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Abstract

In many engineering situations, we need to take into account subjective
user preferences; taking such preference into account is known as Kansei
Engineering. In this paper, we formulate the problem of selecting opti-
mal set of designs in Kansei engineering as a mathematical optimization
problem, and we provide an explicit solution to this optimization problem.

Need for Kansei Engineering. Traditional engineering deals with objective
characteristics of a design: we want a bridge which can withstand a given load,
we want a car with a given fuel efficiency, etc. There may be several different
designs with the given ranges on characteristics, e.g., we may have different
car designs within the given price range, efficiency range, size restrictions, etc.
Different people make different choices between these designs based on their
subjective preferences.

This is how people select cars, this is how people select chairs, etc. Engi-
neering that takes such subjective preference into account is known as Kansei
Engineering; see, e.g., [1, 4, 8, 9, 10].

Need to select designs. Different people have different preferences. Thus,
to satisfy customers, we must produce several different designs: a car company

1



produces cars of several different designs, a furniture company produces chairs
of several different designs, etc.

The creation of each new design is often very expensive and time-consuming.
As a result, the number of new designs is usually limited. The question is: once
we know what customers want, and once we know how many different designs
we can afford, how should we select these designs?

What we do in this paper. In this paper, we describe a reasonable mathe-
matical model within which we can find an optimal collection of design.

Towards a mathematical model. Let us denote the number of parameters
needed to describe different designs by n. Then, each design can be characterized
by an n-dimensional vector x = (x1, . . . , xn). Let us assume that the unit of
different parameters are selected in such a way that a unit of each parameter
represents the same difference for the user. Under this selection, it is reasonable
to assume that the user’s difference between two designs can be described by the
Euclidean distance d(x, y) between the corresponding vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn):

d(x, x′) =

√√√√ n∑
i=1

(xi − yi)2.

We have a large number of potential users. For each user, some design is
ideal, and the farther we are from this ideal design, the less desirable this design
is. For our purposes, we can simply identify each user with this ideal vector x.

There are usually very many users, each of these users can be characterized
by a vector x. Ideally, we should record all these vectors, but in practice, it is
reasonable to describe how many users are in different zones. In other words,
a reasonable way to describe the users is to provide the distribution on the set
of all possible designs that characterizes how popular different designs are. A
natural way to describe a distribution of customers is to provide the population
density ρu(x) at different points x from the corresponding n-dimensional region.
For this function, ρu(x) ≥ 0 and the integral

∫
ρu(x) dx is equal to the total

number of potential customers.
Similarly, we can have a large number of engineered designs. So, instead

of explicitly listing these designs, we can simply describe how many different
designs are manufactured in different zones. Let us describe the corresponding
design density by ρm(x). Here, ρm(x) ≥ 0 and∫

ρm(x) dx = D, (1)

where D denotes the total number of designs.
If a manufacturer produces an ideal design, then the potential customer will

buy it for sure. The larger the distance between the ideal and the actual designs,
the less probable it is that the customer will purchase this design. Let p(r) be
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the probability that a customer will purchase a design at distance r from the
ideal one.

When the average density of the actual designs is ρm(x), this means that in
an area of linear size r and volume V = rn, we have ρm(x) · rn designs. So, we
have one design in the area of size r for which ρm(x) ·rn = 1. This equality leads

to r =
1

n
√
ρm(x)

. So, around the point x, the probability that a customer buys

a design is equal to p(r) = p

(
1

n
√

ρm(x)

)
. In the area of volume dx around

the point x, there are ρu(x) dx customers. Since the proportion p(r) of them
buys the design, the total number of customers in this area who purchased some
design is equal to

ρu(x) · p(r) dx = ρu(x) · p

(
1

n
√
ρm(x)

)
dx.

Thus, the total number C of customers who bought our designs is equal to

C =

∫
ρu(x) · p

(
1

n
√

ρm(x)

)
dx. (2)

Our objective is to maximize the overall profit. Let s be our gain from selling
a single unit. Then, by selling units to C customers, we gain the amount C · s.
Let d be the cost of generating one design; then, by producing D designs, we
spend the amount D · d. If we subtract the expenses from the gain, we get the
profit

M = C · s−D · d. (3)

Resulting optimization problem. We are given the functions ρu(x) and
p(r) and the values s and d. We need to select a function ρm(x) for which the
profit (3) is the largest possible, where the values C and D by using formulas
(1) and (2). In other words, we need to optimize the following expression:

M = s ·
∫

ρu(x) · p

(
1

n
√

ρm(x)

)
dx− d ·

∫
ρm(x) dx. (4)

Towards a solution. To solve the above optimization problem, we differenti-
ate the objective function M by each unknown ρm(x) and equate the resulting
derivative to 0. Thus, we get

s · 1
n
· p′
(

1
n
√

ρm(x)

)
· 1

n
√
ρm(x) · ρm(x)

· ρu(x)− d = 0, (5)
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where p′(r) is the derivative of p(r). By moving d to the right-hand side, we get
an equivalent formula

s · 1
n
· p′
(

1
n
√
ρm(x)

)
· 1

n
√
ρm(x) · ρm(x)

· ρu(x) = d. (6)

By dividing both sides by s · 1
n
· ρu(x), we keep all the terms depending on the

unknowns in the left-hand side and move all the known terms to the right-hand
side:

p′

(
1

n
√
ρm(x)

)
· 1

n
√
ρm(x) · ρm(x)

=
d · n

s · ρu(x)
. (7)

Thus, for z
def
=

1
n
√

ρm(x)
, we get an equation

p′(z) · zn+1 =
d · n

s · ρu(x)
. (8)

Thus, if we denote by i the function which is inverse to p′(z) · zn+1, we get, for
z, an explicit formula

z = i

(
d · n

s · ρu(x)

)
(9)

Once we know z =
1

n
√
ρm(x)

, we can the reconstruct the desired density ρm(x)

as ρm(x) =
1

zn
, i.e., as

ρm(x) =
1(

i

(
d · n

s · ρu(x)

))n . (10)

So, we arrive at the following solution to our original problem.

Solution. Let us form an auxiliary function p′(z) ·zn+1, where p′(z) denotes a
derivative, and then form an inverse function i(z) to this auxiliary function. In
other words, we define i(z) in such a way that i(p′(z) ·zn+1) = z for all z. Then,
the optimal distribution ρm(x) of designs can be described by the formula (10).

Comment. Similar arguments are used to select optimal sensor placements
[2, 5, 6, 7], in optimal setting of cloud computing [3], etc.
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