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Abstract

From a purely mathematical viewpoint, once a statement is rigorously
proven, it should be accepted as true. Surprisingly, in applications, users
are often reluctant to accept a rigorously proven statement until the proof
is supplemented by its intuitive explanation. In this paper, we show that
this seemingly unreasonable reluctance makes perfect sense: the proven
statement is about the mathematical model which is an approximation
to the actual system; an intuitive explanation provides some confidence
that the statement holds not only for the model, but also for systems
approximately equal to this model – in particular, for the actual system
of interest.

Users are often reluctant to accept rigorously proven results: a prob-
lem. In theoretical mathematics, once a statement is (rigorously) proven, this
statement is accepted as true. Of course, it is nice to also have an intuitive un-
derstanding of why this statement is true (“idea of the proof”), but even without
such an understanding, the proven statement is still universally accepted as true.

In contrast, in applications of mathematics, often, users do not accept rigor-
ously proven statements until they also get an intuitive understanding of why
these statements are true. Why?

How this reluctance is explained now. To a mathematician, this reluc-
tance to accept a formally proven statement sounds puzzling: the statement is
proven, what else do we need? Mathematicians often ascribe this reluctance to
the lack of a user’s understanding of mathematics.

What we do in this paper. While we agree that sometimes reluctance comes
from the lack of understanding of what is mathematical rigor, there are deeper
– and meaningful – reasons for the users’ reluctance.
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Comment. Mathematicians are well aware of the users’ reluctance. Because
of this awareness, they (and, in particular, we) try to also add an intuitive
explanation to the proof. For example, when we formally justified the existing
semi-heuristic poverty measures [5], in addition to a formal justification, we also
added intuitive explanations. Similarly, when we formally justified the use of
Bernstein polynomials in function approximations [2], we also supplemented the
proof with intuitive explanations.

Our explanation: main idea. Our explanation is straightforward:

• a rigorous proof proves that the mathematical model used to simulate the
phenomena of interest has the desired property;

• if the mathematical model precisely described the real-life phenomena,
then we would be able to conclude that the real phenomena also satisfies
this property;

• in reality, however, mathematical models are usually only approximate; so,
the fact that the model satisfies a certain property does not necessarily
mean that this property is also satisfied for the real-life phenomena.

Towards a precise explanation: details. Different mathematical mod-
els can be characterized by different values of the corresponding parameters
x1, . . . , xn. Let v1, . . . , vn are the values of these parameters which are used in
our model. The rigorous proof proves the following statement: the given prop-
erty holds for the model with parameter values v1, . . . , vn; let us denote this
statement by P (v1, . . . , vn).

As we have mentioned, mathematical models are usually approximate. This
means, in particular, that the actual (unknown) values xi of the corresponding
parameters are, in general, (somewhat) different from the selected value vi. In
general, the fact that a property P holds for the values v1, . . . , vn, does not
necessarily imply that it also holds for nearby values x1, . . . , xn. To be able
to conclude that the desired property holds for the real-life phenomenon, we
therefore need to be able to show that we have P (x1, . . . , xn) not only for xi = vi
but also for xi ≈ vi.

We will show that what we call an “intuitive explanation” actually provides
such a justification for the correctness of P (x1, . . . , xn) for xi ≈ vi.

What is “intuitive explanation”? In order to explain the above claim in
precise terms, we need to understand what is usually meant by an intuitive
explanation. Typically, an intuitive explanation means that instead of using
the exact values vi of the corresponding parameters, we use natural-language
words such as “small”, “negligible”, etc.

For example, we can say that since in the expression a0 + a1 · t+ a2 · t2, the
coefficient a2 is small, we can safely ignore it and make conclusions based on the
linear approximation a0 + a1 · t. Similarly, we can say that since the frequency
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of the external signal is drastically different from the system’s eigenfrequencies,
resonance effects are small and can be safely ignored.

In order to describe natural-language words, it is reasonable to use fuzzy
logic, technique specifically designed to describe such imprecise (“fuzzy”) knowl-
edge in computer-understandable terms; see, e.g., [1, 4]. When we claim that
some quantity is small or large, we do not describe the exact value of this quan-
tity, we only describe the range of possible values. In addition to this range
– which is guaranteed to contain all “small” values – experts can also provide
narrower intervals that contain all small values with a given degree of certainty.

In other words, an expert is 100% sure that the value v belongs to a wide
interval, and with some degree of confidence, the expert believes that v belongs
to a narrower interval. For different degrees of confidence, we have different
interval ranges; in order to increase the expert’s degree of confidence, we need
to add extra points to the range, i.e., make the interval wider. Thus, instead of
a single interval range v = [v, v], we have a family of ranges v(d) = [v(d), v(d)]
corresponding to different degrees of confidence d. This family is nested in the
sense that when d < d′, we have v(d) ⊆ v(d′). Nested intervals v(d) form what
is usually called a fuzzy number V = {v(d)}d; see, e.g., [1, 3, 4].

Comment. Instead of nested intervals, we can also describe, for each value x,

the largest confidence level d(x) for which x ∈ v(d). The value µ(x)
def
= 1− d(x)

is called a membership function of the fuzzy number. Vice versa, once we know
the membership function, we can reconstruct each nested interval v(d) as the
α-cut {x : µ(x) ≥ 1− d}.

Properties of fuzzy numbers are defined in a straightforward way. If the
only information that we have about each value xi is that it is contained in the
corresponding range vi, then the only possibility to guarantee that the property
P holds for the actual (unknown) values xi is to prove that the property P holds
for all possible tuples (x1, . . . , xn) for which xi ∈ vi. In line with this idea, it is
reasonable to say that the property P holds for the intervals v1, . . . ,vn if this
property holds for all the tuples (x1, . . . , xn) for which xi ∈ vi.

For n fuzzy numbers V1 = {v1(d)}d, . . . , Vn = {vn(d)}d, with degree of
confidence d, we have xi ∈ vi(d). So, if the property P (x1, . . . , xn) holds for
all the tuples for which xi ∈ vi(d), then our degree of confidence that P holds
for Vi is at least d. Thus, for n fuzzy numbers Vi = {vi(d)}d, the degree
P (V1, . . . , Vn) with which the property P holds for V1, . . . , Vn can be naturally
defined as the largest of the degrees d for which the property P holds for the
intervals v1(d), . . . ,vn(d).

Why intuitive explanation is necessary in applications. Now, we can
explain, in precise terms, wy intuitive explanation is necessary in applications.
Indeed, an intuitive explanation means that instead of the approximate values vi
of the model’s parameters, we consider fuzzy numbers Vi, i.e., nested families of
intervals vi(d) that contain the actual (unknown) values xi with different degrees
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of certainty d. The fact that we are able to conclude that P is true – with some
high confidence d0 – means that the property P (V1, . . . , Vn) holds with degree
d0. This, in its turn, means that the property P (x1, . . . , xn) holds for all values
xi ∈ vi(d0). With degree of confidence d0, the actual values xi are contained in
the interval ranges vi(d0) and, therefore, the property P (x1, . . . , xn) holds for
the actual values xi.

This is exactly what we were trying to prove. Thus, the intuitive expla-
nation provides us with confidence that the property P holds not only for the
approximate values vi, but also for the actual values xi – and this is exactly
what the users want.
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