for which σ
(i)
k > 0 for all i and k. In this toy example, we have measurement results

x̃
(i)
1 = x0 + yi · ∆, where y1 = −1, y2 = θ for some θ ∈ (−1, 1), and y3 = 1. In other words, we have

x̃
(1)
1 = x0 − ∆, x̃

(2)
1 = x0 + θ · ∆, and x̃

(3)
1 = x0 + ∆. To make computations easier, let us represent the

resulting fused value x1 in a similar way, as x1 = x0 + y ·∆; we can do it if we take y
def
=

x1 − x0
∆

. For these

values x̃
(i)
1 , we have σ

(i)
1 =

∣∣∣x̃(i)1 − x1

∣∣∣, i.e., σ(1)
1 = ∆ · |1 + y|, σ(2)

1 = ∆ · |y − θ|, and σ(3)
1 = ∆ · |1− y|.

The formula for x1 has the form

x1 ·
2∑

i=1

(
σ
(i)
1

)−2

=

2∑
i=1

x̃
(i)
1

(
σ
(i)
1

)−2

.

Substituting the above expressions for x1 and x̃
(i)
1 into this formula, we get

(x0 + y ·∆) ·
2∑

i=1

(
σ
(i)
1

)−2

=
2∑

i=1

(x0 + yi ·∆) ·
(
σ
(i)
1

)−2

.

The terms proportional to x0 in both parts are the same, so we can cancel them from both parts, and get a

simplified equation

y ·∆ ·
2∑

i=1

(
σ
(i)
1

)−2

=

2∑
i=1

yi ·∆ ·
(
σ
(i)
1

)−2

.

Dividing both sides by ∆, we get:

y ·
2∑

i=1

(
σ
(i)
1

)−2

=

2∑
i=1

yi ·
(
σ
(i)
1

)−2

.

Substituting the above expressions for σ
(i)
1 and multiplying both sides by ∆2, we conclude that

y ·
(

1

(1 + y)2
+

1

(y − θ)2
+

1

(1− y)2

)
= − 1

(1 + y)2
+

θ

(y − θ)2
+

1

(1− y)2
.
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Here, by adding and subtracting two fractions, we get

1

(1 + y)2
+

1

(1− y)2
=

1− 2y + y2 + 1 + 2y + y2

(1− y2)2
=

2 · (1 + y2)

(1− y2)2

and

1

(1− y)2
− 1

(1 + y)2
=

1 + 2y + y2 − (1− 2y + y2)

(1− y2)2
=

4y

(1− y2)2
.

Thus, the above equation has the form

y ·
(
2 · (1 + y2)

(1− y2)2
+

1

(y − θ)2

)
=

4y

(1− y2)2
+

θ

(y − θ)2
.

Bringing both sides to the common denominator, we get

2y · (1 + y2) · (y − θ)2 + y · (1− y2)2 = 4y · (y − θ)2 + θ · (1− y2)2.

Moving all the terms to the left-hand side and using the fact that the terms y · (1 − y2)2 and θ · (1 − y2)2

have a common factor (1− y2)2, we conclude that

2y · (1 + y2) · (y − θ)2 + (y − θ) · (1− y2)2 − 4y · (y − θ)2 = 0.

We are looking for physically meaningful solutions, i.e., solutions for which σ
(i)
k > 0 for all i and k. In

particular, this means that σ
(2)
1 = ∆ · |y − θ| > 0 and thus, that y − θ ̸= 0. So, we can divide both sides of

the above equality by y − θ and get the following simplified equation

2y · (1 + y2) · (y − θ) + (1− y2)2 − 4y · (y − θ) = 0.

The two terms proportional to y − θ can be combined into a single term

2y · (1 + y2) · (y − θ)− 4y · (y − θ) = 2y · (1 + y2 − 2) · (y − θ) = −2y · (1− y2) · (y − θ).

Thus, the above equation takes the form

−2y · (1− y2) · (y − θ) + (1− y2)2 = 0.

Since we assume that σ
(1)
1 = ∆ · |1 + y| > 0 and σ

(3)
1 = ∆ · |1− y| > 0, we conclude that y ̸= −1 and y ̸= 1

and thus, 1− y2 ̸= 0. By dividing both sides of the above equation by 1− y2, we get

−2y · (y − θ) + (1− y2) = 0.

If we open parentheses and change the sign, we get the following quadratic equation:

2y2 − 2θ · y − 1 + y2 = 3y2 − 2θ · y − 1 = 0.
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The discriminant D = 4θ2 + 12 of this quadratic equation is positive, so it has two solutions

y =
2θ ±

√
4θ2 + 12

6
=
θ ±

√
θ2 + 3

3
.

Comment.

In particular, for θ = 0, we get two solutions y =

√
3

3
and y = −

√
3

3
corresponding to x1 = x0 +

√
3

3
·∆ and

x1 = x0 −
√
3

3
·∆.

Neither of these two solutions reproduces the symmetry of this situation, since the three values x̃
(i)
1 are,

in this case, symmetric around x̃
(2)
1 = x0. However, this is OK, since the only value x0 which is symmetric

under this symmetry transformation x→ x0 − (x− x0) is the value x1 = x0 itself, which corresponds to the

physically meaningless case σ
(2)
1 =

∣∣∣x̃(2)1 − x1

∣∣∣ = 0.

A better solution: taking expert knowledge into account

The information that all the values σ
(i)
k should be positive (and not too small) constitutes the additional

expert knowledge. It is therefore desirable to explicitly take this additional expert knowledge into account.

Bayesian approach: idea

From the statistical viewpoint, a natural idea is to use Bayesian approach, i.e., to assume some prior

distribution ρσ(z) on the set of all possible values of σ
(i)
k that would make very small values improbable.

In this case, instead of maximizing the above-described probability density ρ, we maximize the posterior

likelihood

L(x, σ) = ρ(x, σ) ·
∏
i,k

ρσ

(
σ
(i)
k

)
.

Since the value σ
(i)
k is always positive, according to the usual statistics practice, a natural distribution

for this value is lognormal, i.e., a distribution in which the logarithm ln
(
σ
(i)
k

)
is normally distributed.

Bayesian approach: limitations

The main limitation is that the result of using the Bayesian approach depends on the selection of the

prior distribution. There are many other possible prior distributions for a positive value σ
(i)
k , and different

distributions lead to different estimates for xj .

The second limitation is that it is not a panacea. We tried the lognormal distribution with seemingly

reasonable parameters, and we got value of σ
(i)
k which were positive but still un-physically small. Of course, in
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principle, we can manipulate the parameters of the distribution until we start getting physically meaningful

results, but if we do that, we get, in effect, a new heuristic method – and we already have two heuristic

methods that work reasonably well.

Fuzzy approach

The main problem with the Bayesian approach is that the experts describe their additional knowledge not

in terms of precise numbers – like numbers that form a prior distribution – but rather is terms of words

from a natural language. For example, an expert may say that the standard deviation σ
(i)
k (describing the

accuracy of the measuring instrument) cannot be too small. To take this knowledge into account, it is

therefore reasonable to use fuzzy logic, technique that have been invented explicitly for transforming such

“fuzzy” natural language terms and rules into precise numbers – which can then be used by a computer; see,

e.g., [7, 10].

In fuzzy logic, the degree to which a certain value x satisfies a given property is described by a membership

function µ(x). We can describe the degree to which the values x and σ are consistent with observations as

proportional to the corresponding likelihood function ρ, and we can interpret “and” (as in “the first value

σ
(1)
1 satisfies the property described by an expert, and the second value σ

(2)
1 satisfies the property described

by an expert, etc”). In this case, the degree d(x, σ) to which a given pair of tuples (x, σ) is consistent both

with the observations and with the expert’s knowledge is proportional to the product

d(x, σ) = ρ(x, σ) ·
∏
i,k

µ
(
σ
(i)
k

)
.

It is then reasonable to select a pair (x, σ) for which this degree is the largest.

It is worth mentioning that from the purely mathematical viewpoint, the resulting optimization problem

is exactly the same as in the Bayesian approach, but from the practical viewpoint, we have a big advan-

tage: instead of the reasonably arbitrary difficult-to-get prior probabilities ρ0(z), we now have membership

functions µ(z) which can be determined by one of several knowledge elicitation procedures [7, 10].
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