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Abstract

In engineering situations, we usually have a large amount of prior knowledge that

needs to be taken into account when processing data. Traditionally, the Bayesian

approach is used to process data in the presence of prior knowledge. Sometimes,

when we apply the traditional Bayesian techniques to engineering data, we get

inconsistencies between the data and prior knowledge. These inconsistencies are

usually caused by the fact that in the traditional approach, we assume that we

know the exact sample values, that the prior distribution is exactly known, etc.

In reality, the data is imprecise due to measurement errors, the prior knowledge

is only approximately known, etc. So, a natural way to deal with the seemingly

inconsistent information is to take this imprecision into account in the Bayesian

approach – e.g., by using fuzzy techniques. In this paper, we describe several

possible scenarios for fuzzifying the Bayesian approach.

We also show that in engineering problems, it is important to use the full

Bayesian approach, by showing that the frequently used computational simpli-

fications – e.g., assuming a fixed value for one of the parameters and assuming

that parameters are independent – may lead to inaccurate (or even erroneous)

results.
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1. Inconsistent Knowledge: Formulation of the Problem

Inconsistent knowledge: a brief description of the practical problem. In engi-

neering practice, we sometimes encounter the practical problem of inconsistent

knowledge. Specifically, in engineering, we usually have a large amount of prior

knowledge. So, when we process the results of measurements and/or observa-

tions, we need to take the prior knowledge into account.

Traditionally, probabilistic and statistical methods are used to process mea-

surement and observation results. In the probabilistic and statistical approach,

prior knowledge is usually described by a prior distribution, and well-known

Bayesian techniques can be used to process data in the presence of this prior

knowledge.

The problem is that sometimes, the observations are (slightly) inconsistent

with the prior knowledge. Let us give an example.

Inconsistent information: a simple example. When designing a bridge, we may

assume, based on the past observation, that the wind speed w is always between

0 and 50 km/h, i.e., that the possible values of w belong to the interval [0, 50].

Since we have no reason to belief that some of these values are more probable

and some are less probable, it is reasonable to assume that all the values within

this interval are equally probable, i.e., that the prior distribution of w is uniform

on this interval.

Suppose now that during a recent storm, we have measured the speed w =

50.1. From the practical viewpoint, this is not a problem. Indeed, first, the

difference between 50.1 and 50 is small, so the actual wind speed – which, due

to measurement error, can be slightly different from the measured value – can

as well be below 50. Second, the systems are usually designed with an extra

reliability, so the bridge should be able to withstand winds slightly stronger

than 50 km/h. However, from the purely mathematical viewpoint, we have

an inconsistency: according to the prior knowledge, the wind speed should be

smaller than or equal to 50, while we have observed a value larger than 50.
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How this problem is resolved now. Such “slight inconsistency” situations fre-

quently occur in engineering practice. At present, there is no general recipe for

dealing with this problem, practitioners deal with these problems on a case-by-

case basis. For example, in the above case, a reasonable strategy for a prac-

titioner is to somewhat widen the prior interval [0, 50]. How much to increase

depends on the person.

The existing empirical approach to solving the inconsistency problem is not very

satisfactory. A change of the range would make sense if we observe a drastic

inconsistency, e.g., if we observed a storm with w = 100 km/h. In this case, the

prior information is wrong, and we indeed need to update it.

However, when we observe a slight inconsistency (like w = 50.1), then, as we

have mentioned, there is no intuitive contradiction with the prior knowledge.

The mathematical inconsistency comes from the fact that we erroneously treat

imprecise values – like 50 or 50.1 – as absolutely precise ones.

It is desirable to come up with a better approach for dealing with inconsistent

information. In view of the above, it is desirable to come up with a more in-

tuitively acceptable approach to dealing with the inconsistent information –

ideally, by explicitly taking into account that the parameters describe the data

and the prior distribution are imprecise.

What we do in this paper. In this paper, we describe a natural way to deal with

the imprecise values that enables us to process seemingly inconsistent data.

The structure of this paper. The structure of this paper is as follows. In order to

explain how to naturally modify the existing Bayesian approach to engineering

data processing, we first recall, in Section 2, the main motivations for this ap-

proach and the resulting algorithms. In Section 3, we use these motivations to

come up with a natural way of taking imprecision into account. From the purely

theoretical viewpoint, the problem is thus solved; however, from the practical

computational viewpoint, performing a full Bayes update is often too computa-

tionally intensive to be practical – even in the simplified situations, when we
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do not take imprecision into account. In such situations, practitioners often

use simplified approaches: e.g., select a fixed value of one of the parameters or

assume that different parameters are independent.

In Section 4, we show that one needs to be very cautious with such simplifica-

tions, since they can lead to inaccurate (and sometimes erroneous) results. This

leaves us with an important open problem: to come up with a computationally

efficient implementation of the corresponding Bayesian techniques.

Another important open problem is related to the fact that there are other

approached for dealing with inconsistent data, such as the Dempster-Shafer

approach. It would be nice to compare different approaches.

2. Traditional Bayesian Approach to Engineering Data Processing:

Main Motivations and Resulting Algorithms

The structure of this section. In order to explain how to naturally modify the

existing Bayesian approach to engineering data processing, let us first recall the

main motivations for this approach and the resulting algorithms. We start by

explaining why we need to consider prior information in the first place, then we

explain how to describe prior knowledge, and finally, we explain how to update

the knowledge based on the new observations and measurements.

Need to consider prior knowledge when processing engineering data. Both in

science and in engineering, we often face the problem of processing data: we

have observations x1, . . . , xn, and we need to make conclusions based on these

observations. In principle, the same standard statistical techniques can be used

(and are used) in science and in engineering: e.g., we can use the usual statistical

algorithms to estimate the mean, the variance, the correlation between different

quantities, etc.

However, in spite of this similarity, there is an important difference between

data processing in science (especially in state-of-the-art science) and in engineer-

ing. Indeed, one of the main objectives of science is to acquire new knowledge.
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As a result, in science, the whole reason for making observations and measure-

ments, the whole reason for collecting the data x1, . . . , xn, is to find this new

knowledge. Sometimes, we have some prior knowledge about the studied effect,

but in many cases – especially in state-of-the-art science – we do not have much

knowledge about the situation, we are doing exploratory research. In such situ-

ations, prior knowledge can be safely ignored, and the only information that is

worth analyzing is the data itself.

As an example, let us consider a recent discovery of extraterrestrial planets

of new type: Jupiter-type planets which are located very close to their stars.

We have observed several such planets, and we want to make conclusions based

on the observed data x1, . . . , xn. This is a completely new phenomenon, for

which there is no prior knowledge – except maybe some vague guesses. In such

situations, we want to be sure that the conclusions that we make are objectives

– in the sense that they are based on the data and not on the vague guesses

that form prior knowledge.

In contrast, in most engineering problems, we have a large amount of prior

knowledge. The main reason for this large amount of prior knowledge is that,

in contrast to science whose nature is mostly exploratory, engineering is mostly

about applying knowledge to design systems, structures, processes, etc. Of

course, engineering also has elements of exploration and discovery; however,

when we, e.g., design a new bridge, we do not simply experiment with different

designs in the hope that one of them works; we use the prior knowledge about

bridges, about materials, about winds and possible earthquakes in this area –

to make sure that the newly designed bridge last for the desired period of time.

As a result, in engineering data processing, it is extremely important to take

into account not only the data itself, but also the prior knowledge about the

data.

How can we describe this prior knowledge?

Ideal description of prior information: a probability distribution. One of the

main fundamental ideas behind applications of science and engineering is the
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repeatability of results: if one laboratory measures the speed of light, another

laboratory is expected to get the same result; if one bridge was successfully

tested, it is expected that at any other similar location, a similar bridge will

also withstand the desired load. The main difference between repeatability in

fundamental science and engineering is that in fundamental science, the repeata-

bility is (potentially) exact: fundamental constants like the speed of light are

the same no matter where we measure them. In contrast, engineering param-

eters slightly change: e.g., even two similarly manufactured steel beams have

slightly different mechanical properties, and for two similarly designed pieces of

concrete, properties such as compressive strength can differ by as much as 30%.

So, while in fundamental science, we have a single value of a quantity, in

engineering, we have a population of different values. To fully describe the

corresponding population, we need to know which values are possible, and how

frequent are different possible values. In other words, to fully describe the

corresponding population, we need to know the probability distribution on the

set of possible values.

Need for a finite-parametric family of probability distributions. One way to de-

scribe a probability distribution is to describe the probability density f(x) for

different values x. In principle, there are infinitely many possible values of

the quantity x, and for each of these values, we can set a different value f(x);

the only constraint on all these parameters f(x) is that the total probability

should be equal to one:
∫
f(x) dx = 1. Thus, to fully describe a probability

distribution, we need to describe infinitely many parameters. In practice, in

the computer, we can only store finitely many numbers. So, we need to limit

ourselves to finite-parametric probability distributions.

How to describe distributions from a finite-parametric family. Let

θ = (θ1, . . . , θm)

be the vector formed by the corresponding parameters. For each value of θ, we

have a probability distribution f(x | θ) corresponding to these parameter value.
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In other words, we have a function that maps each pair (x, θ) into a non-negative

value f(x | θ), the probability density at value x under the condition that the

actual parameters are θ. This function is usually called a likelihood function.

What do we know about the parameters θ: the notion of a prior distribution.

The probability distribution of the sample values is uniquely determined by the

parameter vector θ. Usually, we do not know the exact distribution, which

means that we do not know the exact value θ. Instead, we have a partial

information about θ: we know which values θ are possible and how probable are

different possible values θ.

Usually, statisticians assume that we know the probabilities of different val-

ues θ, i.e., we know the prior probability distribution which can be described,

e.g., by the corresponding probability density function g(θ).

Which prior distributions are used. Many different probability distributions are

used as priors.

Sometimes, all we know is that the parameters belong to a certain area,

and we have no reason to believe that some values from this area are more

probable than others. In this case, as we have mentioned earlier, it makes sense

to assume that all the possible values θ are equally probable, i.e., that the prior

distribution is a uniform distribution on a given area.

In other cases, there are many independent small factors which contribute to

our uncertainty in θ. It is known – this fact is known as the Central Limit The-

orem – that, under reasonable conditions, the distribution of the sum of many

such small random variables is close to normal. In such cases, it is reasonable

to consider normal prior distribution.

We can also consider lognormal distributions, beta- and gamma-distributions,

etc. In many cases, practitioners use prior distributions that make updates com-

putationally easier; such prior distributions are known as conjugate priors.

How to combine prior knowledge with observations: Bayes theorem. As we have

mentioned, prior distribution describes pour prior knowledge. After we perform
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measurements and observations, we gain additional knowledge, so we need to

update the corresponding distribution – by combining prior knowledge with the

results x of measurement and observation.

Bayes theorem is a known probabilistic way of combining the prior knowledge

with observations. This theorem is based on the following situation. Suppose

that we have N possible mutually exclusive hypotheses H1, . . . , HN that cover

all possible situations. Suppose also that we know the prior probabilities P0(Hi)

of each of these hypotheses; then
N∑
i=1

P0(Hi) = 1. Suppose that for some event E,

we know the conditional probability P (E |Hi) that E occurs under hypothesis

Hi. Our objective is to describe how the probabilities of different hypotheses

will be updated if we actually observe the event E, i.e., to find the conditional

probabilities P (Hi |E).

The solution proposed by Bayes is based on the fact that the conditional

probability P (A |B) of A under the condition B can be defined as a fraction of

those cases in which A holds as a proportion of the events in which B hold, i.e.,

as a ratio P (A |B) =
P (A&B)

P (B)
. Thus, for the desired probability P (Hi |E),

we have P (Hi |E) =
P (E&Hi)

P (E)
. Since the hypotheses Hi are mutually exclu-

sive and cover all possible situations, we conclude that P (E) =
N∑
j=1

P (E&Hj).

Thus, we have

P (Hi |E) =
P (E&Hi)

N∑
j=1

P (E&Hj)

. (1)

For the known probability P (E |Hj), we similarly have P (E |Hj) =
P (E&Hj)

P0(Hj)
,

so P (E&Hj) = P (E |Hj)·P0(Hj). Substituting this expression into the formula

(1), we get the Bayes theorem

P (Hi |E) =
P (E |Hi) · P0(Hi)

N∑
j=1

P (E |Hj) · P0(Hj)

. (2)

In our case, different mutually exclusive hypotheses are different values of the

parameter vector θ, and the events are the observed values x; hence, e.g., the

conditional probability P (E |Hi) is proportional to f(x | θ). In this case, we
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have infinitely many possible values θ, so instead of the sum, we will have an

integral:

g(θ |x) =
f(x | θ) · g(θ)∫
f(x | ν) · g(ν) dν

. (3)

The resulting distribution for θ is known as a posterior distribution.

How to get numerical estimates from the posterior distribution. The posterior

distribution provides us with a full information about the probability of different

possible parameter vectors θ. In many engineering situations, practitioners do

not need that much information, all they need is an approximate value of each of

the parameters – and maybe an indication of how accurate are these approximate

values.

For a random variable Θ with the posterior probability density g(θ |x),

we need to find a single approximating vector θp for which, e.g., the mean

square difference between the actual value θ and this approximating vector is

the smallest possible:
∫

(θ − θp)2 · g(θ |x) dθ → min. Differentiating this ex-

pression with respect to θp and equating this derivative to 0, we conclude that

θp =
∫
θ·g(θ |x) dθ. In other words, we conclude that the optimal approximation

θp is the expected value E[θ] of the posterior distribution.

Comment. To gauge the accuracy of this approximation, we can use the corre-

sponding mean square difference
∫

(θ− θp)2 · g(θ |x) dθ which, as one can easily

check, is the variance of the posterior distribution. Alternatively, we can find

the confidence areas that contain the actual values θ with the given certainty.

Convergence to the true values depends on how accurate is the prior knowledge.

The prior distribution is based on our prior knowledge, i.e., in effect, on prior

measurements and observation of this phenomenon and of similar phenomena.

When we add more observations and measurements, the resulting posterior

distribution takes into account both the prior observations and the new ones.

The more new observations we add, the larger their relative contribution to

the posterior distribution, and thus, the closer the resulting posterior estimates
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E[Θ] to the actual value of the parameters θ. In other words, when we add

more and more measurement, this estimate converges to the actual value θ.

The speed of this convergence depends on how probable the actual value was

in the prior distribution. If in the original distribution, the actual vector θ was

very probable, the process converges fast, and we get a good approximation for

the actual parameters θ after a few measurements. On the other hand, if in

the original prior distribution, the actual vector θ was not very probable – i.e.,

if we did not have much prior knowledge about θ – then we need many more

observations and measurements to get a good approximation to θ.

3. A Natural Way to Take Imprecision Into Account

Inconsistent knowledge: reminder. The Bayesian approach works well in many

practical applications, but sometimes, it cannot be applied because we have

inconsistency.

Inconsistency happens, e.g., if x is equal to θ with probability 1, the prior

distribution of the parameter θ1 is a uniform distribution on an interval [a1, b1].

In this case, only values x1 from this interval [a1, b1] are possible. Thus, if

the observed value x1 is outside this interval – e.g., is slightly larger than b1

– then we get an inconsistency between the observation result and the prior

information.

In this case, the Bayes formula cannot be applied. Indeed, the fact that

x = θ with probability 1 means that f(x | θ) = 0 for θ 6= x. However, for

θ = x, we have g(θ) = 0, since the value x = θ is outside the interval [a1, b1]

where the uniform probability density is different form 0. Thus, the numerator

f(x | θ) · g(θ) is equal to 0 both for x 6= θ and for x = θ and is, hence, always

equal to 0. The denominator is also equal to 0, and so the whole formula cannot

be applied.

The main reason for inconsistency is that we do not take imprecision into ac-

count: reminder. As we have mentioned, the seeming inconsistency is caused

by the fact that we do not take imprecision into account.
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For example, the likelihood function f(x | θ) describes the distribution of the

actual values x, but what we observe is, due to the measurement errors, slightly

different from the actual values. Similarly, as we have mentioned, the choice

of a prior distribution describing our prior knowledge is a somewhat subjective

task; instead of the given prior distribution, we could as well select a closer one.

Finally, our selection of the finite-parametric family of distributions f(x | θ) is

somewhat subjective, we could have selected a close family.

Towards a natural way to take imprecision into account: from intervals to fuzzy.

How can we take imprecision into account? Let us first consider the imprecision

with which we know each observed value xi. This imprecision comes from

measurements, in which the observed value xi is, in general, somewhat different

from the actual (unknown) value xacti .

Sometimes, we know the exact probability of each possible value of the mea-

surement error ∆xi
def
= xi − xacti ; however, often, the only information that we

have is the upper bound ∆i on the measurement error (to be more precise, on

the absolute value of the measurement error). In this case, after the measure-

ments, the only information that we have about the actual (unknown) value

xacti is that this value belongs to the interval [xi −∆i, xi + ∆i].

Usually, the guaranteed upper bound ∆i is an overestimation – caused by

the need to provide an absolute guarantee. Often, in addition to this absolutely

guaranteed bound, designers and manufacturers can also provide us with smaller

bounds – but these smaller bounds come with a certain degree of uncertainty.

The smaller uncertainty α we want, the larger the bounds. For each uncertainty

level α, we have a corresponding bound ∆i(α) and thus, we can conclude that

with this uncertainty, the actual value xacti belongs to the interval xi(α) =

[xi − ∆i(α), xi + ∆i(α)]. If we have two degrees α < α′, then the interval

corresponding to the larger degree of uncertainty α′ is a subinterval of the

interval corresponding to the smaller degree α: xi(α
′) ⊆ xi(α). Families of

intervals that satisfy this property are called nested since they are all contained

in each other like nested dolls.
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We can gauge the expert’s degree of uncertainty by asking the expert to mark

this degree by a number on a scale from 0 to 1. Thus, the degree of uncertainty

becomes a number from the interval [0, 1]: 0 means there is no uncertainty, we

are absolutely certain, while 1 means that we are not certain at all. So, we have

a nested family of intervals labeled by numbers from the interval [0, 1].

Each such nested family corresponds to a fuzzy number, whose α-cuts are

exactly these intervals xi(α); see, e.g., [12]. For that, we can define the mem-

bership function µi(xi) as max{α : xi ∈ xi(α)}. Thus, a natural way to describe

each imprecise value xi is to describe it as a fuzzy number; see, e.g., [5, 7, 8, 12].

Historical comment. The need to extend statistical techniques to set-valued and

fuzzy samples is well-understood, and many methods have been proposed for

such an extension; see, e.g., [2, 4, 6, 8].

How to describe imprecision in prior distribution. Just like a distribution for x

is selected from a finite-parametric family of distributions, the prior distribution

g(θ) is also selected from a finite-parametric family of distributions, i.e., it has

the form g(θ) = fp(θ | b(0)) for some family of distributions fp(θ | b) for some

specific vector b(0).

Similar to imprecision in x, here imprecision means that we do not know

the exact vector b(0); instead, we have a fuzzy vector, for which we know the

alpha-cuts bk(α) for each of components bk.

How to describe imprecision in the likelihood function. To describe imprecision

in the likelihood function, we can use a similar idea: instead of considering a

single function f(x | θ), let us explicitly take into account that this function is

usually only a subclass of some more general class of probability distributions,

i.e., that f(x | θ) = f`(x | θ, d(0)) for some family of functions f`(x | θ, d) and

for some specific vector d(0). Here, imprecision means that we do not know

the exact vector d(0); instead, we have a fuzzy vector, for which we know the

alpha-cuts d`(α) for each of components d`.
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Need to generalize Bayes formula to the fuzzy case. Now that, in general, the

sample, the prior distribution, and the likelihood function are fuzzy, we need to

extend the Bayes formula to this case.

Historical comment. In our description, we follow the main ideas summarized

by R. Viertl and his co-authors in [9, 10, 11]; in the following text, we explain

in what aspects what we are doing is different from the approaches presented

in [9, 10, 11].

How to generalize Bayes formula to the interval case. Let us first consider the

simplest case when instead of an exact value, we have intervals of possible

values: we have intervals xi = [xi, xi], bk = [bk, bk], and d` = [d`, d`]. For each

combination of values xi ∈ xi, bk ∈ bk, and d` ∈ d`, we can use the Bayes

theorem and compute the values

g(θ |x) =
f(x | θ, d) · g(θ, b)∫
f(x | ν, d) · g(ν, b) dν

.

Based on these values, we can then estimate, for each component θi, the expected

value θp,i
def
= E[θi] =

∫
θi · g(θ |x) dθ. Thus, for each combination of vectors

x = (x1, x2, . . .), b = (b1, . . .), and d = (d1, . . .), we defined the vector θp(x, b, d)

with coordinates

θp,i(x, b, d)
def
=

∫
θi ·

f(x | θ, d) · g(θ, b)∫
f(x | ν, d) · g(ν, b) dν

dθ.

Different values xi ∈ xi, bk ∈ bk, and d` ∈ d` lead, in general, to different

vectors θp(x, b, d) = (θp,1(x, b, d), . . . , θp,m(x, b, d)). It is therefore reasonable to

describe the “posterior” range Rp(x,b,d) of all “posterior” vectors θp which can

be obtained from different combinations of values values xi ∈ xi, bk ∈ bk, and

d` ∈ d`. In other words, for each combination of three interval-valued vectors

x = (x1,x2, . . .), b = (b1, . . .), and d = (d1, . . .), we define the range as

Rp(x,b,d)
def
= {θp(x, b, d) : x ∈ x, b ∈ b, d ∈ d},

where x = (x1, x2, . . .) ∈ x = (x1,x2, . . .) means that x1 ∈ x1, x2 ∈ x2, etc.;

b ∈ b and d ∈ d are defined similarly.
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Comment. In a similar manner, we can define the ranges of all other character-

istics of the posterior distribution.

How to generalize Bayes formula: from interval case to the fuzzy case. Process-

ing fuzzy data is usually described by Zadeh’s Extension Principle; see, e.g., [12].

It is known that under reasonable assumptions, this principles reduces to the

following natural idea: for each α, to find the α-cut of the result, we process

the α-cuts of all the inputs.

For example, to get the fuzzy set describing the vector θp, we can do the

following. For each α, we find the α-cuts xi(α), bk(α), and d`(α) of the

corresponding fuzzy sets. Then, for each combination For each combination

of values xi ∈ xi(α), bk ∈ bk(α), and d` ∈ d`(α), we compute the values

g(θ |x) =
f(x | θ, d) · g(θ, b)∫
f(x | ν, d) · g(ν, b) dν

and θp,i =
∫
θi · g(θ |x) dθ. The range of

all resulting vectors θp = (θp,1, . . . , θp,m) is the desired α-cut for the fuzzy

vector θp. In other words, an m-dimensional fuzzy set for θp is defined as

a fuzzy set for which each α-cut is defined as Rp(x(α),b(α),d(α)), where

x(α)
def
= (x1(α),x2(α), . . .), b(α)

def
= (b1(α), . . .), and d(α)

def
= (d1(α), . . .).

How this is different from Viertl’s approach. Our formulas follow the main ideas

described in the first half of [11]; our only change is that we take into account

not only possible imprecision of of data and prior distribution, but also possible

imprecision of the likelihood function.

The main difference is that we follow these original ideas, while the actual al-

gorithms described by Viertl and others [9, 10, 11] modify the resulting formulas,

so that they will be able to simplify computations by retaining the sequential

character of Bayesian update. One can see that their modification results in a

narrower interval for the resulting probability density. In many engineering ap-

plications, we want to provide guaranteed estimates; in this case, we should not

artificially narrow down the resulting imprecision intervals – even if it leads to

faster computations, we should return the exact ranges produced by the above

Bayes formulas.
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Important comment. Our main motivation for taking imprecision into account

came from the need to process inconsistent knowledge. Inconsistent knowledge

is where imprecision has to be taken into account. The existence of seemingly

imprecise knowledge highlights the fact that that there is imprecision in many

practical situations. Of course, in many cases, we have imprecision without

inconsistency. In such cases, to get the most adequate description of our knowl-

edge, it is also necessary to take this imprecision into account.

4. How to Transform the Above Theoretical Solution into a Practical

Solution: Examples and Challenges

Need to speed up computations. From the purely theoretical viewpoint, the prob-

lem of processing inconsistent knowledge is solved: we have explicit formulas

describing how to produce the fuzzy estimates for the desired parameters.

However, from the practical computational viewpoint, the above formulas

are not very efficient: they require that we consider all possible combinations

of values, and there can be many different combinations. Even in the simplified

situations, when we do not take imprecision into account, performing a full

Bayes update is often too computationally intensive to be practical – because

we need to compute the corresponding multi-D integral.

How Bayesian computations are sped up now. To speed up computations, prac-

titioners often use simplified approaches: e.g., select a fixed value of one of the

parameters or assume that different parameters are independent.

What we show in this section. In this section, we show, on numerical examples,

that one needs to be very cautious with such simplifications, since they can lead

to inaccurate (and sometimes erroneous) results.

Moreover, we will show that this simplification-caused inaccuracy occurs

not only for the (relatively rare) cases of inconsistent knowledge, it occurs in

the general situation in which we take imprecision into account. To prove this

generality, we try to make our examples as generic as possible – in particular,

we use examples without inconsistency.
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How we perform computations. Since the main objective of our numerical ex-

amples is to compare results of different formulations of the problem, in all our

computations, we use straightforward numerical computations without worrying

about these computations requiring too much computation time. Specifically,

to compute the values of the corresponding integrals, we discretize the range of

values of each variables and computed the corresponding integral sum. To find

the range of possible values of different variables and combinations of variables,

i.e., to solve the corresponding optimization problems, we used component-wise

optimization.

Case study: general description. In all our examples, we use the same numerical

data: 20 results of measuring the compressive strength of concrete; see middle

column of Table 1.

We chose this data set because this same data set is used in our previous

paper [2] as an illustration of alternative (non-Bayesian) fuzzy techniques; the

fact that we perform our Bayesian computations on the same sample enables us

to compare these two different fuzzy approaches.

We assume that the values fc are normally distributed, with some mean µX

and standard deviation σX : fc ∼ N(µX , σX). In this case, the observed data is

just fc, the parameter vector θ = (θ1, θ2) consists of two components θ1 = µX

and θ2 = σX , and the likelihood function has the well-known form

f(x | θ) =
1√

2 · π · θ2
· exp

(
− (x− θ1)2

2θ22

)
.

Prior distributions: non-fuzzy case. In this paper, we consider two cases corre-

sponding to the simplest prior distributions: uniform and normal. For each of

these cases, we consider two subcases:

• the 1-D subcase, when the value of the standard deviation θ2 = σX is

fixed, and we only consider non-degenerate distribution for θ1 = µX , and

• the 2-D subcase, when we consider a non-degenerate joint distribution of

both parameters.
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Number i of Compressive Fuzzy compressive

realizations strength strength

xi = fci [N/mm2] x̃i = fci [N/mm2]

1 28.3 〈26.3, 28.3, 30.3〉

2 31.5 〈29.5, 31.5, 33.5〉

3 35.2 〈33.2, 35.2, 37.2〉

4 29.8 〈27.8, 29.8, 31.8〉

5 27.6 〈25.6, 27.6, 29.6〉

6 30.7 〈28.7, 30.7, 32.7〉

7 25.2 〈23.2, 25.2, 27.2〉

8 34.6 〈32.6, 34.6, 36.6〉

9 28.9 〈26.9, 28.9, 30.9〉

10 19.2 〈17.2, 19.2, 21.2〉

11 26.8 〈24.8, 26.8, 28.8〉

12 35.3 〈33.3, 35.3, 37.3〉

13 26.3 〈24.3, 26.3, 28.3〉

14 23.1 〈21.1, 23.1, 25.1〉

15 20.2 〈18.2, 20.2, 22.2〉

16 29.2 〈27.2, 29.2, 31.2〉

17 25.7 〈23.7, 25.7, 27.7〉

18 34.2 〈32.2, 34.2, 36.2〉

19 24.8 〈22.8, 24.8, 26.8〉

20 22.8 〈20.8, 22.8, 24.8〉

Table 1: Sample of the cylinder compressive strength fc
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Each 1-D subcase corresponds to the 1-D prior distribution, i.e., to the above

practical idea of fixing the value of one of the parameters (in this case, of

θ2 = σX).

In all four subcases, we take 28.5 as the center for the distribution of θ1 = µX

and 4.5 as the center for the distribution of θ2 = σX . (The value 28.5 is close

to the sample mean, and 4.5 is close to the sample standard deviation.)

In both uniform subcases, we assume that θ1 = µX is uniformly distributed

on the interval [27.0, 30.0] centered at the value 28.5. The difference between

these subcases is that:

• in the 1-D subcase, we assume that θ2 = σX is equal to the selected value

4.5, while

• in the 2-D subcase, we assume that θ2 is uniformly distributed on the

interval [3.0, 6.0] centered around this value.

In both normal subcases, we assume that µX is normally distributed with

mean 28.5 and standard deviation 2.0. The difference between these subcases

is that:

• in the 1-D subcase, we assume that θ2 = σX is equal to the selected value

4.5, while

• in the 2-D subcase, we assume that θ2 is also normally distributed, with

mean 4.5 and standard deviation 1.0.

Comment. In both 2-D cases, for simplicity, we consider an example in which

the prior distributions for the mean θ1 = µX and for the variance θ2 = σX are

independent. This is only done to make the example simpler. In a generic 2-D

distribution of the vector θ = (θ1, θ2), components θ1 and θ)2 are, of course, not

necessarily independent.

Numerical results show the limitations of the method of fixing the values of

some parameters. Figure 1 shows the results of applying the Bayesian update
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Figure 1: Estimates for the distribution parameters of X

for all four subcases; we separately show the results of using only the first 7

measurements and of using all 20 measurements.

We see that in the 2-D subcases, as we increase the sample size, the resulting

estimates for µX get closer to the sample mean. In contrast, in the 1-D subcases,

when we prematurely fix σX at the value 4.5, not only this value does not get

close to the actual value, but the resulting estimates for µX do not get as close

to the sample mean as in the 2-D subcases.

We can also compare:

• the distribution f(x | θp) for x corresponding to the posterior mean values

θp of the parameters with

• the distribution f(x | θs) corresponding to the sample mean and sample

standard deviation θs.

The x-distributions f(x | θp) corresponding to 4 different prior distributions –

as well as the 5%-quantiles of these x-distributions – are shown on Figure 2,

both for the size n = 7 and for the size n = 20. The 5%-quantile is a practically

important characteristic: it is the concrete strength which is guaranteed in 95%

of the cases.
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Figure 2: Distribution functions for X, based on different parameter estimators and varying

sample size; 5% quantiles.

From Figure 2, we can see that for the smaller sample n = 7, the 5%-quantiles

obtained from the 1-D (simplified) computations are reasonably conservative:

we conclude that 95% of the cases will have strength ≥ 21.28 or ≥ 21.82, while

in reality, they are even ≥ 24.50. However, for the larger sample (n = 20):

• our conclusion based on the 1-D simplification is that the strength is ≥

20.81 in 95% of the cases, while

• in reality, the only thing that we can guarantee about the concrete strength

in 95% of the case is that this strength is ≥ 20.15.

Such over-estimation of the concrete strength can potentially lead to disastrous

structural failures.

How we can take into account measurement imprecision. When we apply the

traditional (non-fuzzy) Bayes approach, we use the actual measurement results.

When we apply the fuzzy approach, we take into account the measurement

uncertainty by replacing each value xi with a triangular membership function

with a center at xi and endpoints at xi − 2 and xi + 2. The resulting fuzzy

numbers are described in the last column of Table 1.
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The triangular membership function is selected for illustrative purposes only

– because it is computationally the simplest.

Two possible approaches: full Bayesian update and a simplified version assuming

parameter independence. To explain the possibility of two different approaches,

let us start with the simplest case of interval uncertainty, when both the prior

distribution g(θ) and the likelihood function f(x | θ) are known exactly, but the

values x = (x1, . . . , xn) are known with interval uncertainty. In other words, for

each i, we only know the interval [xi, xi] of possible values. For each combination

of values xi ∈ [xi, xi], we can perform the Bayes update, find the posterior dis-

tribution g(θ |x), and then compute the means θp = (θp,1, . . .) of the parameters

over this posterior distribution.

In the full Bayes update, we try all possible combinations of xi ∈ [xi, xi],

and come up with the multi-D range of possible values of θp. For example,

in the 2-D case, when we have two parameters θ = (θ1, θ2), we get a 2-D

range. A general 2-D range is difficult to describe and difficult to compute.

So, to simplify computations, we can instead, for each parameter θj , compute

the interval [θp,j , θp,j ] of possible values of this parameter. In this case, for

each parameter, we only need to compute two numbers θp,j and θp,j , so these

computations are much faster.

Once we computed the intervals, then – instead of returning the actual multi-

D range – we return the box

[θp,1, θp,1]× . . .× [θp,m, θp,m]

which is guaranteed to contain the multi-D range. (Actually, one can easily see

that this is the smallest box that contains the actual range.)

For example, in the 2-D case, we return a 2-D box [θp,1, θp,1]× [θp,2, θp,2].

The box is easier to compute that the actual range, but, as we see later,

it contains additional points. In other words, we give up some accuracy in

describing the results – and we gain a drastic decrease in computation time.

In the fuzzy case, when all the inputs are fuzzy numbers, instead of a crisp

set of possible values of θ, we get a fuzzy. Namely, for each level α, we apply the
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Figure 3: µX–σX interaction after Bayesian update with imprecise data for the 2-D normal

prior.

above interval procedure to the α-cuts xi(α) of the input fuzzy numbers. The

resulting multi-D range – or the multi-D box approximating this range – serve

as the α-cut for the desired fuzzy set.

Computational results: case of imprecise data. Let us start by considering the

above 2-D normal distribution as the prior. On Figure 3, we show the results of

applying the above algorithm to this prior and to the fuzzy data from the last

column of Table 1. The 2-D areas correspond to the level α = 0, when we allow

all possible values from the intervals [xi − 2, xi + 2].

We perform the full Bayesian update – when we take into account interac-

tion between the parameters θ1 = µX and θ2 = σX – twice: for the first n = 7

measurement results and for the whole sample (n = 20). The range correspond-

ing to n = 7 is described by the dashed like, the range corresponding to n = 20

by a solid line. For n = 20, we also used a simplified approach – in which we

ignore the interaction between the parameters. We can say that the resulting

2-D box indeed contains much more points than the actual range.

In addition to the 2-D ranges corresponding to α = 0, Figure 3 also depicts

membership functions for θ1 = µX and θ2 = σX corresponding to individual

parameters. For each of these membership functions and for each α, the corre-
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sponding α-cut is the range of the values of the j-th parameter when we consider

values xi ∈ xi(α). In particular, for α = 1, each input α-cut degenerates into

a single point xi, so the resulting value θj becomes exactly the value that we

obtained earlier in the case of exact inputs for this prior distribution.

Observation: imprecision does not decrease with sample size. It is important to

observe that the size of the 2-D region does not decrease when we increase the

sample size – in contrast to the traditional Bayesian approach, as the sample

size increases, the estimates become more and more accurate, and the size of

the confidence region decreases.

Imprecision does not decrease with sample size: an intuitive explanation. This

observed phenomenon is in good accordance with the usual sample estimates,

e.g., with the sample arithmetic average xav =
x1 + . . .+ xn

n
as an estimate for

the mean µX . Indeed, when we take an average of n independent random vari-

ables with standard deviation σX , then the standard deviation of this average

is equal to
σX√
n

and thus, decreases when the sample size increases.

In the case of interval uncertainty, when the only information that we have

about the actual (unknown) values xacti is that they belong to the intervals

[xi − ∆, xi + ∆], we return the set of all possible values of the average xactav =
xact1 + . . .+ xactn

n
when xacti ∈ [xi − ∆, xi + ∆]. The average is an increasing

function of all its n variables xacti , so its smallest possible value xactav is attained

when all n variables takes their smallest possible values xacti = xi −∆. In this

case,

xactav =
X1 + . . .+Xn

n
=

(x1 −∆) + . . .+ (xn −∆)

n
= xav −∆.

Similarly, the largest possible value x act
av of xactav is attained when all n variables

takes their smallest possible values xacti = xi + ∆. In this cases,

x act
av =

xact1 + . . .+ xactn

n
=

(x1 + ∆) + . . .+ (xn + ∆)

n
= xav + ∆.

Thus, the range of possible values of the mean takes the form [xav−∆, xav +∆].

The width of this interval does not decrease when we increase the sample size.
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Figure 4: Comparison of the estimation results from Bayesian update with imprecise data

with the results from sample statistics with imprecise data.

Comparison with the results of traditional (non-Bayesian) fuzzy data processing.

It is interesting to compare the above results with the sample mean and standard

deviation that can be computed – by using the same Zadeh’s Extension Prin-

ciple – from the fuzzy inputs. This comparison is presented on Figure 4. The

difference between the two estimates is that in the Bayes approach, in addition

to the data, we also use prior information. Since we use additional information

in the Bayes approach, we expect the results of this approach to be more precise

– and indeed, the ranges corresponding to the Bayes approach are smaller than

the original statistical one.

Thus, by the way, we show why it is beneficial to use Bayes approach even

when we do not have inconsistent knowledge – because this approach enables

us to use additional knowledge and thus, get more precise estimates.

Towards fuzzy probability distributions. Different values of the parameters θ

correspond to different x-distributions f(x | θ). In particular, different possible
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Figure 5: Comparison of the resulting CDF’s

values θ lead to different cumulative distribution functions

F (x)
def
= Prob(X ≤ x).

Thus, for each x, instead of the single value F (x), we have a range (interval) of

possible values corresponding to different values θ.

For each level α, when we consider α-cuts of the inputs, we get the corre-

sponding range of values of θ and thus, the interval of possible values of F (x).

So, for each x, we have a nested family of intervals corresponding to different

α. In other words, for each x, F (x) is now a fuzzy number. We can thus say

that we now have a fuzzy-valued cumulative distribution function (CDF); see,

e.g., [1]. In Figure 5, we depict the corresponding fuzzy CDF for α = 0 and for

α = 1. We can see that the range for the cdf F (x) obtained by using statistical

estimates (without taking into account prior knowledge) is much wider than the

actual range – and is, thus, a not very accurate description of the actual range.

Figure 6 depicts what happens if we perform similar computations for the

2-D uniform prior distribution. In this case also, if we ignore the interaction

between the parameters, we increase the fuzziness of the results.
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Figure 6: µX–σX interaction after Bayesian update with imprecise data for the 2-D uniform

prior.

Similarly, for different values θ, we get different 5%-quantiles. Thus, for each

α, instead of a single quantile, we have the whole interval of possible quantile

values and overall, we have a nested family of intervals – i.e., a fuzzy number.

In Figure 7, we depict the corresponding memberships function for the 5%-

quantile. We can see that the membership functions obtained by the simplified

method – without taking into account interaction between parameters – are

much wider and are, thus, less accurate that the ones obtained by using the

fully Bayes approach.

What if the prior distribution g(θ) is fuzzy. In the above computations, we

assumed that the data are fuzzy, but the prior distribution is known exactly.

Let us describe what happens if the data are exact but the prior distribution

is fuzzy, i.e., has the form g(θ, b) for some fuzzy vector b = (b1, b2). We will

consider two cases: normal and uniform distributions. In both cases, the prior

distribution for θ1 = µX is crisp, only the prior distribution for θ2 = σX is fuzzy.

For the normal distribution, we assume that g(θ2, b) is a normal distribution

with mean b1 and standard deviation b2. In the crisp cases, we took b1 = 4.5

and b2 = 1.0. Here, we assume that b1 is a triangular fuzzy number b1 =

〈3.5, 4.5, 5.5〉 and b2 is a triangular fuzzy number b2 = 〈0.75, 1.0, 1.5〉.
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Figure 7: Fuzzy quantile x̃0.05 of the fuzzy random variable X̃ based on imprecise data.

For the uniform distribution, we assume that g(θ2, b) is a uniform distribu-

tion on the interval [b1, b2]. In the crisp cases, we took b1 = 3.0 and b2 = 6.0.

Here, we assume that b1 is a triangular fuzzy number b1 = 〈2.0, 3.0, 4.0〉 and b2
is a triangular fuzzy number b2 = 〈5.0, 6.0, 7.0〉.

For each α, different values bk ∈ bk(α) lead, in general, to different values

of θp. The corresponding ranges are described on Figure 8 for the normal case

and on Figure 9 for the uniform case. Figure 10 describes the fuzzy quantiles

for both cases.

In general, the larger the sample, the smaller should be the influence of

the prior distribution, i.e., the closer the estimates to the actual values of the

corresponding parameters. And indeed, we see that as the sample size increases,

the range of possible values of θp are shrinks.

It is interesting to observe the difference between the shapes of the corre-

sponding membership functions. In the uniform case, the membership functions

are concave, and a small reduction of the imprecision of the prior distribution

leads to a larger reduction in the imprecision of the results. In contrast, in the

normal case, the membership functions are convex, so a reduction in impreci-

sion in the prior g(x) is less effective to reduce the imprecision of the estimation

results.

27



Figure 8: µX–σX interaction after Bayesian update with imprecise 2-D normal prior distri-

bution function.

Figure 9: µX–σX interaction after Bayesian update with imprecise 2-D uniform prior distri-

bution function.
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Figure 10: Fuzzy quantile x̃0.05 of the fuzzy random variable X̃ based on imprecise prior

distribution functions.

What if both data and prior distributions are fuzzy. The results for this case are

shown in Figures 11, 12, and 13. As expected, when the sample size increases,

the effect of the prior imprecision decreases.

5. Conclusions and Remaining Open Problems

Conclusions. Inconsistent information represents a common problem in engi-

neering practice. In case of inconsistent information, traditional Bayesian sta-

tistical methods – that only take into account probabilistic uncertainty – cannot

be applied. In such situations, we also need to take into account imprecision with

which we know the data, the prior distribution, and the likelihood functions.

Once we take this imprecision into account – by considering fuzzy data, fuzzy

prior distributions, and fuzzy likelihood functions – we can use fuzzy Bayesian

updates and reasonable results.

In general, the Bayesian approach combines the prior information with the

information contained in the data. The more data we add, i.e., the larger the

data sample, the larger the role of the data and the smallest the influence of

the prior. As a result, both the influence of the prior and the uncertainty of the

resulting estimates decreases as the sample size increases. In the fuzzy Bayesian
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Figure 11: µX–σX interaction after Bayesian update with imprecise prior distribution func-

tion and imprecise data for the case of 2-D normal prior.

Figure 12: µX–σX interaction after Bayesian update with imprecise prior distribution func-

tion and imprecise data for case of 2-D uniform prior.
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Figure 13: Fuzzy quantile x̃0.05 of the fuzzy random variable X̃ based on imprecise prior

distribution and imprecise data.

case, the uncertainty similarly decreases, as well as the imprecision caused by

the imprecise prior. In contrast, the imprecision caused by the imprecise data

does not decrease with the sample size.

First open problem: towards efficient computations. As we have mentioned ear-

lier, the existing algorithms for the full Bayes update are often very computa-

tionally intensive. To speed up data processing, practitioners make simplifying

assumptions. In the previous section, we have shown that one needs to be very

cautious with such simplifications, since they can lead to inaccurate (and some-

times erroneous) results. This leaves us with the first important open problem:

to come up with a computationally efficient implementation of the correspond-

ing Bayesian techniques.

Second open problem: comparison with other approaches. Another important

open problem is related to the fact that there are other approached for dealing

with inconsistent data (including the Dempster-Shafer approach); see, e.g., [2,

4, 6, 8]. It is desirable to compare different approaches.
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AppendixA. A Heuristic Relation Between Fuzzy Degrees and Prob-

abilities

As we have mentioned, fuzzy estimates for the data come from the fact that

in addition to the guaranteed bound ∆ on the possible value of measurement

error, we also have smaller bounds ∆(α) < ∆ which only hold with a certain

degree of uncertainty α. If we have a large number of such measuring instru-

ments, then, for each level α, we can ask the following natural question: how

frequent are the cases for which the measurement error exceeds the correspond-

ing bound ∆(α).

To get an approximate heuristic answer to this question, following [3], let us

assume that:

• the corresponding fuzzy number n has the simplest symmetric triangular

shape, and

• the measurement error is – as is the case of many measuring instruments

– normally distributed.
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Figure A.14: Derivation of heuristic relationship between α-level and credibility level

Theoretically, in a normal distribution with mean µ and standard deviation

σ, all real values have a non-zero probability density and are, thus, possible.

However, in practice, the probability of large deviations is so small that it can

safely be neglected. Usually, some number k0 = 2, 3, or 6 is selected, and it is

assumed that all deviations larger than k0 · σ are impossible. For example, the

probability of deviations exceeding 3σ is ≈ 0.1%, the probability of deviations

exceeding 6σ is ≈ 10−8, etc. Once we select the corresponding small probability

η0 – or, equivalently, the credibility c0 = 1− η0, i.e., the probability with which

the random variable is contained in the interval – we then cut off the tails

with probability η0/2 on both sides of the normal distribution and claim that

the random variable is guaranteed to be within resulting interval. The usual

interpretation of the symmetric triangular number n = 〈`,m, r〉 is that the

corresponding value is guaranteed to be within the interval [`, r]. Thus, it makes

sense to identify this interval with the corresponding interval coming from the

normal distribution; see Figure A.14.

For each uncertainty level α, we can now compute the probability c that

the corresponding normally distributed random variable will be inside the cor-
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Figure A.15: Heuristic relationship between α-level and credibility level for c0 = 0.99

responding α-cut n(α). Then:

• the probability c is a good estimate of the frequency with which the actual

measurement error is limited by ∆(α), and

• the complement η = 1− c of this probability c is a good estimate for the

frequency with which the actual measurement error exceeds this bound.

For c0 = 0.99, the corresponding relation between α and c is described in Fig-

ure A.15.
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