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Abstract—Space-time causality is one of the fundamental
notions of modern physics; however, it is difficult to define
in observational physical terms. Intuitively, the fact that a
space-time event ¢ = ({,z) can causally influence an event
e = (t',7') means that what we do in the vicinity of e
changes what we observe at ¢’. If we had two copies of the
Universe, we could perform some action at ¢ in one copy but
not in another copy; if we then observe the difference at ¢,
this would be an indication of causality. However, we only
observe one Universe, in which we either perform the action
or we do not. At first glance, it may seem that in this case,
there is no meaningful way to provide an operational definition
of causality. In this paper, we show that such a definition
is possible if we use the notions of algorithmic randomness
and Kolmogorov complexity. The resulting definition leads to
a somewhat unexpected consequence: that space-time causality
is a matter of degree.

1. DEFINING CAUSALITY IS IMPORTANT

Space-time causality is important. Causal relation between
space-time events (i.e., points in space-time) is one of the
fundamental notions of physics; see, e.g., [1], [3]). Because
of this, many fundamental physical theories describe, among
other things, the causal relation between space-time events.

According to modern physics, space-time causal relation
is non-trivial. In Newton’s physics, it was assumed that
influences can propagate with an arbitrary speed, consti-
tuting, in effect, immediate action-at-a-distance. Under this
assumption, an event e = (¢,x) occurring at moment ¢ at
location x can influence an event ¢/ = (', 2') occurring at
moment ' at location z’ if and only if the second event
occurs later than the first one, i.e., if and only if ¢ < t'.

In special relativity, the speeds of all the processes are
limited by the speed of light c. In this theory, an event e =
(t,z) can influence an event ¢’ = (¢, 2’) if during the time
t’ — t, the faster possible process — light — can cover the
distance d(z,z’) between locations = and 2/, i.e., if

c-(t' —t) >d(z,).

In the general relativity theory, the space-time is curved, so
the corresponding causal relation is even more complex. This
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relation is also complex in alternative gravitation theories;
see, e.g., [3].

Need for experimental verification of space-time casuality.
Different theories, in general, make different predictions
about the causality. So, to experimentally verify fundamental
physical theories, we need to be able to experimentally verify
the corresponding space-time causality. In other words, we
must be able to experimentally check, for every two space-
time events a and b, whether the event a can causally
influence the event b.

Need for a theory-free verification of space-time causal-
ity. Since the space-time causality is fundamental, more
fundamental than specific partial differential equations that
describe the physical fields and/or their relation with space-
time, it is desirable to be able to experimentally check this
causality in a theory-free way, without invoking other fields
and corresponding differential equations.

In this paper, we describe a possible way of such theory-
free experimental validation of space-time causality.

Comment. Some of the ideas described in this paper first
appeared in [4].

II. DEFINING CAUSALITY: CHALLENGE

Intuitive meaning of space-time casuality. Intuitively, the
fact that a space-time event e can causally influence an event
¢’ means that:

o what we do in the vicinity of e

« changes what we observe at €’.

How to transform this meaning into a definition: a
hypothetical idea. The above intuitive meaning of space-
time causality can easily lead to a observational definition if
we had two (or more) copies of the Universe. In this case,
to check that e can causally influence €', we could do the
following (see, e.g., [5]):
« in one copy of the Universe, we perform some action
at e, and
« we do not perform this action in the second copy of the
Universe.

If the resulting states at ¢’ are different in the two copies of
the Universe, this would be an indication of causal relation
between e and €’

Comment. This interpretation of causality is known as a
counterfactual interpretation; see, e.g., [6]. This name comes
from the usual interpretation of counterfactual statements,
i.e., statements of the type “If we were born in Sahara, we



would have been better adjusted for the warm climate.” These
statements are called counterfactual because the premise
(we are born in Sahara) contradicts to the facts. The usual
interpretation of such statements is to consider not just our
world, but also the whole set of possible worlds. To check
whether a counterfactual statement is true we select, among
all possible worlds in which the premise is satisfied, the
one which is the closest to our own world. The statement
is considered true if the conclusion holds in this selected
world.

Similarly, in the counterfactual interpretation of causality,
instead of considering only one world, we consider all
possible worlds. We then say that e casually influences e’
if in every world in which e occurs, this occurrence affects
e’. For example, we want to check whether a rain dance
(e) causes rain (¢). In our world, we observe a rain dance,
and we observe rain, but we cannot tell whether the rain
was caused by the rain dance or not. Intuitively, the way to
check is to see if rain dances leads to rain. So, in one possible
world, we perform a rain dance, in another possible world,
we do not perform it. If, as a result, we see rain in the first
world but not in the second one, this is good indication that
the rain dance indeed causes rain.

World 1 World 2

!/

rain* e’ €’ % no rain

rain dance % e e % no rain dance

Can we make this idea practical? In reality, we only
observe one Universe, in which we either perform the action
or we do not.

At first glance, it may seem that in this case, there is no
meaningful way to provide an operational definition of space-
time causality.

Our idea. In this paper, we show that a meaningful oper-
ational definition of space-time causality is possible if we
use the notions of algorithmic randomness and Kolmogorov
complexity. Before we explain our idea, let us briefly recall
the corresponding notions.

III. ALGORITHMIC RANDOMNESS AND KOLMOGOROV
COMPLEXITY: A BRIEF REMINDER

Motivation for algorithmic randomness and Kolmogorov
complexity. Intuitively, we know that some sequences of Os
and 1s (or, equivalently, heads and tails) are random, while
other sequences are not random. For example, intuitively, if
we flip a fair coin 4 times, we can get a sequence 0000 of
all heads. However, if we flip a coin 1000 times and still get
get all heads, common sense tells us that this coin is not fair.
Similarly, common sense tells us that, if we repeatedly flip a
fair coin, we cannot expect a periodic sequence 0101...01
(repeated 500 times).

In the traditional probability theory, it is not possible to
formally describe this intuitive difference between random
and non-random sequences. To provide such a formalization,
in the 1960s, A. N. Kolmogorov, one of the world leading
specialists in probability theory and mathematical statistics,
proposed the following idea (for details, see, e.g., [2]).

Main idea behind algorithmic randomness and Kol-
mogorov complexity. According to Kolmogorov, the in-
tuitive reason why a sequence consisting of all Os is not
random is that it has a simple structure; in other words,
this sequence can be generated by a very simple for-loop
program. Similarly, a sequence consisting of a sequence 01
repeated 500 times is simple to generate: just make a for-
loop. In contrast, a truly random sequence should not have
a simple structure — that would enables us to generate it by
using some short program: in effect, the shortest way to print
this truly random sequence is to actually print it bit-by-bit:
print £(01...).

This idea leads to the following way of detecting whether

a given finite sequence = of Os and 1s is random or not:

« if this sequence x can be generated by a short program
—i.e., a program whose length is much smaller than the
length len(z) of this sequence — then x is clearly not
random;

¢ Vvice versa, if the only way to generate a sequence x is
to use a program whose length is at least len(x), then
this sequence z is truly random.

To make this distinction, we need to know, for each sequence
z, the shortest length of a program that generates x. This
shortest length is known as the Kolmogorov complexity of
the string « and denoted by K (). In terms of Kolmogorov
complexity:

o if K(z) < len(x), then x is not random;

o if K(x) =~ len(z), then z is random.

For example, we can select a small integer C' > 0 (e.g.,
C = 10), and define a sequence x to be random if

K(x) > len(z) — C.

Definition 1. Let a programming language be fixed. By a
Kolmogorov complexity K (x) of a finite binary string x, we
mean the shortest length of a program that generates x:

K(x) o min{len(p) : p generates x}.

Definition 2. Let an integer C > 0 be fixed. We say that a
string x is random if K(x) > len(z) — C.

Historical comment. Simultaneously with Kolmogorov, simi-
lar ideas were proposed by R. Solomonoff and G. Chaitin [2].

Comment. The length of a program depends on the pro-
gramming language. However, as Kolmogorov has shown,
the definitions K (z) and Ks(z) of Kolmogorov complex-
ity based on two different languages differ by a constant:
|K1(z) — Ka(z)| < Cyg for all x. Thus, in effect, different



programming languages lead to the same definition of a
random sequence.

The corresponding notion of independence. In probability
theory, in addition to analyzing what is random and what is
not, it is also important to decide when the two events are
independent and when they are not. Once we have two finite
binary sequences x and y, the idea that y is independent on
x can be described in a similar way:

« if y is independent on z, then knowing x does not help
us generate y;

« in contrast, if y depends on z, then knowing z can help
us compute y.

For example, if we know the locations and velocities = of a
mechanical system at some moment of time ¢, we can use this
information to easily compute the locations and velocities y
at the next moment of time ¢ + At. In contrast, an irrelevant
information x (e.g., locations and velocities of particles on
another planet) does not help in computing y.

To formalize this intuition, we should consider programs
that use = as an input to generate y.

Definition 3. Let a programming language be fixed. By a
relative Kolmogorov complexity K (y|z) of a finite binary
string y in relation to a binary string x, we mean the
shortest length of a program that, when using x as an input,
generates y:

K(y|z) Lef min{len(p) : p(x) generates y}.

Comment. Intuitively, if using = helps to compute y, i.e.,
if K(y|z) < K(y), this means that y depends on z.
Vice versa, if using = does not help to compute y, i.e., if
K(y|z) = K(y), this means that = and y are independent.
We can describe this in a way similar to the above definition
of randomness:

Definition 4. Let an integer C' > 0 be fixed.
o We say that a string y is independent of the string x if

K(ylz) > K(y) - C.
o We say that a string y is dependent on the string x if
K(ylz) < K(y) - C.

IV. How TO DEFINE SPACE-TIME CAUSALITY:
ANALYSIS OF THE PROBLEM AND THE RESULTING
DEFINITION

First seeming reasonable idea. At first glance, the above
notion of dependence can already lead to a natural definition
of space-time causality:

« First, we perform some measurements and observations
in the vicinity of the event e. Since most nowadays mea-
suring instruments are computer-connected, each such
measurement produces a computer-readable output. In
the computer, everything is represented as a sequence
of Os and 1s, so the results of all the measurements and

observations will also be represented as a sequence x
of Os and 1s.

o We also perform measurements and observations in the
vicinity of the event ¢/, and also produce a sequence x’
of Os and 1s.

o If 2/ depends on z, i.e., if K(z'|z) < K ('), then we
claim that e can casually influence €’.

Unfortunately, this idea does not always work. Yes, if e
can casually influence €', then we indeed expect that knowing
what happened at e can help us predict what is happening
at ¢’. However, the inverse is not necessarily true: we may
have identical observations = x’ at events e and e’ simply
because they are both caused by the same event e from the
joint past of events e and €.

For example, if two people at different locations are watch-
ing the same movie, then their observations are identical, but
not because they causally influence each other, but because
they are both influenced by a past event ¢ (of making this
movie).

How to transform the above idea into a working defini-
tion. According to modern physics, the Universe is quantum
in nature. For many measurements involving microscopic
objects, we cannot predict the exact measurement results,
we can only predict probabilities of different outcomes. The
actual observations are truly random.

Moreover, for each space-time event e, we can always set
up such random-producing experiments in the small vicinity
of e, and generate a random sequence r.. For example, we
can locally set up a Stern-Gerlach experiment (see, e.g.,
[1]), a quantum experiment that generates a truly random
sequence.

This random sequence can affect future results, so if we
know this random sequence, it may help us predict future
observations. So, if e can causally influence ¢’, then for some
observations x’ performed in the small vicinity of ¢’, we have
K(z'|re) < K(2').

However, it is clear that this sequence cannot affect the
measurement results which are in the past (or, more gener-
ally, not in the future) of the event e. So, if e cannot causally
influence €', then observations z’ made in the vicinity of ¢’
are independent on r.: K(2'|r.) ~ K(z'). So, we arrive at
the following semi-formal definition:

Definition 5. For each space-time event e, let r. denote
a random sequence that is generated by an experiment
performed in the small vicinity of e. We say that the event e
can causally influence the event €' if for some observations
2’ performed in the small vicinity of €', we have

K(z'|r.) < K(2').

Historical comment. Our definition follows the ideas of
casuality as mark transmission [6], [7], with the random
sequence as a mark.



Discussion. We have argued that if e does not causally
influence ¢/, then, no matter what we measure in the vicinity
of the event e/, we get K(z'|r.) ~ K(z'); so, in these
cases, the above definition is in accordance with the physical
intuition.

On the other hand, if e can causally influence ¢’, this
means that we can send a signal from e to €/, and as this
signal, we send all the bits forming the random sequence
r.. The signal 2’ received in the vicinity of ¢’ will thus be
identical to 7., so generating =’ based on r. does not require
any computations at all: K (2’ |r.) = 0. Since the sequence
2’ = r. is random, we have

K(z') > len(z') — C.

For a sufficiently long random sequence 7. = z’, namely for
a sequence for which len(z’) > 2C, we have

K(2') >len(z') — C >2C — C = C,

S0
0=K(z'|r.) < K(2') - C

and thus,
K(z'|r.) < K(z').

So, in these cases, the above definition is also in accordance
with the physical intuition.

V. A SOMEWHAT UNEXPECTED COROLLARY OF OUR
DEFINITION: SPACE-TIME CAUSALITY IS A MATTER OF
DEGREE

Randomness is a matter of degree. According to the above
definition, a sequence z is random if K (z) > len(z) —C for
some small integer C. Smallness is not an absolute property,
it is a matter of degree.

For a given sequence z, its degree of randomness d(x)
can be described by the smallest integer C' for which
K(x) > len(z) — C. One can check that this smallest
integer is equal to the difference d(z) = len(x) — K (x). For
random sequences, d(x) is small, for sequences which are
not random, this degree is large. The smaller the difference
d(x), the more random is the sequence x.

So:

« if for some sequence z, we have K (z) < len(z) — C

for a small integer C, while

o for another sequence z’ of the same length, we only

have the inequality K (z') > len(a’) — C’ for a larger
integer C' > C,
then it is reasonable to conclude that the sequence x is “more
random” than the sequence z’.

For example, if we start with a sequence x obtained by a
truly random physical process (e.g., flipping a coin, or, better
yet, a truly random quantum experiment) and start replacing
the first few bits with Os, then we get new sequences which
are, intuitively, less and less random — until we replace so
many bits by Os that the sequence stops being random.

Observation: space-time causality is a matter of degree.
Our definition of causality uses the notion of randomness:

namely, we say that there is a causal relation between e and
e’ if for some random sequence r. generated in the vicinity
of the event e and for measurement results x’ produced in
the vicinity of ¢/, we have K (2’ |r.) < K(z') — C for some
large integer C.

The larger the integer C, the more confident we are
that an event e can causally influence €’. It is therefore
reasonable, for each pair of events e and ¢/, to define a
degree of causality c as the largest integer C' for which
K(2'|r.) < K(a') — C. One can check that this largest
integer is equal to the difference ¢ = K (2') — K (2 |re) — 1.
The largest this difference ¢, the more confident we are that
e can influence e’. Thus, this difference can serve as degree
with which e can influence ¢’.

In other words, just like randomness turns out to be a
matter of degree, causality is also a matter of degree.

Comment. While this conclusion may be unexpected from the
viewpoint of traditional physics, it is in good accordance with
the general idea of fuzzy logic, that everything — including
causality — is a matter of degree; see, e.g., [8].

Corresponding open problems. It is desirable to explore
possible physical meaning of such “degrees of causality”:
instead of describing the space-time causality, we now have
a function d(e, ¢’) that, for each pair of events
for which e causally precedes ¢, describes to what extent e
can influence ¢’. Maybe this function d(e,e’) is related to
relativistic metric — the amount of proper time between e
and e'?

Another open problem is related to the fact that he above
definition works for localized objects, objects which are
located in a small vicinity of one spatial location.

In quantum physics, not all objects are localize in space-
time. We can have situations when the states of two spatially
separated particles are entangled. It is desirable to extend our
definition to such objects as well.

VI. CONCLUSIONS

In this paper, we propose a new operationalist definition
of causality between space-time events. Namely, to check
whether an event e can casually influence an event e/, we:

o generate a truly random sequence 7. in the small
vicinity of the event e, and

o perform observations in the small vicinity of the
event €.

If some observation results z’ (obtained near e’) depend
on the sequence 7. (in the precise sense of dependence
described in the paper), then we claim that e can casually
influence e’. On the other hand, if all observation results z’
are independent on 7., then we claim that e cannot casually
influence ¢’.

This new definition naturally leads to a conclusion that
space-time causality is a matter of degree, a conclusion that
is worth physical analysis.
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