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Abstract—In many situations, we are interested in finding the
correlation ρ between different quantities x and y based on
the values xi and yi of these quantities measured in different
situations i. The correlation is easy to compute when we know
the exact sample values xi and yi. In practice, the sample
values come from measurements or from expert estimates; in
both cases, the values are not exact. Sometimes, we know the
probabilities of different values of measurement errors, but in
many cases, we only know the upper bounds ∆xi and ∆yi on the
corresponding measurement errors. In such situations, after we
get the measurement results x̃i and ỹi, the only information that
we have about the actual (unknown) values xi and yi is that they
belong to the corresponding intervals [x̃i − ∆xi, x̃i + ∆xi] and
[ỹi−∆yi, ỹi+∆yi]. For expert estimates, we get different intervals
corresponding to different degrees of certainty – i.e., fuzzy sets.
Different values of xi and yi lead, in general, to different values
of the correlation ρ. It is therefore desirable to find the range
[ρ, ρ] of possible values of the correlation when xi and yi take
values from the corresponding intervals. In general, the problem
of computing this range is NP-hard. In this paper, we provide
a feasible (= polynomial-time) algorithm for computing at least
one of the endpoints of this interval: for computing ρ when ρ > 0
and for computing ρ when ρ < 0.

I. INTRODUCTION

Need for correlation. In many practical situations, it is
desirable to know which quantities are independent and which
are correlated – positively or negatively.

To estimate the correlation between the quantities x and y,
we repeatedly measure the values xi and yi of both quantities
in different situations i. The correlation ρ is then estimated as

the ratio ρ =
C√

Vx ·
√

Vy

, of the covariance C to the product

of standard deviations
√
Vx and

√
Vy. Covariance and standard

deviations, in their turn, are defined as follows:

C =
1

n
·

n∑
i=1

(xi −Ex) · (yi −Ey) =
1

n
·

n∑
i=1

xi · yi −Ex ·Ey,

Vx =
1

n
·

n∑
i=1

(xi − Ex)
2, Vy =

1

n
·

n∑
i=1

(yi − Ey)
2,

and the means Ex and Ey are estimated as follows:

Ex =
1

n
·

n∑
i=1

xi, Ey =
1

n
·

n∑
i=1

yi.

Need to take into account interval uncertainty. The values
xi and yi used to estimate correlation come from measure-
ments, and measurements are never absolutely accurate: the
measurement results x̃i and ỹi are, in general, different from
the actual (unknown) values xi and yi of the corresponding
quantities. As a result, the value ρ̃ estimated based on these
measurement results is, in general, different from the ideal
value ρ which we would get if we could use the actual values
xi and yi. It is therefore desirable to determine how accurate
is the resulting estimate.

Sometimes, we know the probabilities of different values
of measurement errors ∆xi

def
= x̃i − xi and ∆yi

def
= ỹi − yi.

However, in many cases, we do not know these probabilities,
we only know the upper bounds ∆xi and ∆yi on the corre-
sponding measurement errors: |∆xi| ≤ ∆xi and |∆yi| ≤ ∆yi;
see, e.g., [5]. In this case, the only information that we have
about the actual values xi and yi is that they belong to the
corresponding intervals [xi, xi] = [x̃i − ∆xi, x̃i + ∆xi] and
[y

i
, yi] = [ỹi −∆yi, ỹi + ∆yi]. Different values xi ∈ [xi, xi]

and yi ∈ [y
i
, yi] lead, in general, to different values of the

covariance. It is therefore desirable to find the range of all
possible values of the covariance ρ:

[ρ, ρ] =

{ρ(x1, . . . , xn, y1, . . . , yn) : xi ∈ [xi, xi], yi ∈ [y
i
, yi]}.

Case of expert uncertainty, and how the corresponding
computations can be reduced to the interval case. An expert
usually describes his/her uncertainty by using words from the
natural language, like “most probably, the value of the quantity
is between 6 and 7, but it is somewhat possible to have values
between 5 and 8”. To formalize this knowledge, it is natural to
use fuzzy set theory, in which, for every value xi, we have a
fuzzy set µi(xi) which describes the expert’s knowledge about
xi. An alternative user-friendly way to represent a fuzzy set
is by using its α-cuts xi(α) = {xi |µi(xi) ≥ α}. It is known
(see, e.g., [4]) that for any function y = f(x1, . . . , xn), the
α-cut of y is equal to

y(α) = {f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

Thus, from the computational viewpoint, the problem of
estimating ρ under fuzzy uncertainty can be reduced to several



similar problems for interval uncertainty – interval problems
corresponding to different values α. In view of this reduction,
in the following text, we will concentrate on estimating the
correlation under interval uncertainty.

What is known. The problem of estimating correlation under
interval uncertainty is, in general, NP-hard [3]. This means,
crudely speaking, that unless P=NP (which most computable
scientists believe to be impossible), no feasible (i.e., no
polynomial-time) algorithm is possible that would always
compute the range of the corresponding characteristic under
interval uncertainty.

In [1], we showed that while we cannot have an efficient
algorithm for computing both bounds ρ and ρ, we can ef-
fectively compute (at least) one of the bounds. We consider
the case that we have weights wi for corresponding values xi

and yi and we show that our claim still holds. Specifically,
that we can compute ρ when ρ > 0 and we can compute ρ
when ρ < 0. This means that, in the case of a non-degenerate
interval [ρ, ρ] (i.e., ρ < ρ):

• when ρ ≤ 0, we compute the lower endpoint ρ;
• when 0 ≤ ρ, we compute the upper endpoint ρ;
• in all remaining cases, when ρ < 0 < ρ, we compute

both lower endpoint ρ and ρ.

Need to take into account that the estimation is usually
hierarchical. In some practical situations, e.g., when process-
ing the census results, we do not process all the census data,
what we usually do is we first combine the data by town, then
combine town data into state-wide date, etc.; see, e.g., [2], [6].

In general, on each stage, the data points are divided into
groups I1, . . . , Im, and instead of directly processing all the
data points, we process the results of previous processing
within each of these m groups. For example, in the previous

processing, we have compute the averages Exj =
1

nj
·
∑
i∈Ij

xi

over each group. Now, the overall average Ex can be described
as

Ex =
1

n
·

n∑
i=1

xi =
1

n
·

m∑
j=1

∑
i∈Ij

xi =
m∑
j=1

pj · Exj ,

i.e.,

Ex =
m∑
j=1

pj · Exj , (1)

where we denoted pj
def
=

nj

n
. Similarly [6],

Ey =
m∑
j=1

pj · Eyj , (2)

Vx =
m∑
j=1

pj · (Exj − Ex)
2 +

m∑
j=1

pj · Vxj , (3)

Vy =

m∑
j=1

pj · (Eyj − Ey)
2 +

m∑
j=1

pj · Vyj , (4)

where Vxj and Vyj are sample variances within the corre-
sponding group. For covariance, we have

C =
m∑
j=1

pj · (Exj − Ex) · (Eyj − Ey) +
m∑
j=1

pj · Cj , (5)

where Cj is the covariance over each group. Finally, we
compute correlation ρ as

ρ =
C√

Vx ·
√
Vy

. (6)

Hierarchical estimation under interval uncertainty. In the
ideal case, for each group j, we know the values pj , Exj , Eyj ,
Vxj , Vyj , and Cj . Based on these values, we compute E, Vx,
Vy , C, and finally, the correlation ρ. In practice, we often only
know the values xi and yi with interval uncertainty. As a result,
for each group j, instead of the exact value of the each of the
above characteristics, we only know the interval of its possible
values, i.e., we know the intervals Exj , Exj , Eyj , Vxj , Vyj ,
and Cj . Different values from these intervals lead, in general,
to different correlation values ρ. It is therefore desirable to find
the range [ρ, ρ] of possible values of the correlation obtained
by formulas (1)-(6).

What we do in this paper. In this paper, we show that for such
a hierarchical estimation, it is still possible to feasibly compute
at least one of the endpoints of the interval of possible values
of the correlation ρ.

II. MAIN RESULT AND THE CORRESPONDING ALGORITHM

Main Result. There exists a polynomial-time algorithm that,
given m numbers pj and m groups of intervals Exj , Exj , Eyj ,
Vxj , Vyj , and Cj , computes (at least) one of the endpoint of
the interval [ρ, ρ] of possible values of the correlation ρ:

• it computes ρ if ρ > 0, and
• it computes ρ if ρ < 0.

Reducing minimum to maximum. One can easily see that
when we change the signs of Eyj and Cj , the correlation
changes sign as well. It is known that

min f(x) = −max(−f(x)).

So, if if we know how to compute the largest value ρ when
this value is positive, we can then compute the smallest value
ρ when this value is negative, by taking intervals E′

yj = −Eyj

and C′
j = −Cj , computing the corresponding bound ρ′, and

then taking ρ = −ρ′.
Because of this reduction, in the following text, we will

concentrate on computing the largest value ρ.

Preliminary observation. In the ratio ρ, the dependence on
Cj is only in the numerator, and the dependence on Vxj and
Vyj is only in the denominator. Thus, the ratio ρ is the largest
when each term Cj attains its largest possible value Cj , and
when each term Vxj and Vyj attains its smallest possible value
V xj and V yj . So, in the following text, we will take Cj = Cj ,



Vxj = V xj , and Vyj = V yj , and consider only the dependence
on Xxj and Eyj .

Algorithm. For each j from 1 to m, the corresponding
box [Exj , Exj ] × [y

i
, Eyj ] has four vertices: (Exj , Eyj),

(Exj , Eyj), (Exj , Eyj), and (Exj , Eyj). So, totally, we have
4n vertices.

Let us consider all 4-tuples consisting of two vertices and
two signs. For each pair of vertices, there are nine possible
combinations of two +, −, or 0 signs: (−,−), (−, 0), (−,+),
(0,−), (0, 0), (0,+), (+,−), (+, 0), and (+,+).

For each 4-tuple, if the first sign is not 0, we move the first
vertex slightly along the x axis in the direction determined by
the first sign, i.e.:

• slightly increase x if the sign is + and
• slightly decrease x if the sign is −.

Here, “slightly” means that the change is much smaller than
the smallest difference between distinct values Exj and Eyj .

Then, if the second sign is not 0, we move the second vertex
slightly along the x axis in the direction determined by the
second sign. Thus, we get two points on the (x, y) plane. We
can then form a straight line going through these two points.

Now, we select two 4-tuples, and form two lines. We will
call the first line representative x-line, and the second line
representative y-line.

If we selected the same line as the representative x-line
and the representative y-line, then we check whether this line
intersects each of n boxes. If it does, then ρ = 1. If this line
does not have a common point with one of the boxes, we
dismiss this selection, and continue with other selections.

Let us explain the algorithm in the cases when the repre-
sentative x-line and the representative y-line are different. The
representative x-line divides the plane into two semi-planes:

• the points above this line, i.e., the points (x, y) for which
the y coordinate is larger than the y-value of the point
on the x-line with the same x coordinate, and

• the points below this line, i.e., the points (x, y) for which
the y coordinate is smaller than the y-value of the point
on the x-line with the same x coordinate.

The representative y-line similarly divides the plane into two
semi-planes:

• the points to the right of this line, i.e., the points (x, y)
for which the x coordinate is larger than the x-value of
the point on the x-line with the same y coordinate, and

• the points to the left of this line, i.e., the points (x, y) for
which the x coordinate is smaller than the x-value of the
point on the y-line with the same y coordinate.

Based on where each of the vertices is with respect to these
two lines, we can tell the relation of each box [Exj , Exj ] ×
[Eyj , Eyj ] with respect to each line.

The lines that we computed are “representatives” of the
actual lines that we will be using, in the sense that the actual
lines will have the exact same relation to each of the n boxes.
Let us describe the corresponding actual lines as follows:

• the actual x-line has the form y = Ey + kx · (x − Ex),
and

• the actual y-line has the form x = Ex + ky · (y − Ey),
where Ex, Ey , kx, and ky are to-be-determined real numbers.

For each box [Exj , Exj ]× [Eyj , Eyj ], based on its location
in comparison to the representative lines, we select the values
Exj and Eyj as follows:

• If the whole box is above the representative x-line, we
take Exj = Exj . On the resulting segment {Exj} ×
[Eyj , Eyj ], we select the point which is the closest to
the actual y-line:

– if the whole segment is to the right of the represen-
tative y-line, we select Eyj = Eyj ;

– if the whole segment is to left of the representative
y-line, we select Eyj = Eyj ;

– if the segment intersects with the representative y-
line, we select the value Eyj corresponding to the
intersection point between the segment and the actual
y-line.

• If the whole box is below the representative x-line, we
take Exj = Exj . On the resulting segment {Exj} ×
[Eyj , Eyj ], we select the point which is the closest to
the actual y-line:

– if the whole segment is to the right of the represen-
tative y-line, we select Eyj = Eyj ;

– if the whole segment is to left of the representative
y-line, we select Eyj = Eyj ;

– if the segment intersects with the representative y-
line, we select the value Eyj corresponding to the
intersection point between the segment and the actual
y-line.

• If the whole box is to the right of the representative
y-line, we take Eyj = Eyj . On the resulting segment
[Exj , Exj ] × {Eyj}, we select the point which is the
closest to the actual x-line:

– if the whole segment is above the representative x-
line, we select Exj = Exj ;

– if the whole segment is below the representative x-
line, we select Exj = Exj ;

– if the segment intersects with the representative x-
line, we select the value Exj corresponding to the
intersection point between this segment and the ac-
tual x-line.

• If the whole box is to the left of the representative y-
line, we take Eyj = Eyj . On the resulting segment
[Exj , Exj ] × {Eyj}, we select the point which is the
closest to the actual x-line:

– if the whole segment is above the representative x-
line, we select Exj = Exj ;

– if the whole segment is below the representative x-
line, we select Exj = Exj ;

– if the segment intersects with the representative x-
line, we select the value Exj corresponding to the
intersection point between the segment and the actual
x-line.

• The only remaining case is when the box contains the
intersection point (Ex, Ey) of the actual x- and y-lines.



Thus, for each j and for each of the values Exj and Eyj , we
get an explicit expression in terms of the four parameters Ex,
Ey , kx and ky (the parameters that describe the actual x- and
y-lines).

By substituting these expressions for Exj and Eyj into the
following formulas, we get a system of four equations with
four unknowns Ex, Ey , kx and ky:

Ex =

m∑
j=1

pj · Exj ; (7)

Ey =
m∑
j=1

pj · Eyj ; (8)

n∑
i=1

pj · Exj · Eyj − Ex · Ey +
m∑
j=1

pj · Cj =

kx ·

 m∑
j=1

pj · (Exj − Ex)
2 +

m∑
j=1

pj · V xj

 ; (9)

n∑
j=1

pj · Exj · Eyj − Ex · Ey +
m∑
j=1

pj · Cj =

ky ·

 m∑
j=1

pj · (Eyj − Ey)
2 +

m∑
j=1

pj · V yj

 . (10)

Once we solve this system, we get one or several possible
solutions. For each of these solutions, we can form the
corresponding actual x- and y-lines.

Then, we check whether each of 4n vertices is in the same
relation to the resulting two lines and to the representative
x- and y-lines, i.e., e.g., that each vertex is above, below,
or on the actual x-line if and only if it is, correspondingly,
above, below, or on the corresponding representative x-line,
and that the same property holds for the y-lines. If at least
one vertex is in a different relation, we dismiss this solution.
Otherwise, we compute the value of the correlation ρ based
on the corresponding values Exj and Eyj .

The largest of all the values ρ corresponding to all possible
pairs of tuples is then returned as the desired value ρ.

Comment. For each pair of lines, for each j, according to our
algorithm, as the appropriate value of Exj , we make one of
the following four selections:

• sometimes, we select a known value Exj ;
• sometimes, we select a know value Exj ;
• sometimes, we select the value Exj = Ex (which is not a

priori known, it is one of the four variables that we need
to determine), and

• sometimes, we select a value Exj that lies on the x-line
y = Ey + kx · (Exj − Ex), i.e., a value

Exj = Ex +Kx · (Eyj − Ey),

where Kx
def
=

1

kx
=

Vx

C
.

In general, each expression Exj is a linear combination of a
constant and the unknowns Ex, Kx, and Kx ·Ey . According to
the algorithm, for each i, it takes a finite number of computa-
tional steps to check the corresponding conditions and, based
on the results of this checking, to find the appropriate value
Exj . Similarly, each expression Eyj is a linear combination
of a constant and the unknowns Ey , Ky , and Ky · Ex.

Substituting these expressions for Exj and Eyj into the four
equations for the unknowns Ex, Ey , Kx, and Ky , we conclude
that:

• the equation (7) for Ex is transformed into equating a
linear combination of Ex, Kx, and Kx · Ey to zero;

• the equation (8) for Ey is transformed into equating a
linear combination of Ey , Ky , and Ky · Ex, to zero;

• the equations (9) and (10) (corresponding to kx · Vx =
ky · Vy = C) are transformed into equating a linear
combination of terms of order ≤ 4 in terms of the
unknowns.

As a result, to find the four unknown Ex, Ey , Kx, and Ky ,
we get a system of four polynomial equations of order ≤ 4.
The amount of computation time which is needed to solve this
system does not depend on the size m of the input, so in terms
of dependence on this size, we need O(1) time.

III. PROOF OF THE MAIN RESULT

Proof that the above algorithm is polynomial time. Before
we prove that the algorithm is correct, let us first prove that
it is indeed a polynomial time algorithm.

We have 4m possible vertices, so we have O(m2) possible
pairs of vertices – and thus, O(m2) possible 4-tuples. Thus, we
have O(m2) possible representative x-lines, and we also have
O(m2) representative y-lines. In our algorithms, we consider
pairs consisting of a representative x-line and a representative
y-line. Since we have O(m2) x-lines and we have O(m2) y-
lines, we therefore have O(m2) · O(m2) = O(m4) possible
pairs consisting of a representative x-line and a representative
y-line.

For each pair of lines, we perform the following computa-
tions:

• First, need a constant number of steps to find the expres-
sion for each of m values Exj and each of n values Eyj

in terms of the parameters Ex, Ey , Kx, and Ky . So, we
need O(m) steps to find these expressions for all j.

• Then, we need linear time O(m) to form the correspond-
ing systems of four equations with four unknowns and
constant time O(1) to solve this system.

• Once this system is solved, and we know the correspond-
ing values Ex, Ey , kx, and ky, we need:

– a linear time O(m) to check whether each of 4m =
O(m) vertices is in the right position with respect to
the corresponding lines, and,

– if needed, linear time O(m) to compute the corre-
sponding value of the correlation ρ – by using the
above explicit formulas (1)-(6) describing how the
correlation ρ depends on Exj and Eyj .



Totally, for each pair of lines, we need

O(m) +O(m) +O(1) +O(m) +O(m) = O(m)

computational steps.
We need O(m) steps for each of O(m4) pairs of lines. Thus,

the total computation time of this algorithm is O(m4)·O(m) =
O(m5) – which is indeed polynomial in the size m of the
problem.

Case when the representative x-line coincides with the
representative y-line. If this common line intersects with
all m boxes [Exj , Exj ] × [Eyj , Eyj ], then, for each box,
we can select values Exj and Eyj for which the corre-
sponding point (Exj , Eyj) belongs to this line. Then, all
selected values (Exj , Eyj) follow the same linear dependence
Eyj = Ey + kx · (Exj − Ex) (as described by the common
lines). Therefore, for this selection, the correlation is 1. Since
ρ ≤ 1, this means that in this case, ρ = 1.

Remaining cases. Let us now prove that our algorithm is
correct for all other cases, when the x- and the y-lines are
different.

When a function attains maximum on the interval: known
facts from calculus. A function f(x) defined on an interval
[x, x] attains its maximum either at one of its endpoints, or in
some internal point of the interval. If it attains is maximum
at a point x ∈ (a, b), then its derivative at this point is 0:
df

dx
= 0.

If it attains its maximum at the point x = x, then we cannot

have
df

dx
> 0, because then, for some point x+∆x ∈ [x, x],

we would have a larger value of f(x). Thus, in this case, we

must have
df

dx
≤ 0.

Similarly, if a function f(x) attains its maximum at the

point x = x, then we must have
df

dx
≥ 0.

Computing the corresponding derivatives. Based on the

expression we had for Ex, we conclude that
∂Ex

∂Exj
= pj and

similarly
∂Ey

∂Eyj
= pj . Since the variance Vx can be described

in an equivalent form

Vx =
m∑
j=1

pjX
2
xj − E2

x +
m∑
j=1

pj · V xj ,

we get
∂Vx

∂Exj
= 2pj · (Exj −Ex). Similarly, we get

∂Vy

∂Eyj
=

2·pj ·(Eyj−Ey). The covariance can be equivalently rewritten
as

C =
m∑
j=1

pj · Exj · Eyj − Ex · Ey +
m∑
j=1

pj · Cj ,

hence
∂C

∂Exj
= pj · (Eyj − Ey) and

∂C

∂Eyj
= pj · (Exj − Ex).

So, for ρ =
C√

Vx ·
√
Vy

, we get

∂ρ

∂Exj
=

pj√
Vy · Vx

·
[
(Eyj − Ey) ·

√
Vx − C · Exj − Ex√

Vx

]
.

Since the standard deviations are always non-negative, the sign
of this derivative coincides with the sign of the value

(Eyj − Ey) ·
√
Vx − C · Exj − Ex√

Vx

.

Dividing this expression by a positive value
√
Vx, we conclude

that the sign of the derivative
∂ρ

∂Exj
coincides with the sign

of the expression (Eyj − Ey) − kx · (Exj − Ex), where we

denoted kx
def
=

C

Vx
.

Similarly, the sign of the derivative
∂ρ

∂Eyj
coincides with the

sign of the expression (Exj − Ex)− ky · (Eyj − Ey), where

we denoted ky
def
=

C

Vy
.

Let us apply the known facts from calculus to this situation.
Let Exj and Eyj be the values from the corresponding boxes
for which the correlation ρ attains its largest possible value
ρ > 0. Then, according to the above facts from calculus, we
have one of the three possible situations:

• Exj ∈ (Exj , Exj) and
∂ρ

∂Exj
= 0, i.e.,

Eyj = Ey + kx · (Exj − Ex);

• Exj = Exj and
∂ρ

∂Exj
≤ 0, i.e.,

Eyj ≤ Ey + kx · (Exj − Ex);

• Exj = Exj and
∂ρ

∂Exj
≥ 0, i.e.,

Eyj ≥ Ey + kx · (Exj − Ex).

Here, kx has the same sign as the correlation, so kx > 0. Let
us now consider possible locations of the box [Exj , Exj ] ×
[Eyj , Eyj ] with respect to the x-line

Eyj = Ey + kx · (Exj − Ex).

1◦. The first case is when the whole box [Exj , Exj ] ×
[Eyj , Eyj ] is above the x-line Eyj = Ey+kx ·(Exj−Ex), i.e.,
when Eyj > Ey + kx · (Exj − Ex) for all Eyj ∈ [Eyj , Eyj ]

and Exj ∈ [Exj , Exj ]. In this case, we cannot have Exj ∈
(Exj , Exj) and Exj = Exj , so we must have Exj = Exj .

On the segment Exj = Exj , we can apply the same
argument about the dependence on Eyj and conclude that we
can have one of the three possible situations:

• Eyj ∈ (Eyj , Eyj) and
∂ρ

∂Eyj
= 0, i.e.,

Exj = Ex + ky · (Eyj − Ey);



• Eyj = Eyj and
∂ρ

∂Eyj
≤ 0, i.e.,

Exj ≤ Ex + ky · (Eyj − Ey);

• Eyj = Eyj and
∂ρ

∂Eyj
≥ 0, i.e.,

Exj ≥ Ex + ky · (Eyj − Ey).

Here, ky has the same sign as the correlation, so ky > 0. Let
us now consider possible locations of the segment {Exj} ×
[Eyj , Eyj ] in relation to the y-line Exj = Ex+ky ·(Eyj−Ey).

1.1◦. The first subcase is when the whole segment is to the
left of the y-line, i.e., when Exj < Ex + ky · (Eyj − Ey)
for all Eyj ∈ [Eyj , Eyj ]. In this case, we cannot have Eyj ∈
(Eyj , Eyj) and we cannot have Eyj = Eyj , so we must have
Eyj = Eyj .

1.2◦. The second subcase is when the whole segment is to the
right of the y-line, i.e., when Exj > Ex + ky · (Eyj − Ey)
for all Eyj ∈ [Eyj , Eyj ]. In this case, we cannot have Eyj ∈
(Eyj , Eyj) and we cannot have Eyj = Eyj , so we must have
Eyj = Eyj .

1.3◦. The third subcase is when the segment intersects the y-
line, i.e., when Exj = Ex + ky · (E′

yj −Ey) for some E′
yj ∈

[Eyj , Eyj ]. As we have mentioned, there are three possibility
for the value Eyj at which the correlation attains its maximum:
the value for which Exj = Ex + ky · (Eyj − Ey), the value
Eyj , and the value Eyj .

1.3.1◦. In the first case (when Exj = Ex + ky · (Eyj −Ey)),
since ky > 0, there is only one value Eyj = E′

yj .

1.3.2◦. If Eyj ̸= E′
yj , then Eyj < E′

yj , and thus,

Ex + ky · (Eyj − Ey) < Ex + ky · (E′
yj − Ey) = Exj .

Thus, we have Exj > Ex + ky · (Eyj − Ey), so we cannot
have Exj ≤ Ex+ky ·(Eyj−Ey), and therefore, the maximum
cannot be attained for Eyj = Eyj .

1.3.3◦. If Eyj ̸= E′
yj , then E′

yj < Eyj , and thus,

Exj = Ex + ky · (E′
yj −Ey) < Ex + ky · (Eyj −Ey) = Exj .

Thus, we have Exj < Ex + ky · (Eyj − Ey), so we cannot
have Exj ≤ Ex + ky · (Eyj − Ey), and therefore, maximum
cannot be attained for Eyj = Eyj .

1.3.4◦. Therefore, in this third subcase, maximum can only be
attained at the point on the y-line.

2◦. The second case is when the whole box [Exj , Exj ] ×
[Eyj , Eyj ] is below the x-line Eyj = Ey + kx · (Exj − Ex),
i.e., when Eyj < Ey+kx ·(Exj−Ex) for all Eyj ∈ [Eyj , Eyj ]

and Exj ∈ [Exj , Exj ]. In this case, we cannot have Exj ∈
(Exj , Exj) and we cannot have Exj = Exj , so we must have
Exj = Exj .

On the segment Exj = Exj , we can apply the same
argument about the dependence on Eyj as in Part 1 of this
proof and come with the same conclusions.

3◦. Same arguments apply if the whole box is fully to the left
or to the right of the y-line. In this case, we have Eyj = Eyj

or Eyj = Eyj .

4◦. The only remaining case is when the box intersects both
with the x-line and with the y-line. In this case, similar to
Part 1.3 of this proof, we conclude that the point (Exj , Eyj)
corresponding to the optimal tuple belongs both to the x-
line and to the y-line. Thus, this point coincides with the
intersection of these two lines.

In general, the x-line has the form y−Ey = kx · (x−Ex).
The y-line has the form x − Ex = ky · (y − Ey), i.e.,

equivalently, y−Ey =
1

ky
· (x−Ex). Both lines pass through

the same point (Ex, Ey), but their slopes are, in general,

different: kx for the x-line and
1

ky
for the y-line. Thus, these

lines coincide if and only if kx =
1

ky
, i.e., if and only if

kx · ky = 1.

In general, ρ ≤ 1. Here, ρ =
C√

Vx ·
√

Vy

; thus, ρ =√
kx · ky , so kx · ky ≤ 1. If kx · ky < 1, then kx · ky ̸= 1 and

thus, the x-line and the y-line are different. So, the intersection
of these two lines is a single point (Ex, Ey). If kx · ky = 1,
this means that ρ = 1, and all the points (Exj , Eyj) are on
the same straight line – this is the case we have considered
above.
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