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Abstract. In econometrics, many distributions are non-Gaussian. To
describe dependence between non-Gaussian variables, it is usually not
sufficient to provide their correlation: it is desirable to also know the
corresponding copula. There are many different families of copulas; which
family shall we use? In many econometric applications, two families of
copulas have been most efficient: the Clayton and the Gumbel copulas.
In this paper, we provide a theoretical explanation for this empirical
efficiency, by showing that these copulas naturally follow from reasonable
symmetry assumptions. This symmetry justification also allows us to
provide recommendations about which families of copulas we should use
when we need a more accurate description of dependence.
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1 Formulation of the Problem

Copulas are needed. Traditionally, in statistics the dependence between random
variables η, ν, . . . , is described by their correlation. This description is well
justified in the frequent cases when the joint distribution is Gaussian: in this case,
to describe the joint distribution, i.e., to describe the corresponding cumulative
distribution function P (η ≤ x& ν ≤ y& . . .), it is sufficient to describe the

marginal distribution Fη(x)
def
= P (η ≤ x), Fν(y)

def
= P (ν ≤ y), . . . , of each of the

variables, and the correlations between each pairs of variables.
In many practical situations, e.g., in economics, the distributions are often

non-Gaussian; see, e.g., [4]. For non-Gaussian pair of variables (η, ν), in gen-
eral, it is not enough to know the distribution of each variables and the corre-
lations between them, we need more information about the dependence. Such
information is provided, e.g., by a copula, i.e., by a function C(u, v) for which
P (η ≤ x& ν ≤ y) = C(Fη(x), Fν(y)); see, e.g., [3–5].

Usually, Archimedean copulas are used, i.e., copulas of the form C(u, v) =
ψ(ψ−1(u) + ψ−1(v)) for some decreasing generator function ψ(x) that maps
[0,∞) into (0, 1].
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Most efficient Archimedean copulas. In econometric applications, the follow-
ing two classes of Archimedean copulas turned out to be most efficient [4]:

the Frank copulas C(u, v) = −1

θ
· ln

(
1− (1− exp(−θ · u)) · (1− exp(−θ · v))

1− exp(−θ)

)
,

the Clayton copulas C(u, v) =
(
u−θ + v−θ − 1

)−1/θ
and the Gumbel copulas

C(u, v) = exp
((

(− ln(u))−θ + (− ln(v))−θ − 1
)−1/θ

)
. The efficiency of Frank’s

copulas is clear: Frank copulas are the only Archimedean copulas which satisfy
the natural condition C(u, v) + C(u, 1 − v) + C(1 − u, v) + C(1 − u, 1 − v) = 1
that describes the intuitive idea that for every two events U and V , we should
have P (U &V ) +P (U &¬V ) +P (¬U &V ) +P (¬U &¬V ) = 1 (see, e.g., [3–5]).
But why Clayton and Gumbel copulas?

Main question: why Clayton and Gumbel copulas? In principle, there are many
different copulas. So why did the above two classes turned out to be the most
efficient in econometrics?

Auxiliary question: what if these copulas are not sufficient? While at present, the
above two classes of copulas provide a good description of all observed depen-
dencies, in the future, we will need to describe this dependence in more detail,
so we will larger classes of copulas. Which classes should we use?

What we do in this paper. In this paper, we provide an answers to both ques-
tions. Specifically, we show that natural symmetry-based ideas indeed explain
the efficiency of the above classes of copulas, and that these same ideas can lead
us, if necessary, to more general classes.

2 Why Symmetries

Symmetries as a fundamental description of knowledge: brief reminder. Sym-
metries are one of the fundamental concepts of modern physics. The reason for
their ubiquity is that most of our knowledge is based on symmetry; see, e.g., [1].

Indeed, how do we gain any knowledge about the physical world? Let us start
with a simple example: we observe many times that the Sun rises every morning,
and we conclude that it will rise again. This conclusion is based on the implicit
assumption that the dynamics of the Solar system does not change when we
move from one day to another.

Similarly, we drop a rock, and it falls down with an acceleration of 9.81 m/sec2.
We repeat this experiment at different locations on the Earth, we repeat it at
the same location turning to different places, and we always get the same ac-
celeration. We therefore conclude that at all locations on the Earth surface, no
matter what our orientation is, the rock will drop with the same acceleration.
This means that no matter how we shift or rotate, the fundamental laws of
physics do not change.

In general, when we formulate a physical law based on observations, we thus
implicitly assume that new situations are similar to the already observed ones,
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so the regularities that we observed earlier will happen in future situations as
well. This idea has been formalized in modern physics, to the extend that may
physical theories (starting with the quarks theory) are formulated not in terms of
differential equations as before, but explicitly in terms of appropriate symmetries
[1]. Moreover, it was discovered that many fundamental physical equations –
e.g., Maxwell equations of electrodynamics, Schrödinder’s equations of quantum
mechanics, Einstein’s equations of General Relativity etc. – can be uniquely
derived from the corresponding symmetries; see, e.g., [2].

In view of efficiency of symmetries in physics, it is reasonable to use them in
other disciplines as well; for example, in [6], we have shown that symmetries can
be efficiently applied to computing.

Basic symmetries. In this paper, we will use the basic symmetries that come
from the fact that the numerical value of a physical quantity depends on the
choice of the measuring unit and on the choice of a starting point.

Let us start with the choice of the measuring unit. For example, when we
measure lengths and instead of using meters, start using centimeters – a unit
which is λ = 100 times smaller than the meter – instead of the original numerical
values x, we get new values x′ = λ·x which are λ times larger. Many fundamental
physical processes do not have any preferred unit of length; for such processes,
it is reasonable to require that the corresponding equations do not change if we
simply change the units. The corresponding transformations are called scalings,
and invariance under such transformation is known as scale-invariance. It is
worth mentioning that scale-invariance is an important part of symmetry-based
derivation of the fundamental physical equations presented in [2].

Another basic symmetry is the possibility to select different starting points for
measurements. For example, when we measure time, we can arbitrarily select the
starting point: instead of the usual calendar that starts at Year 0, we can start,
as the French Revolution proposed, so start with the date of the Revolution. In
this case, instead of the original numerical value x, we get a new value x′ = x+s,
where s is the difference between the starting points (e.g., s = −1789 for the
French Revolution). Many fundamental physical quantities like time do not have
any preferred starting point; for such processes, it is reasonable to require that
the corresponding equations do not change if we simply change the starting
point. The corresponding transformations are called shifts, and invariance under
such transformation is known as shift-invariance.

3 Invariant Functions Corresponding to Basic
Symmetries

Example of invariance. A power law y = xa has the following invariance prop-
erty: if we change a unit in which we measure x, then in the new units, we get the
exact same formula – provided that we also appropriately changing a measuring
unit for y. Let us explain this property in detail.
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If we replace the original unit for measuring x by a new measuring unit which
is λ times larger, then all the numerical values get decreased by a factor of λ. In

other words, instead of the original values x, we have new values x′ =
x

λ
. How

will the dependence of y on x look in the new units?
From the above dependence of x′ on x, we conclude that x = λ · x′. Substi-

tuting this expression into the formula y = xa, we conclude that y = (λ · x′)a =
λa · (x′)a. This new formula is different from the original formula – it has not

only x′ raised to the power a, it also has a multiplicative constant µ
def
= λa.

However, we can make this formula exactly the same if we also select a new unit
for y: namely, a unit which is µ times larger than the original one. Now, instead

of the original values y, we get new values y′ =
y

µ
. In these new units, due to

y = µ · (x′)a, the dependence of y on x takes the form y′ = (x′)a – i.e., exactly
the same form as in the previous units.

Towards a general description of invariant functions corresponding to basic sym-
metries. Let us now provide a general description of invariant functions corre-
sponding to basic symmetries. As we have mentioned, there are two types of
basic symmetries: scaling (corresponding to a change in measuring unit) and
shift (corresponding to the change in the starting point). When we are looking
for invariant functions y = f(x), we have 2 possible symmetries for x and 2 pos-
sible symmetries for y, so we need to consider all 2×2 = 4 possible combinations
of these symmetries. Let us describe what happens in all these 4 cases: scale →
scale, scale → shift, shift → scale, and shift → shift.

Definition 1. A differentiable function f(x) is called scale-to-scale invariant if
for every λ, there exists a µ for which f(λ · x) = µ · f(x).

Comment. In this case, if we replace x with x′ = λ · x, we can get the same

dependence y′ = f(x′) if we replace y with y′ =
y

µ
.

Proposition 1. A function f(x) is scale-to-scale invariant if and only if it has
the form f(x) = A · xa for some real numbers A and a.

F or readers’ convenience, all the proofs are placed in a special (last) section.

Definition 2. A differentiable function f(x) is called scale-to-shift invariant if
for every λ, there exists an s for which f(λ · x) = f(x) + s.

Comment. In this case, if we replace x with x′ = λ · x, we can get the same
dependence y′ = f(x′) if we replace y with y′ = y − s.

Proposition 2. A function f(x) is scale-to-shift invariant if and only if it has
the form f(x) = A · ln(x) + b for some real numbers A and b.
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Definition 3. A differentiable function f(x) is called shift-to-scale invariant if
for every s, there exists a λ for which f(x+ s) = λ · f(x).

Comment. In this case, if we replace x with x′ = x + s, we can get the same

dependence y′ = f(x′) if we replace y with y′ =
y

λ
.

Proposition 3. A function f(x) is shift-to-scale invariant if and only if it has
the form f(x) = A · exp(k · x) for some real numbers A and k.

Definition 4. A differentiable function f(x) is called shift-to-shift invariant if
for every s, there exists a b for which f(x+ s) = f(x) + b.

Comment. In this case, if we replace x with x′ = x + s, we can get the same
dependence y′ = f(x′) if we replace y with y′ = y − b.

Proposition 4. A function f(x) is shift-to-shift invariant if and only if it has
the form f(x) = A · x+ c for some real numbers A and c.

Definition 5. A function is called invariant if it is either scale-to-scale in-
variant, or scale-to-shift invariant, or shift-to-scale invariant, or shift-to-shift
invariant.

Discission. Not all physical dependencies are invariant. Specifically, when the
mappings y = f(x) from x to y and z = g(y) are both invariant with respect to
the same symmetries, then their composition z = g(f(x)) is also invariant with
respect to the same symmetries. In general, however, the mappings y = f(x)
and z = g(y) correspond to different symmetries; in this case, their composition
is not necessarily invariant.

In view of this observation, if we want to use symmetries but cannot find an
invariant function, we should be look for functions which are compositions of
two invariant functions (if necessary, compositions of three, etc.) Let us apply
this approach to our problem of finding appropriate copulas.

4 Why Scalings and Shifts Can Be Applied to
Probabilities

Our objective is to derive the formulas for copulas, i.e., formulas that transform
probabilities into probabilities. Due to the fundamental nature of symmetries,
we plan to use symmetries in this derivation. The basic symmetries are scalings
and shifts, symmetries which are justified by the possibility to select different
measuring units and different starting points. The challenge here is that this
justification cannot be directly applied to probabilities: since probabilities are
limited by the interval [0, 1], for probabilities, 0 is a natural starting point, and
1 is a natural measuring unit.
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We will show, however, that, by using arguments which are slightly more
complex than in the general case, we can still justify the use of scalings and
shifts in the probabilistic context. Indeed, the possibility of scaling naturally
comes from the fact that most of the probabilities that we analyze are, in effect,
conditional probabilities, and the numerical values of these probabilities change
if we change the context. Let us give a simplified example.

Let us assume that we want to invest in stable stocks, and we have selected
several such stocks, i.e., stocks that only experience a drastic change in price
when the market as a whole starts changing. We want to gauge stability of
several such stocks. One way to estimate such a stability is divide the number
of days c when this stock drastically changed by the total number of days N
during which we kept the records. Alternatively, since the stock only changes
when the market itself changes, we can divide c by the total number of days
n < N when the market drastically changed. The two resulting probabilities

p =
c

N
and p′ =

c

n
differ by a multiplicative constant p′ = λ · p, where λ def

=
n

N
.

Thus, in econometric applications, scaling makes sense for probabilities.
Let us give another simplified example. Suppose that we have a stock which

always fluctuates when the market changes and also sometimes experiences dras-
tic changes of its own. How can we estimate the stability of this stock? One way
is to divide the number of days c when this stock drastically changed by the
total number of days N during which we kept the record of this stock, and get

an estimate p =
c

N
. However, since we know that this stock always changes

when the market changes, it makes sense to only consider days when the market

itself was stable, i.e., to use the estimate p′ =
c− n

N − n
. Since n ≪ N , we have

p′ ≈ c− n

N
= p + s, where s

def
= − n

N
. Thus, in econometric applications, shifts

also make sense for probabilities.

5 Archimedean Copulas with Whose Generators Are
Either Invariant or Compositions of Two Invariant
Functions

Now that we have given arguments that symmetries – including basic symmetries
such as scalings and shifts – can be applied to econometric copulas, let us describe
the corresponding results. Let us start by describing all the Archimedean copulas
in which the generator is invariant.

Proposition 5. The only Archimedean copula with an invariant generator is
the copula C(u, v) = u · v corresponding to independence.

Discussion. This result shows that to describe dependence, it is not sufficient to
use invariant generators, we need to consider compositions of invariant genera-
tors.
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Proposition 6. The only Archimedean copulas in which a generator is a com-
position of two invariant functions are the following:

– Clayton copulas C(u, v) =
(
u−θ + v−θ − 1

)−1/θ
;

– the the Gumbel copulas C(u, v) = exp
((

(− ln(u))−θ + (− ln(v))−θ − 1
)−1/θ

)
;

– the copulas C(u, v) =
1

L
exp

(
1

ℓ
· ln(u · L) · ln(v · L)

)
, with ℓ = ln(L).

Comment. Please notice that we have an additional family of copulas.

Discussion. This approach leads to a natural answer to a question of which
copulas we should use when we the approximation provided by the existing
Archimedean copulas is no longer sufficient:

– we should first try Archimedean copulas whose generator function is a com-
position of three invariant functions,

– if needed, we should move to Archimedean copulas whose generator function
is a composition of four invariant functions,

– etc.

Example. The generator ψ(x) = −1

θ
· ln(1 − (1 − exp(−θ)) · exp(−x)) of Frank

copulas can be obtained as a composition of three invariant transfromations:
first, we apply an invariant function y = f(x) = (1 − exp(−θ)) · exp(−x), then
an invariant function z = g(y) = 1 − y, and finally, an invariant function t =

h(z) = −1

θ
· ln(z).

6 Proofs

Proof of Proposition 1. It is easy to check that every function f(x) = A · xa is
scale-to-scale invariant. Vice versa, let f(x) be a scale-to-scale invariant function.
By definition, this means that for every λ, there exists a µ (depending on this λ)
for which f(λ · x) = µ(λ) · f(x).

This property is trivially true when f(x) = 0 for all x. It is therefore sufficient
to consider the cases when the function f(x) is not identically 0. Let us prove,
by contradiction, that in such cases, the function f(x) cannot attain zero values
for x ̸= 0. Indeed, if f(x0) = 0 for some x0 ̸= 0, then, for every other x, we will

get f(x) = µ

(
x

x0

)
· f(x0) = 0. So, f(x) ̸= 0 for x ̸= 0.

Here, the function f(x) is differentiable, the function f(λ · x) is also differ-

entiable, and thus, their ratio µ(λ) =
f(λ · x)
f(x)

is also differentiable. Differenti-

ating both sides of the equation f(λ · x) = µ(λ) · f(x) by λ, we conclude that
x·f ′(λ·x) = µ′(λ)·f(x). In particular, for λ = 1, we get x·f ′(x) = µ0 ·f(x), where

we denoted µ0
def
= µ′(1). This equation can be rewritten as x · df

dx
= µ0 ·f . In this
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equation, we can separate variables by moving all the terms containing df and f
to the left side and all the terms containing dx and x to the right side. As a result,

we get
df

f
= µ0 ·

dx

x
. Integrating both sides, we get ln(f) = µ0 ·ln(x)+C for some

constant C. Thus, we conclude that f(x) = exp(ln(f(x))) = exp(µ0 ·ln(x)+C) =
exp(C) ·xµ0 , which is exactly the desired form for the transformation f(x), with
A = exp(C) and a = µ0. The proposition is proven.

Proof of Proposition 2. It is easy to check that every function f(x) = A · ln(x)+b
is scale-to-shift invariant. Vice versa, let f(x) be a scale-to-shift invariant func-
tion. By definition, this means that for every λ, there exists an s (depending on
this λ) for which f(λ · x) = f(x) + s(λ).

Here, the function f(x) is differentiable, the function f(λ · x) is also differ-
entiable, and thus, their difference s(λ) = f(λ · x) − f(x) is also differentiable.
Differentiating both sides of the equation f(λ·x) = f(x)+s(λ) by λ, we conclude
that x · f ′(λ · x) = s′(λ). In particular, for λ = 1, we get x · f ′(x) = s0, where

we denoted s0
def
= s′(1). This equation can be rewritten as x · df

dx
= s0. In this

equation, we can separate variables by moving all the terms containing df and
f to the left side and all the terms containing dx and x to the right side. As a

result, we get df = s0 ·
dx

x
. Integrating both sides, we get f = s0 · ln(x) + C for

some constant C. This is exactly the desired form for the transformation f(x).
The proposition is proven.

Proof of Proposition 3. It is easy to check that every function

f(x) = A · exp(k · x)

is shift-to-scale invariant. Vice versa, let f(x) be a shift-to-scale invariant func-
tion. By definition, this means that for every shift s, there exists a λ (depending
on this s) for which f(x+ s) = λ(s) · f(x).

This property is trivially true when f(x) = 0 for all x. It is therefore sufficient
to consider the cases when the function f(x) is not identically 0. Let us prove,
by contradiction, that in such cases, the function f(x) cannot attain zero values
at any x. Indeed, if f(x0) = 0 for some x0, then, for every other x, we will get
f(x) = λ(x− x0) · f(x0) = 0. So, f(x) ̸= 0 for all x.

Here, the function f(x) is differentiable, the function f(x+ s) is also differ-

entiable, and thus, their ratio λ(s) =
f(x+ s)

f(x)
is also differentiable. Differenti-

ating both sides of the equation f(x + s) = λ(s) · f(x) by s, we conclude that
f ′(x+ s) = λ′(s) · f(x). In particular, for s = 0, we get f ′(x) = λ0 · f(x), where

we denoted λ0
def
= λ′(0). This equation can be rewritten as

df

dx
= λ0 · f . In this

equation, we can separate variables by moving all the terms containing df and f
to the left side and all the terms containing dx and x to the right side. As a result,

we get
df

f
= λ0 · dx. Integrating both sides, we get ln(f) = λ0 · x+ C for some
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constant C. Thus, we conclude that f(x) = exp(ln(f(x))) = exp(λ0 · x + C) =
exp(C) · exp(λ0 · x), which is exactly the desired form for the transformation
f(x), with A = exp(C) and k = λ0. The proposition is proven.

Proof of Proposition 4. It is easy to check that every function f(x) = A ·x+ b is
shift-to-shift invariant. Vice versa, let f(x) be a shift-to-shift invariant function.
By definition, this means that for every shift s, there exists a b (depending on
this s) for which f(x+ s) = f(x) + b(s).

Here, the function f(x) is differentiable, the function f(x+ s) is also differ-
entiable, and thus, their difference b(s) = f(x + s) − f(x) is also differentiable.
Differentiating both sides of the equation f(x + s) = f(x) + b(s) by s, we con-
clude that f ′(x + s) = b′(s). In particular, for a = 0, we get f ′(x) = b0, where

we denoted b0
def
= b′(0). Integrating this equation, we get f = b0 · x+C for some

constant C. This is exactly the desired form for the transformation f(x). The
proposition is proven.

Proof of Proposition 5. A generator ψ(x) of an Archimedean copula should map

0 into 1 and ∞ into 0: ψ(0) = 1 and ψ(∞)
def
= lim

x→∞
= 0. One can easily check

that most invariant functions do not satisfy this property:

– the function f(x) = A · xa does not satisfy the property f(0) = 1;
– the function f(x) = A · ln(x)+ b does not satisfy the property f(0) = 1, and
– the function f(x) = A · x+ b does not satisfy the property f(∞) = 0.

The only remaining invariant function is f(x) = A · exp(k ·x). For this function,
from f(0) = 1, we conclude that A = 1, and from f(∞) = 0, that k < 0. One
can check that for this generator function ψ(x) = exp(−|k| · x), the inverse is

equal to ψ−1(u) = − 1

|k|
· ln(u), and thus, the corresponding copula has the form

C(u, v) = ψ(ψ−1(u) + ψ−1(v)) = u · v. The proposition is proven.

Proof of Proposition 6. We have 4 types of invariant functions f(x) and 4 types
of invariant functions g(y), so we have 4× 4 = 16 possible compositions ψ(x) =
g(f(x)). Let us consider them one by one.

1◦. Let us first consider the case when f(x) = A · xa.

1.1◦. If g(y) is of the same type g(y) = B · yb, then the composition is also of
the same type, and we already know, from the proof of Proposition 5, that a
function of this type cannot be a generator.

1.2◦. If g(y) = B · ln(y) + b, then the composition has the form

ψ(x) = g(f(x)) = B · ln(A · xa) + b = (B · a) · ln(x) + (B · ln(A) + b).

In this case, we cannot have ψ(0) = 1.

1.3◦. If g(y) = B · exp(k · y), then the composition takes the form ψ(x) =
g(f(x)) = B · exp(k ·A · xa). The condition ψ(0) = 1 leads to B = 1 and a > 0,
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the condition ψ(∞) = 0 leads to k · A < 0. One can easily check that in this
case, we get the Gumbel copula.

1.4◦. If g(y) = B · y + b, then the composition takes the form ψ(x) = g(f(x)) =
B · A · xa + b. The condition ψ(∞) = 0 leads to 0, so ψ(x) = (B · A) · xa, and
the equality ψ(0) = 1 is not possible.

2◦. Let us first consider the case when f(x) = A · ln(x) + b.

2.1◦. If g(y) = B · ya, then the composition takes the form ψ(x) = g(f(x)) =
B · (A · ln(x) + b)a. This function cannot satisfy the property ψ(0) = 1.

2.2◦. If g(y) = B·ln(y)+a, then the composition takes the form ψ(x) = g(f(x)) =
B · ln(A · ln(x) + b) + a, then we also cannot have the property ψ(0) = 1.

2.3◦. If g(y) = B · exp(k · y), then the composition takes the form ψ(x) =
g(f(x)) = B · exp(k ·A · ln(x) + k · b) = (B · exp(k · b)) · xk·A, so we cannot have
ψ(0) = 1.

2.4◦. If g(y) = B · y + a, then the composition takes the form ψ(x) = g(f(x)) =
B ·A · ln(x) + (B ·A+ b), we also cannot have ψ(0) = 1.

3◦. Let us consider the case when f(x) = A · exp(k · x).

3.1◦. If g(y) = B · ya, then the composition has the form ψ(x) = g(f(x)) =
(B ·Aa) · exp((k · a) · x). We already know, from the proof of Proposition 5, that
such generator functions lead to the independence copula.

3.2◦. If g(y) = B·ln(y)+a, then the composition takes the form ψ(x) = g(f(x)) =
B · ln(A ·exp(k ·x))+a = (B ·k) ·x+(B · ln(A)+a), so we cannot have ψ(∞) = 0.

3.3◦. If g(y) = B · exp(a · y), then the composition takes the form

ψ(x) = B · exp(ℓ · exp(k · x)),

for ℓ = a · A. The condition ψ(0) = 1 leads to B · exp(ℓ) = 1, so B = exp(−ℓ),
and ψ(x) = exp(ℓ · (exp(k · x)− 1)).

Let us describe the copula corresponding to this generator. For that, let
us first find an explicit expression for the inverse function ψ−1(u). From the
condition that ψ(x) = u, we conclude that ℓ · (exp(k · x) − 1) = ln(u), hence

exp(k · x) = 1 +
ln(u)

ℓ
=

ln(u · L)
ℓ

, where we denoted L
def
= exp(ℓ). Thus, k · x =

ln

(
ln(u · L)

ℓ

)
, and x =

1

k
· ln

(
ln(u · L)

ℓ

)
.

To find C(u, v), we compute x+ y, where x = ψ−1(u) and y = ψ−1(v), then
compute z = x+ y and C(u, v) = ψ(z). Here,

z = x+ y =
1

k
·
[
ln

(
ln(u · L)

ℓ

)
+ ln

(
ln(v · L)

ℓ

)]
,
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hence k ·z = ln

(
ln(u · L)

ℓ

)
+ln

(
ln(v · L)

ℓ

)
and exp(k ·z) = ln(u · L)

ℓ
· ln(v · L)

ℓ
.

Thus, ℓ · (exp(k · z)− 1) =
ln(u · L) · ln(v · L)

ℓ
− ℓ, so for

C(u, v) = exp(ℓ · (exp(k · z)− 1)),

we get the desired expression.

3.4◦. If g(y) = B · y + a, then the composition takes the form ψ(x) = g(f(x)) =
(B · A) · exp(k · x) + a. The condition ψ(∞) = 0 leads to a = 0, so we get
an exponential generator function which, as we have mentioned, leads to the
independence copula.

4◦. Finally, let us consider the case when f(x) = A · x+ b.

4.1◦. If g(y) = B · ya, then the composition takes the form ψ(x) = g(f(x)) =
B · (A · x+ b)a. This generator function leads to the Clayton copulas.

4.2◦. If g(y) = B·ln(y)+a, then the composition takes the form ψ(x) = g(f(x)) =
B · ln(A ·x+b)+a. For this function, the condition ψ(∞) = 0 cannot be satisfied.

4.3◦. If g(y) = B · exp(k · y), then the composition takes the form ψ(x) =
g(f(x)) = B · exp(k ·A · ln(x)+k · b) = (B · exp(k · b) ·xk·A. This function cannot
satisfy the condition ψ(0) = 1.

4.4◦. If g(y) = B · y + a, then the composition ψ(x) = g(f(x)) is also a linear
function, so we cannot have ψ(0) = 1.

The proposition is proven.
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