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Abstract

Traditional decision theory is based on a simplifying assumption that for each two alterna-
tives, a user can always meaningfully decide which of them is preferable. In reality, often, when
the alternatives are close, the user is either completely unable to select one of these alternatives,
or selects one of the alternatives only “to some extent”. How can we extend the traditional
decision theory to such realistic interval and fuzzy cases? In their previous papers, the first two
authors proposed a natural generalization of the usual decision theory axioms to interval and
fuzzy cases, and described decision coming from this generalization. In this paper, we make the
resulting decisions more intuitive by providing commonsense operational explanation.

Introduction. Traditional decision theory is based on a simplifying assumption that for each
two alternatives, a user can always meaningfully decide which of them is preferable. In reality,
often, when the alternatives are close, the user is either completely unable to select one of these
alternatives, or selects one of the alternatives only “to some extent”. How can we extend the
traditional decision theory to such realistic interval and fuzzy cases?

In their papers [1, 2, 3, 4, 5, 6, 7, 8, 9], summarized in [10], the first two authors proposed a
natural generalization of the usual decision theory axioms to interval and fuzzy cases, and described
decision coming from this generalization.

In this paper, we make the resulting decisions more intuitive by providing commonsense oper-
ational explanation. This paper is structured as follows: first, we recall the main ideas and results
of the traditional decision theory. We then consider the case when in addition to deciding which
of the two alternatives is better, the user can also reply that he/she is unable to decide between
the two close alternatives; this leads to interval uncertainty. Finally, we consider the general case
when the user makes fuzzy statements about preferences.

Traditional decision theory: brief reminder. Following [11, 13, 14], let us describe the main
ideas and results of the traditional decision theory.

Main assumption behind the traditional decision theory. Let us assume that for every
two alternatives A′ and A′′, a user can tell:

• whether the first alternative is better for him/her; we will denote this by A′′ < A′;
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• or the second alternative is better; we will denote this by A′ < A′′;

• or the two given alternatives are of equal value to the user; we will denote this by A′ = A′′.

The notion of utility. Under the above assumption, we can form a natural numerical scale for
describing attractiveness of different alternatives. Namely, let us select a very bad alternative A0

and a very good alternative A1, so that most other alternatives are better than A0 but worse than
A1. Then, for every probability p ∈ [0, 1], we can form a lottery L(p) in which we get A1 with
probability p and A0 with the remaining probability 1− p.

When p = 0, this lottery simply coincides with the alternative A0: L(0) = A0. The larger
the probability p of the positive outcome increases, the better the result, i.e., p′ < p′′ implies
L(p′) < L(p′′). Finally, for p = 1, the lottery coincides with the alternative A1: L(1) = A1. Thus,
we have a continuous scale of alternatives L(p) that monotonically goes from A0 to A1.

We have assumed that most alternatives A are better than A0 but worse than A1: A0 < A < A1.
Since A0 = L(0) and A1 = L(1), for such alternatives, we thus get L(0) < A < L(1). We assumed
that every two alternatives can be compared. Thus, for each such alternative A, there can be
at most one value p for which L(p) = A; for others, we have L(p) < A or L(p) > A. Due to
monotonicity of L(p) and transitivity of preference, if L(p) < A, then L(p′) < A for all p′ ≤ p;
similarly, if A < L(p), then A < L(p′) for all p′ > p. Thus, the supremum (= least upper bound)
u(A) of the set of all p for which L(p) < A coincides with the infimum (= greatest lower bound)
of the set of all p for which A < L(p). For p < u(A), we have L(p) < A, and for for p > u(A), we
have A < L(p). This value u(A) is called the utility of the alternative A.

It may be possible that A is equivalent to L(u(A)); however, it is also possible that A ̸= L(u(A)).
However, the difference between A and L(u(A)) is extremely small: indeed, no matter how small
the value ε > 0, we have L(u(A)−ε) < A < L(u(A)+ε). We will describe such (almost) equivalence
by ≡, i.e., we write that A ≡ L(u(A)).

How can we actually find utility values. The above definition of utility is somewhat the-
oretical, but in reality, utility can be found reasonably fast by the following iterative bisection
procedure.

We want to find the probability u(A) for which L(u(A)) ≡ A. On each stage of this procedure,
we have the values u < u for which L(u) < A < L(u). In the beginning, we have u = 0 and u = 1,
with |u− u| = 1.

To find the desired probability u(A), we compute the midpoint ũ =
u+ u

2
and compare the

alternative A with the corresponding lottery L(ũ). Based on our assumption, there are three
possible results of this comparison:

• if the user concludes that L(ũ) < A, then we can replace the previous lower bound u with
the new one p̃;

• if the user concludes that A < L(ũ), then we can replace the original upper bound u with the
new one ũ;

• finally, if A = L(ũ), this means that we have found the desired probability u(A).

In this third case, we have found u(A), so the procedure stops. In the first two cases, the new
distance between the bounds u and u is the half of the original distance. By applying this procedure
k times, we get values u and u for which L(u) < A < L(u) and |u − u| ≤ 2−k. One can easily
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check that the desired value u(A) is within the interval [u, u], so the midpoint ũ of this interval is
an 2−(k+1)-approximation to the desired utility value u(A).

In other words, for any given accuracy, we can efficiently find the corresponding approximation
to the utility u(A) of the alternative A.

How to make a decision based on utility values. If we know the utilities u(A′) and u(A′′)
of the alternatives A′ and A′′, then which of these alternatives should we choose? By definition
of utility, we have A′ ≡ L(u(A′)) and A′′ ≡ L(u(A′′)). Since L(p′) < L(p′′) if and only if p′ < p′′,
we can thus conclude that A′ is preferable to A′′ if and only if u(A′) > u(A′′). In other words, we
should always select an alternative with the largest possible value of utility.

How to estimate utility of an action: why expected utility. To apply the above idea to
decision making, we need to be able to compute utility of different actions. For each action, we
usually know possible outcomes S1, . . . , Sn, and we can often estimate the probabilities p1, . . . , pn,
n∑

i=1
pi = 1, of these outcomes. Let u(S1), . . . , u(Sn) be utilities of the situations S1, . . . , Sn. What

is then the utility of the action?
By definition of utility, each situation Si is equivalent (in the sense of the relation ≡) to a

lottery L(u(Si)) in which we get A1 with probability u(Si) and A0 with the remaining probability
1− u(Si). Thus, the action in which we get Si with probability pi is equivalent to complex lottery
in which:

• first, we select one of the situations Si with probability pi: P (Si) = pi;

• then, depending on the selected situation Si, we get A1 with probability u(Si) and A0 with
probability 1− u(Si): P (A1 |Si) = u(Si) and P (A0 |Si) = 1− u(Si).

In this complex lottery, we end up either with the alternative A1 or with the alternative A0. The
probability of getting A1 can be computed by using the complete probability formula:

P (A1) =
n∑

i=1

P (A1 |Si) · P (Si) =
n∑

i=1

u(Si) · pi.

Thus, the original action is equivalent to a lottery in which we get A1 with probability
n∑

i=1
pi ·u(Si)

and A0 with the remaining probability. By definition of utility, this means that the utility of our

action is equal to
n∑

i=1
pi · u(Si).

In probability theory, this sum is known as the expected value of utility u(Si). Thus, we can
conclude that the utility of each action is equal to its expected utility; in other words, among several
possible actions, we should select the one with the largest value of expected utility.

Non-uniqueness of utility. The above definition of utility depends on a selection of two alter-
natives A0 and A1. What if we select different alternatives A′

0 and A′
1? How will utility change?

In other words, if A is an alternative with utility u(A) in the scale determined by A0 and A1, what
is its utility u′(A) in the scale determined by A′

0 and A′
1?

Let us first consider the case when A′
0 < A0 < A1 < A′

1. In this case, since A0 is in between A′
0

and A′
1, for each of them, there exists a probability u′(A0) for which A0 is equivalent to a lottery

L′(u′(A0)) in which we get A′
1 with probability u′(A0) and A′

0 with the remaining probability
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1 − u′(A0). Similarly, there exists a probability u′(A1) for which A1 is equivalent to a lottery
L′(u′(A1)) in which we get A′

1 with probability u′(A1) and A′
0 with the remaining probability

1− u′(A1).
By definition of the utility u(A), the original alternative A is equivalent to a lottery in which we

get A1 with probability u(A) and A0 with the remaining probability 1−u(A). Here, A1 is equivalent
to the lottery L′(u′(A1)), and A0 is equivalent to the lottery L′(u′(A0)). Thus, the alternative A is
equivalent to a complex lottery, in which:

• first, we select A1 with probability u(A) and A0 with probability 1− u(A);

• then, depending on the selection Ai, we get A′
1 with probability u′(Ai) and A′

0 with the
remaining probability 1− u′(Ai).

In this complex lottery, we end up either with the alternative A′
1 or with the alternative A′

0.
The probability u′(A) = P (A′

1) of getting A′
1 can be computed by using the complete probability

formula:

u′(A) = P (A′
1) = P (A′

1 |A1) · P (A1) + P (A′
1 |A0) · P (A0) = u′(A1) · u(A) + u′(A0) · (1− u(A)) =

u(A) · (u′(A1)− u′(A0)) + u′(A0).

Thus, the original alternative A is equivalent to a lottery in which we get A′
1 with probability

u′(A) = u(A) · (u′(A1) − u′(A0)) + u′(A0). By definition of utility, this means that the utility
u′(A) of the alternative A in the scale determined by the alternatives A′

0 and A′
1 is equal to

u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).
Thus, in the case when A′

0 < A0 < A1 < A′
1, when we change the alternatives A0 and A1, the

new utility values are obtained from the old ones by a linear transformation. In other cases, we
can use auxiliary events A′′

0 and A′′
1 for which A′′

0 < A0, A
′
0 and A1, A

′
1 < A′′

1. In this case, as we
have proven, transformation from u(A) to u′′(A) is linear and transformation from u′(A) to u′′(A)
is also linear. Thus, by combining linear transformations u(A) → u′′(A) and u′′(A) → u′(A), we
can conclude that the transformation u(A) → u′(A) is also linear.

So, in general, utility is defined modulo an (increasing) linear transformation u′ = a ·u+ b, with
a > 0.

Comment. So far, once we have selected alternatives A0 and A1, we have defined the corresponding
utility values u(A) only for alternatives A for which A0 < A < A1. For such alternatives, the utility
value is always a number from the interval [0, 1].

For other alternatives, we can define their utility u′(A) with respect to different pairs A′
0 and

A′
1, and then apply the corresponding linear transformation to re-scale to the original units. The

resulting utility value u(A) can now be an arbitrary real number.

Subjective probabilities. In our derivation of expected utility, we assumed that we know the
probabilities pi of different outcomes. In practice, we often do not know these probabilities, we
have to rely on a subjective evaluation of these probabilities. For each event E, a natural way to
estimate its subjective probability is to compare the lottery ℓ(E) in which we get a fixed prize (e.g.,
$1) if the event E occurs and 0 is it does not occur, with a lottery ℓ(p) in which we get the same
amount with probability p. Here, similarly to the utility case, we get a value ps(E) for which ℓ(E)
is (almost) equivalent to ℓ(ps(E)) in the sense that ℓ(ps(E) − ε) < ℓ(E) < ℓ(ps(E) + ε) for every
ε > 0. This value ps(E) is called the subjective probability of the event E.
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From the viewpoint of decision making, each event E is equivalent to an event occurring with
the probability ps(E). Thus, if an action has n possible outcomes S1, . . . , Sn, in which Si happens

if the event Ei occurs, then the utility of this action is equal to
n∑

i=1
ps(Ei) · u(Si).

Beyond traditional decision making: towards a more realistic description. Instead of
assuming that a user can always decide which of the two alternatives A′ and A′′ is better, let us
now consider a more realistic situation in which a user is allowed to say that he or she is unable to
meaningfully decide between the two alternatives; we will denote this option by A′ ∥ A′′.

In mathematical terms, this means that the preference relation is no longer a total (linear)
order, it can be a partial order.

From utility to interval-valued utility. Similarly to the traditional decision making approach,
we can select two alternatives A0 < A1 and compare each alternative A which is better than A0

and worse than A1 with lotteries L(p). The main difference is that here, the supremum u(A) of all
the values p for which L(p) < A is, in general, smaller than the infimum u(A) of all the values p
for which A < L(p). Thus, for each alternative A, instead of a single value u(A) of the utility, we
now have an interval [u(A), u(A)] such that:

• if p < u(A), then L(p) < A;

• if p > u(A), then A < L(p); and

• if u(A) < p < u(A), then A ∥ L(p).

We will call this interval the utility of the alternative A.

How to efficiently find the interval-valued utility. To elicit the corresponding utility interval
from the user, we can use a slightly modified version of the above bisection procedure. At first,
the procedure is the same as before: namely, we produce a narrowing interval [u, u] for which
L(u) < A < L(u).

We start with the interval [u, u] = [0, 1], and we repeatedly compute the midpoint ũ =
u+ u

2
and compare A with L(ũ). If L(ũ) < A, we replace u with ũ; if A < L(ũ), we replace u with ũ. If
we get A ∥ L(p̃), then we switch to the new second stage of the iterative algorithm. Namely, now,
we have two intervals:

• an interval [u1, u1] (which is currently equal to [u, ũ]) for which L(u1) < A and L(ũ1) ∥ A,
and

• an interval [u2, u2] (which is currently equal to [ũ, u]) for which L(u2) ∥ A and A < L(u2).

Then, we perform bisection of each of these two intervals. For the first interval, we compute the

midpoint ũ1 =
u1 + u1

2
, and compare the alternative A with the lottery L(ũ1):

• if L(ũ1) < A, then we replace u1 with ũ1;

• if L(ũ1) ∥ A, then we replace u1 with ũ1.

As a result, after k iterations, we get the value u(A) with accuracy 2−k.

Similarly, for the second interval, we compute the midpoint ũ2 =
u2 + u2

2
, and compare the

alternative A with the lottery L(ũ2):
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• if L(ũ2) ∥ A, then we replace u2 with ũ2;

• if A < L(ũ2), then we replace u2 with ũ2.

As a result, after k iterations, we get the value u(A) with accuracy 2−k.

Interval-valued subjective probability. Similarly, when we are trying to estimate the prob-
ability of an event E, we no longer get a single value ps(E), we get an interval [ps(E), ps(E)] of
possible values of probability.

Need for decision making under interval uncertainty. In the traditional approach, for each
alternative A, we produce a number u(A) – the utility of this alternative. Then, an alternative A′

is preferable to the alternative A′′ if and only if u(A′) > u(A′′).
How can we make a similar decision in situations when we only know interval-valued proba-

bilities? At first glance, the situation may sound straightforward: if A′ ∥ A′′, it does not matter
whether we select A′ or A′′. However, this is not a good way to make a decision. For example, let
us assume that there is an alternative A about which we know nothing. In this case, we have no
reason to prefer A or L(p), so we have A ∥ L(p) for all p. By definition of u(A) and u(A), this
means that we have u(A) = 0 and u(A) = 1, i.e., the alternative A is characterized by the utility
interval [0, 1].

In this case, the alternative A is indistinguishable both from a good lottery L(0.999) (in which
the good alternative A1 appears with probability 99.9%) and from a bad lottery L(0.001) (in which
the bad alternative A0 appears with probability 99.9%). If we recommend, to the user, that A is
equivalent both to to L(0.999) and L(0.001), then this user will feel comfortable exchanging his
chance to play in the good lottery with A, and then – following the same logic – exchanging A with
a chance to play in a bad lottery. As a result, following our recommendations, the user switches
from a very good alternative to a very bad one.

This argument does not depend on the fact that we assumed complete ignorance about A. Every
time we recommend that the alternative A is equivalent to L(p) and L(p′) with two different values
p < p′, we make the user vulnerable to a similar switch from a better alternative L(p′) to a worse
one L(p). Thus, there should be only a single value p for which A can be reasonably exchanged
with L(p).

In precise terms: we start with the utility interval [u(A), u(A)], and we need to select a single
utility value u for which it is reasonable to exchange the alternative A with a lottery L(u). How
can we find this value u?

How to make decisions under interval uncertainty: Hurwicz optimism-pessimism cri-
terion. The problem of decision making under such interval uncertainty was first handled by the
future Nobelist L. Hurwicz in [12].

We need to assign, to each interval [u, u], a utility value u(u, u).
No matter what value u we get from this interval, this value will be larger than or equal to u

and smaller than or equal to u. Thus, the equivalent utility value u(u, u) must satisfy the same
inequalities: u ≤ u(u, u) ≤ u. In particular, for u = 0 and u = 1, we get 0 ≤ αH ≤ 1, where we

denoted αH
def
= u(0, 1).

We have mentioned that the utility is determined modulo a linear transformation u′ = a ·u+ b.
It is therefore reasonable to require that the equivalent utility does not depend on what scale we
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use, i.e., that for every a > 0 and b, we have

u(a · a+ b, a · u+ b) = a · u(u, u) + b.

In particular, for u = 0 and u = 1, we get

u(b, a+ b) = a · u(0, 1) + b = a · αH + b.

So, for every u and u, we can take b = u, a = u− u, and get

u(u, u) = u+ αH · (u− u) = αH · u+ (1− αH) · u.

This expression is called Hurwicz optimism-pessimism criterion, because:

• when αH = 1, we make a decision based on the most optimistic possible values u = u;

• when αH = 0, we make a decision based on the most pessimistic possible values u = u;

• for intermediate values αH ∈ (0, 1), we take a weighted average of the optimistic and pes-
simistic values.

So, if we have two alternatives A′ and A′′ with interval-valued utilities [u(A′), u(A′)] and
[u(A′′), u(A′′)], we recommend an alternative for which the equivalent utility value is the largest. In
other words, we recommend to select A′ if αH ·u(A′)+(1−αH)·u(A′) > αH ·u(A′′)+(1−αH)·u(A′′)
and A′′ otherwise.

Which value αH should we choose? An argument in favor of αH = 0.5. Which value αH

should we choose?
To answer this question, let us take an event E about which we know nothing. For a lottery L+

in which we get A1 if E and A0 otherwise, the utility interval is [0, 1], thus, from a decision making
viewpoint, this lottery should be equivalent to an event with utility αH · 1 + (1− αH) · 0 = αH .

Similarly, for a lottery L− in which we get A0 if E and A1 otherwise, the utility interval is [0, 1],
thus, this lottery should also be equivalent to an event with utility αH · 1 + (1− αH) · 0 = αH .

We can now combine these two lotteries into a single complex lottery, in which we select either
L+ or L− with equal probability 0.5. Since L+ is equivalent to a lottery L(αH) with utility αH

and L− is also equivalent to a lottery L(αH) with utility αH , the complex lottery is equivalent to a
lottery in which we select either L(αH) or L(αH) with equal probability 0.5, i.e., to L(αH). Thus,
the complex lottery has an equivalent utility αH .

On the other hand, no matter what is the event E, in the above complex lottery, we get A1

with probability 0.5 and A0 with probability 0.5. Thus, this complex lottery coincides with the
lottery L(0.5) and thus, has utility 0.5. Thus, we conclude that αH = 0.5.

Which action should we choose? Suppose that an action has n possible outcomes S1, . . . , Sn,
with utilities [u(Si), u(Si)], and probabilities [p

i
, pi]. How do we then estimate the equivalent utility

of this action?
We know that each alternative is equivalent to a simple lottery with utility ui = αH · u(Si) +

(1 − αH) · u(Si), and that for each i, the i-th event is – from the viewpoint of decision making –
equivalent to pi = αH ·pi+(1−αH) ·p

i
. Thus, from the viewpoint of decision making, this action is

equivalent to a situation in which we get utility ui with probability pi. We know that the utility of
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such a situation is equal to
n∑

i=1
pi ·ui. Thus, the equivalent utility of the original action is equivalent

to
n∑

i=1

pi · ui =
n∑

i=1

(αH · pi + (1− αH) · p
i
) · (αH · u(Si) + (1− αH) · u(Si)).

Observation: the resulting decision depends on the level of detail. We make a decision
in a situation when we do not know the exact values of the utilities and when we do not know
the exact values of the corresponding probabilities. Clearly, if gain new information, the equivalent
utility may change. For example, if we know nothing about an alternative A, then its utility is [0, 1]
and thus, its equivalent utility is αH . Once we narrow down the utility of A, e.g., to the interval
[0.5, 0.9], we get a different equivalent utility αH · 0.9 + (1 − αH) · 0.5 = 0.5 + 0.4 · αH . On this
example, the fact that we have different utilities makes perfect sense.

However, there are other examples where the corresponding difference is not as intuitively clear.
Let us consider a situation in which, with some probability p, we gain a utility u, and with the
remaining probability 1− p, we gain utility 0. If we know the exact values of u and p, we can then
compute the equivalent utility of this situation as the expected utility value p ·u+(1−p) ·0 = p ·u.

Suppose now that we only know the interval [u, u] of possible values of utility and the interval
[p, p] of possible values of probability. Since the expression p · u for the expected utility of this
situation is an increasing function of both variables:

• the largest possible utility of this situation is attained when both p and u are the largest
possible: u = u and p = p, and

• the smallest possible utility is attained when both p and u are the smallest possible: u = u
and p = p.

In other words, the resulting amount of utility ranges from p · u to p · u.
If we know the structure of the situation, then, according to our derivation, this situation has

an equivalent utility uk = (αH · p + (1 − αH) · p) · (αH · u + (1 − αH) · u) (k for know). On the
other hand, if we do not know the structure, if we only know that the resulting utility is from
the interval [p · u, p · u], then, according to the Hurwicz criterion, the equivalent utility is equal to
ud = αH · p · u+ (1− αH) · p · u (d for don’t know). One can check that

ud − uk = αH · p · u+ (1− αH) · p · u− α2
H · p · u− αH · (1− αH) · (p · u+ p · u)− (1− αH)2 · p · u =

αH · (1− αH) · p · u+ αH · (1− αH) · p · u− αH · (1− αH) · (p · u+ p · u) =

αH · (1− αH) · (p− p) · (u− u).

This difference is always positive, meaning that additional knowledge decreases the utility of the
situation. (This is maybe what the Book of Ecclesiastes means by “For with much wisdom comes
much sorrow”?)

From intervals to general sets. In the ideal case, we know the exact situation s in all the
detail, and we can thus determine its utility u(s). Realistically, we have an imprecise knowledge, so
instead of a single situation s, we only know a set S of possible situations s. Thus, instead of a single
value of the utility, we only know that the actual utility belongs to the set U = {u(s) : s ∈ S}. If
this set S is an interval [u, u], then we can use the above arguments to come up with its equivalent
utility value αH · u+ (1− αH) · u.
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What is U is a generic set? For example, we can have a 2-point set U = {u, u}. What is then
the equivalent utility?

Let us first consider the case when the set U contains both its infimum u and its supremum
u. The fact that we only know the set of possible values and have no other information means
that any probability distribution on this set is possible (to be more precise, it is possible to have
any probability distribution on the set of possible situations S, and this leads to the probability
distribution on utilities). In particular, for each probability p, it is possible to have a distribution
in which we have u with probability p and u with probability 1 − p. For this distribution, the
expected utility is equal to p · u+ (1− p) · u. When p goes from 0 to 1, these values fill the whole
interval [u, u]. Thus, every value from this interval is the possible value of the expected utility. On
the other hand, when u ∈ [u, u], the expected value of the utility also belongs to this interval – no
matter what the probability distribution. Thus, the set of all possible utility values is the whole
interval [u, u] and so, the equivalent utility is equal to αH · u+ (1− αH) · u.

When the infimum and/or supremum are not in the set S, then the set S contains points as
close to them as possible. Thus, the resulting set of possible values of utility is as close as possible
to the interval [u, u] – and so, it is reasonable to assume that the equivalent utility is as close to
u0 = αH · u+ (1− αH) · u as possible – i.e., coincides with this value u0.

From sets to fuzzy sets: main idea. What if utility is a fuzzy number, described by a
membership function µ(u)? One of the natural interpretations of a fuzzy set is via its nested
intervals α-cuts u(α) = [u(αH), u(αH)] = {u : µ(u) ≥ α}. For example, when we are talking
about a measurement error of a given measuring instrument, then we know the guaranteed upper
bound, i.e., the guaranteed interval that contains all possible values of the measurement error. In
addition to this guaranteed interval, experts can usually pinpoint a narrower interval that contains
the measurement error with some certainty; the narrower the interval, the smaller our certainty.
Thus, we are absolutely sure (with certainty 1) that the actual value u belongs to the α-cut u(0);
also, with a degree of certainty 1− α, we claim that x ∈ u(α). Thus, if we select some small value
∆α and take α = 0,∆α, 2∆α, . . ., we conclude that:

• with probability ∆α, the set of possible values of u is the interval [u(0), u(0)];

• with probability ∆α, the set of possible values of u is the interval [u(∆α), u(∆α)];

• . . .

• with probability ∆α, the set of possible values of u is the interval [u(α), u(α)];

• . . .

For each interval, the equivalent utility value is α · u(α) + (1 − α) · u(α). The entire situation
is a probabilistic combination of such intervals, so the resulting equivalent utility is equal to the
expected value of the above utility, i.e., to

α ·
∫ 1

0
u(α) dα+ (1− α) ·

∫ 1

0
u(α) dα.
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