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Abstract—To enhance learning, it is desirable to also let
students learn from each other, e.g., by working in groups. It
is known that such groupwork can improve learning, but the
effect strongly depends on how we divide students into groups.
In this paper, we describe how to optimally divide students into
groups so as to optimize the resulting learning.

Index Terms—optimization, groupwork, uncertainty

I. INTRODUCTION

Groupwork as a way to teach better. Traditionally, students
mostly learn from their instructor. The instructor presents the
new material, asks the students to solve some related problems,
and then provides individual feedback to students – explaining,
to each student, his or her possible misunderstandings. Such
an individual feedback is extremely helpful to the student.
However, providing such an individual feedback requires a
lot of time – especially in a class of reasonable size. So, if
this feedback only comes from the instructor (and a Teaching
Assistant), the amount of such feedback is limited. Moreover,
in such situations, a significant amount of time is needed
to grade the assignments of the whole class, so there is a
significant delay between the test time and the time when
students get their feedback.

It is well known that we can increase the amount of
feedback – and decrease the delay of producing this feedback
– if we also ask students from the class to provide useful
feedback to each other. Different students have somewhat
different misconceptions, so when a small group of students
starts solving a problem together, they can often see each
other’s mistakes and provide corrections – thus, teaching each
other.

Groupwork is not a panacea. While in principle, groupwork
is efficient, its efficiency depends on how we divide students
into groups. If we simply allow students to group themselves
together, often, strong students team together and weak stu-
dents team together. Strong students already know the material,
so they do not benefit from working together. Similarly, weak
students are equally lost, so having them solve a problem
together does not help; see, e.g., [1], [2], [3], [4], [5], [6],
[8], [9], [10], [11].

How to divide students into groups? Since the efficiency of
groupwork depends on the subdivision into groups, to make
groupwork as efficient as possible, it is desirable to find the
optimal way to divide students into groups. This is the problem
that we study in this paper.

II. DESCRIPTION OF A MODEL

How to describe the current state of learning. In this paper,
we assume that for each student, the degree to which this
student learned the material can be characterized by a single
number – crudely speaking, this student’s grade so far. In the
following text, we will denote the number of students in the
class by n, and we will denote the degree of knowledge of the
i-th student by di, i = 1, . . . , n. So, we arrive at the following
definition.

Definition 1. Let n be an integer; we will call this integer a
number of students. By a state of knowledge, we mean a tuple
d = (d1, . . . , dn) consisting of n non-negative numbers.

Subdivision into groups. The following describes the general
subdivision into groups.

Definition 2. Let n be a number of students. By a subdivision
into groups, we mean a subdivision of the set {1, . . . , n} into
a finite number of non-intersecting subsets G1, . . . , Gm for

which Gk ∩Gl = ∅ for k ̸= l and
m∪

k=1

Gk = {1, . . . , n}.

In this paper, we will mostly consider subdivision into groups
of equal size.

How groupwork helps students: a description. If two
students with degrees di < dj work together, then the degree of
knowledge of the i-th student increases. As we have mentioned
earlier, if two students are at the same level of knowledge, there
is not much that they can learn from each other. The more the
j-th student knows that the i-th student doesn’t, the more the
i-th student will learn. So, it is reasonable to assume that the
amount of material that the i-th student learns is proportional
to the difference dj − di, with some known coefficient of
proportionality α. Thus, after the groupwork, the new level of
knowledge of the i-th student is equal to d′i = di+α·(dj−di).



If more than two students work together, then each student
learns from all the students from the group who have a higher
degree of knowledge. For example, if three students, with
original degrees of knowledge di < dj < dk, work together,
then after the groupwork, their new levels of knowledge are
equal to d′i = di+α·(dj−di)+(dk−di), d′j = dj+α·(dk−dj),
and d′k = dk. In general, we arrive at the following definition.

Definition 3. Let n be the number of students, and let α > 0 be
a real number. For each state of knowledge d = (d1, . . . , dn)
and for each subdivision into groups G1, . . . , Gm, the resulting
state of knowledge d′ = (d′1, . . . , d

′
n) is defined as follows: for

every k = 1, . . . ,m and for every i ∈ Gk, we have

d′i = di + α ·
∑

j∈Gk,dj>dj

(dj − di).

Dynamic groups. Subdivision into groups varies. Our ob-
jective is to find the subdivision which, at this moment of
time, leads to the best gain. From this viewpoint, we need
to find groups that work for a forthcoming short period of
time, during which the change in grades – proportional to the
coefficient α – is small. After this brief interaction, we can
again gauge the student’s knowledge and, of needed, change
the subdivision into groups to reflect what students learned.
From this viewpoint, it is sufficient to consider small positive
values α.

Possible objective functions. Our goal is to find a subdivision
into groups for which the overall degree of knowledge is
optimal. This optimal subdivision depends on how we gauge
the overall degree of knowledge. In this paper, we will consider
three possible criteria (see, e.g., [7]):

• first, we will consider the average grade a
def
=

1

n
·

n∑
i=1

di;

• another reasonable criterion is maximizing retention, i.e.,
minimizing the number of students who failed the course;
in this case, most attention is paid to students who are at
the largest risk of failing, i.e., to students with the smallest
possible degree of knowledge; the better the knowledge
of this worst performing student, the smaller the risk of
failing; thus, from this viewpoint, we should maximize
the worst grade w

def
= min

i=1,...,n
di;

• many high schools brag about the number of their
graduates who get into Ivy League colleges; from this
viewpoint, most attention is paid to the best students;
from this viewpoint, we should maximize the best grade
b

def
= max

i=1,...,n
di.

We will consider all three optimality criteria – and their
combinations.

III. STRAIGHTFORWARD RESULTS

Let us consider the situation when we have n = g · m
students, we know their degree of knowledge d1, . . . , dn, and
we want to subdivide these students into m subgroups of

g students so as to maximize each of the three objective
functions. Let us start with the simplest case g = 2, when
we divide students into pairs.

Proposition 1. To maximize the average grade a, we divide
the students into pairs as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• in each pair, we match one student from the lower half

L0
def
= {d1, d2, . . . , dn/2}

with one student from the upper half

L1
def
= {d(n/2)+1, . . . ≤ dn}.

Comment. For reader’s convenience, all the proofs are placed
in the special Proofs section.

Proposition 2. To maximize the worst grade w, we divide the
students into pairs as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we pair the worst-performing student (corresponding
to d1) with the best-performing student (corresponding
to dn), and,

• if there are other students with di = d1, we match them
with dn−1, dn−2, etc.

Other students can be paired arbitrarily.

If we try to optimize the best grade, subdivision is useless:
no matter how we subdivide the students, in this model, the
best grade does not change; this is true for any group size
g ≥ 2:

Proposition 3. No subdivision will improve the best grade b.

For average-grade and worst-grade optimization, similar
results hold for groups of general size g ≥ 2:

Proposition 4. For every g ≥ 2, to maximize the average grade
a, we divide the students into groups as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• based on this sorting, divide the students into g sets:

L0 = {d1, d2, . . . , dn/g}; . . .

Lk = {dk·(n/g)+1, . . . , d(k+1)·(n/g)}, . . . ,

Lg−1 = {d(g−1)·(n/g)+1, . . . , dn};

• in each group, we pick one student from each of g sets
L0, L1, . . . , Lg−1.

Editorial comment. For reader’s convenience, all the proofs are
placed in the special Proofs section.



Comment. If we measure the students’ performance accurately
enough, then the degrees of knowledge of different students
are different. In this case, we have the following result.

Proposition 5. If all students’ degree di are different, then,
to maximize the worst grade w, we divide the students into
groups as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we combine the worst-performing student (corresponding
to d1) with g−1 best-performing students (corresponding
to dn, dn−1, . . . , dn−2).

Other students can be grouped arbitrarily.

Comment. The proposition also holds if several students have
the same degree – as long as there is only one worst-
performing student. If there are several equally low-performing
students d1 = d2 = . . . = ds, then we need to divide
(g − 1) · s top-performing students into s subgroups of g − 1
so as to maximize the minimum of the overall grade within
each subgroups. Then, each of the low-performing students is
matched with one of these subgroups.

IV. MORE NUANCED OPTIMALITY CRITERIA

Discussion. When we use the above optimality criteria such
as average grade, worst grade, or best grade, we end up
with several different subdivisions which lead to the same
optimal value of the selected criterion. We can use this non-
uniqueness to optimize something else. In other words, instead
of the original optimality criterion, we consider a lexicographic
combination of these criteria. For example, we say that one
subdivision is better than another one if either its average grade
a is better (a > a′), or they have the same average grade a = a′

but the first subdivision has a better worst grade w > w′. Here
are some related results.

Proposition 6. Let us assume that we perform the following
optimization:

• first, we optimize the average grade;
• if there are several subdivisions for which the average

grade is optimal, then, among all the subdivisions, we
select the one for which the worst grade is the largest;

• if we have several subdivisions with the largest worst
grade, we select the one with the largest second worst
grade,

• etc.
Then, for g = 2, the following subdivision is optimal:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we then match d1 with dn, d2 with dn−1, and, in general,
dk with dn+1−k.

Comment. For group size g = 2, we get the exact same
subdivision if we first maximize w, then a, and/or then
maximize the second-worst grade, etc.

Proposition 7. Let us assume that we perform the following
optimization:

• first, we optimize the average grade;
• if there are several subdivisions for which the average

grade is optimal, then, among all the subdivisions, we
select the one for which the worst grade is the largest;

• if we have several subdivisions with the largest worst
grade, we select the one with the largest second worst
grade,

• etc.
Then, for g ≥ 2, if all the degrees are different, the following
subdivision is optimal:

• we sort the students by their knowledge, so that

d1 < d2 < . . . < dn,

• based on this sorting, divide the students into g sets:

L0 = {d1, d2, . . . , dn/g}; . . .

Lk = {dk·(n/g)+1, . . . , d(k+1)·(n/g)}, . . . ,

Lg−1 = {d(g−1)·(n/g)+1, . . . , dn};

• we match the smallest value d1 ∈ L0 with the largest
values from L1, . . . , Lg−1,

• we match the second smallest value d2 ∈ L0 with the
second largest values from L1, . . . , Lg−1,

• in general, we match di ∈ L0 with the values
d(k+1)·(n/g)+1−k ∈ Lk for k = 1, . . . , g − 1.

V. A MORE NUANCED MODEL

Main idea. In the above analysis, we used a simplified model
in which only the weaker students, with di < dj , benefit from
the groupwork. In reality, stronger students, with dj > di,
benefit too: when they explain the material to the weaker
students, they reinforce their knowledge, and they may see the
gaps in their knowledge that they did not see earlier. The larger
the difference dj − di, the more the stronger student needs
to explain and thus, the more this stronger student reinforces
his or her knowledge. It is therefore reasonable to assume
that the resulting increase in knowledge is proportional to the
difference dj − di, with a different coefficient β > 0. Thus,
we arrive at the following definition:

Definition 4. Let n be the number of students, and let α > 0
and β > 0 be real numbers. For each state of knowledge d =
(d1, . . . , dn) and for each subdivision into groups G1, . . . , Gm,
the resulting state of knowledge d′ = (d′1, . . . , d

′
n) is defined

as follows: for every k = 1, . . . ,m and for every i ∈ Gk, we
have

d′i = di + α ·
∑

j∈Gk,dj>dj

(dj − di) + β ·
∑

j∈Gk,di>dj

(di − dj).

It turns out that if we maximize either the average grade or
the worst grade, then the optimal subdivisions are exactly the
same as for the previously used (less nuanced) model:



Proposition 8. In the model described by Definition 4, to
maximize the average grade a, we divide the students into
pairs as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• in each pair, we match one student from the lower half

L0
def
= {d1, d2, . . . , dn/2}

with one student from the upper half

L1
def
= {d(n/2)+1, . . . ≤ dn}.

Proposition 9. In the model described by Definition 4, for
every g ≥ 2, to maximize the average grade a, we divide the
students into groups as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• based on this sorting, divide the students into g sets:

L0 = {d1, d2, . . . , dn/g}; . . .

Lk = {dk·(n/g)+1, . . . , d(k+1)·(n/g)}, . . . ,

Lg−1 = {d(g−1)·(n/g)+1, . . . , dn};

• in each group, we pick one student from each of g sets
L0, L1, . . . , Lg−1.

Proposition 10. In the model described by Definition 4, to
maximize the worst grade w, we divide the students into pairs
as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we pair the worst-performing student (corresponding
to d1) with the best-performing student (corresponding
to dn), and,

• if there are other students with di = d1, we match them
with dn−1, dn−2, etc.

Other students can be paired arbitrarily.

Proposition 11. In the model described by Definition 4, if all
students’ degree di are different, then, to maximize the worst
grade w, we divide the students into groups as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we combine the worst-performing student (corresponding
to d1) with g−1 best-performing students (corresponding
to dn, dn−1, . . . , dn−2).

Other students can be grouped arbitrarily.

Proposition 12. Let us assume that we perform the following
optimization:

• first, we optimize the average grade;

• if there are several subdivisions for which the average
grade is optimal, then, among all the subdivisions, we
select the one for which the worst grade is the largest;

• if we have several subdivisions with the largest worst
grade, we select the one with the largest second worst
grade,

• etc.
Then, in the model described by Definition 4, for g = 2, the
following subdivision is optimal:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we then match d1 with dn, d2 with dn−1, and, in general,
dk with dn+1−k.

Proposition 13. Let us assume that we perform the following
optimization:

• first, we optimize the average grade;
• if there are several subdivisions for which the average

grade is optimal, then, among all the subdivisions, we
select the one for which the worst grade is the largest;

• if we have several subdivisions with the largest worst
grade, we select the one with the largest second worst
grade,

• etc.
Then, in the model described by Definition 4, for g ≥ 2, if all
the degrees are different, the following subdivision is optimal:

• we sort the students by their knowledge, so that

d1 < d2 < . . . < dn,

• based on this sorting, divide the students into g sets:

L0 = {d1, d2, . . . , dn/g}; . . .

Lk = {dk·(n/g)+1, . . . , d(k+1)·(n/g)}, . . . ,

Lg−1 = {d(g−1)·(n/g)+1, . . . , dn};

• we match the smallest value d1 ∈ L0 with the largest
values from L1, . . . , Lg−1,

• we match the second smallest value d2 ∈ L0 with the
second largest values from L1, . . . , Lg−1,

• in general, we match di ∈ L0 with the values
d(k+1)·(n/g)+1−k ∈ Lk for k = 1, . . . , g − 1.

Interestingly, now we can optimize the best grade b. For g = 2,
the result is the same as for optimizing worst grades, but for
g > 2, the result is different:

Proposition 14. In the model described by Definition 4, to
maximize the best grade w, we divide the students into pairs
as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we pair the best-performing student (corresponding to dn)
with the worst-performing student (corresponding to d1),
and,



• if there are other students with di = dn, we match them
with d2, d3, etc.

Other students can be paired arbitrarily.

Proposition 15. In the model described by Definition 4, if all
students’ degree di are different, then, to maximize the worst
grade w, we divide the students into groups as follows:

• we sort the students by their knowledge, so that

d1 ≤ d2 ≤ . . . ≤ dn,

• we combine the best-performing student (corresponding
to dn) with g−1 worst-performing students (correspond-
ing to d1, d2, . . . , dg−1).

Other students can be grouped arbitrarily.

VI. CASE OF UNCERTAINTY

In practice, we rarely know the exact values of di, we
only know approximately values d̃i – and, e.g., we know
the accuracy ∆ of these estimates, i.e., we know that di ∈
[d̃i −∆, x̃i +∆]. In this case, we do not know the exact gain,
so it is reasonable to select a “maximin” subdivision, i.e., a
subdivision for which the guaranteed (= worst-case) gain is
the largest. One can prove that the subdivisions obtained by
applying the above algorithms to the approximate value d̃i are
optimal in this minimax sense as well.

VII. PROOFS

Proof of Proposition 1.

1◦. First, we note that maximizing the average grade is

equivalent to maximizing the sum n · a =
n∑

i=1

g′i of the new

grades, which is, in turn, equivalent to maximizing the overall

gain
n∑

i=1

g′i −
n∑

i=1

gi =
n∑

i=1

(g′i − gi).

2◦. Let us take the optimal subdivision, and show that it has
the form described in the formulation of Proposition 1.

Indeed, in each pair, with degrees di ≤ dj , we have a
weaker student i and a stronger student j. Let us prove that
the optimal subdivision into groups, each stronger student is
stronger (or of the same strength) than each weaker student.
In other words, if we have two pairs di ≤ dj and di′ ≤ dj′ ,
then di ≤ dj′ . We will prove this by contradiction. Let us
assume that di > dj′ . Let us then swap the i-th and the
j′-th students, i.e., instead of the original pairs (i, j) and
(i′, j′), let us consider two new pairs (i, j′) and (i′, j). The
corresponding two terms in the overall gain are changed from
α·(dj+dj′−di−di′) to α·(dj−dj′+di−di′). The difference
between the two expressions is equal to 2α · (di − dj′). Since
we assumed that di > dj′ , this difference is positive, which
means that the above swap increases the overall gain. The
possibility of such an increase contradicts to the fact that we
have selected the subdivision for which the overall gain is
already the largest possible. This contradiction shows that our
assumption di > dj′ is wrong, and thus, di ≤ dj′ .

Since every weaker-of-pair student is weaker than every
stronger-of-pair student, all weaker-of-pair students form the

bottom of the ordering of the degrees di, while all the stronger-
of-pair students form the top of this ordering – exactly as the
formulation of Proposition 1 suggests.

3◦. To complete the proof, we need to prove that every
subdivision satisfying the condition of Proposition 1 leads to
the optimal average grade. Indeed, we know that one optimal
subdivision satisfies this condition. One can check that for each
such subdivision, the overall gain is equal to

∑
i∈L1

di−
∑

j∈L0

dj ,

where L1 is the set of all the indices i from the upper half, and
L0 is the set of all the indices from the lower half. Thus, the
overall gain for all such subdivisions is the same – and it is
therefore exactly equal to the gain corresponding to the optimal
subdivision. So, all subdivisions satisfying the condition of
Proposition 1 indeed lead to the optimal average grade.

The proposition is proven.

Proof of Proposition 2. The worst grade w is the grade of
the worst-performing student. For each of these students i, the
larger the difference dj−di, the more their grade will increase.
So, if there is only one such student, we pair him or her
with the best-performing one. If there are other students with
the same worst grade, we pair them with the best-performing
among the not-yet-paired students, etc.

Proof of Proposition 3. One can easily see that in the above
model, in each group, the largest grade does not change. So,
the best grade b, which is the largest of the group-wide best
grades – also does not change.

Proof of Proposition 4.

1◦. Let us first prove that an optimal group subdivision satisfies
the property described in the formulation of Proposition 4.
Indeed, let us start with an optimal subdivision. Within each
group, we can sort its g students in the increasing order of
their grades; thus, every student gets assigned a rank in the
corresponding group. Now, we can prove that for every two
ranks r < r′, a grade of a student of rank r is always less than
or equal to the grade of a student of rank r′ – even when they
are from different groups. Similarly to the proof of Proposition
1, this can be proven by contradiction: if a grade di of a student
of rank r is larger than the grade dj of a student of rank r′,
then we can swap these two students and improve the overall
gain.

2◦. To complete the proof, we must show that for all sub-
divisions that satisfy the condition from the formulation of
Proposition 4, the gain is the same. Indeed, the overall gain
is equal to the sum of gains obtained in each group. Let us
therefore calculate the gain in each group.

For g = 3, once we have di ≤ dj ≤ dk, the gain is equal
to α times the sum

(dk − dj) + (dk − di) + (dj − di) = 2dk − 2di.

Thus, the overall gain is equal to 2
∑

i∈L2

di − 2
∑

i∈L0

di, and

hence, it indeed does not depend on the subdivision – as long



as the subdivision satisfies the condition from the formulation
of Proposition 4.

For g = 4, once we have di ≤ dj ≤ dk ≤ dl, the gain is
equal to

(dl−dk)+(dl−dj)+(dl−di)+(dk−dj)+(dk−di)+(dj−di) =

3dl + dk − dj − 3di.

Thus, the overall gain is equal to

3
∑
i∈L3

di +
∑
i∈L2

di −
∑
i∈L1

di − 3
∑
i∈L0

di.

For a general group size g, one can prove, by induction,
that once we have di1 ≤ . . . ≤ dig , then the gain of this group
is equal to

(g − 1) · dig + (g − 3) · dig−1 + . . .+

(2k − g − 1) · dik + . . .

−(g − 3) · di2 − (g − 1) · di1 .

Thus, the overall gain is equal to

(g − 1) ·
∑

i∈Lg−1

di + (g − 3) ·
∑

i∈Lg−2

di + . . .+

(2k − g + 1) ·
∑
i∈Lk

di + . . .

−(g − 3) ·
∑
i∈L1

di − (g − 1) ·
∑
i∈L0

di.

So, the sum does not depend on the subdivision – as long as
the subdivision satisfies the condition from the formulation of
Proposition 4.

The statement is proven, and so is the proposition.

Proof of Proposition 5 (and of the Comment after Proposi-
tion 5) is similar to the proof of Proposition 2.

Proof of Proposition 6 (and of the Comment after Propo-
sition 6). According to Proposition 1, we select between
subdivisions in which in each pair, one element is taken from
the lower half L0 and the other element is taken from the upper
half L1. Similarly to the proof of Proposition 2, among such
subdivisions, we select a one for which the student with the
smallest grade d1 is matched with the student with the largest
grade dn. To maximize the smallest of the remaining grades,
we need to match the smallest of the remaining grades d2 with
the largest of the remaining grades dn−1, etc. The proposition
is proven.

Proof of Proposition 7. According to Proposition 4, we select
between subdivisions in which in each group, one element
is taken from the lower set L0 and one element is taken
from upper-level sets L1, . . . , Lg−1. Similarly to the proof of
Proposition 2, among such subdivisions, we select a one for
which the student with the smallest grade d1 is matched with
the students with the largest grades from the sets L1, . . . , Lg−1.
To maximize the smallest of the remaining grades, we need to

match the smallest of the remaining grades d2 with the largest
of the remaining grades, etc. The proposition is proven.

Proof of Propositions 8–13. We have already mentioned, in
the proof of Proposition 1, that optimizing the average grade
is equivalent to optimizing the overall gain.

In model described by Definition 4, the gain coming from
interaction between the i-th and the j-the students with di < dj
is equal to

α · (dj − di) + β · (dj − di) = α′ · (dj − di),

where α′ def
= α+ β. Thus, in the new model, the overall gain

is described by the same formula as in the old model, but
with a new coefficient α′ instead of the original coefficient α.
Since the formula for the overall gain is the same, the optimal
subdivisions are also the same.

With respect to optimizing worst grades, the relation with
the original model is even easier: the new formula does
not change the grades of the worst-performing students. The
propositions are thus proven.

Proof of Propositions 14–15 is similar to the proof of
Proposition 2.
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