
From p-Boxes to p-Ellipsoids: Towards an Optimal
Representation of Imprecise Probabilities

Konstantin K. Semenov
Saint-Petersburg State Polytechnical University

29, Polytechnicheskaya str.
Saint-Petersburg, 195251, Russia
Email: semenov.k.k@gmail.com

Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
500 W. University

El Paso, TX 79968, USA
Email: vladik@utep.edu

Abstract—One of the most widely used ways to represent a
probability distribution is by describing its cumulative distribu-
tion function (cdf) F (x). In practice, we rarely know the exact
values of F (x): for each x, we only know F (x) with uncertainty.
In such situations, it is reasonable to describe, for each x, the
interval [F (x), F (x)] of possible values of x. This representation
of imprecise probabilities is known as a p-box; it is effectively
used in many applications.

Similar interval bounds are possible for probability density
function, for moments, etc. The problem is that when we
transform from one of such representations to another one, we
lose information. It is therefore desirable to come up with a
universal representation of imprecise probabilities in which we
do not lose information when we move from one representation
to another. We show that under reasonable objective functions,
the optimal representation is an ellipsoid. In particular, ellipsoids
lead to faster computations, to narrower bounds, etc.

I. FORMULATION OF THE PROBLEM

Probabilistic information is important. In describing and
processing uncertainty, it is very important to take into ac-
count information about the probabilities of different possible
values [23]. This is especially true in many engineering
applications, when we have a long history of similar situations,
and we can use this history to estimate the probabilities of
different scenarios. For example, for measurement uncertainty,
it is important to use the available information about the
probabilities of different possible values of the measurement
error; see, e.g., [19].

Comment. There are many ways to represent probabilistic
information. From the computational viewpoint, it is therefore
important to select the most appropriate representation. In this
section, we describe this problem in detail. Readers familiar
with different uncertain representations of probabilistic infor-
mation (such as p-boxes) and with the corresponding problem
can skip this section and go directly to the next one.

How probability distributions are usually represented.
There are many different ways of representing information
about the probability distribution of a random variable X; see,
e.g., [23]:

• we can use the cumulative distribution function

F (x)
def
= Prob(x ≤ X);

• we can use the probability density function ρ(x) which
is defined as

ρ(x)
def
= lim

∆x→0

Prob(x ≤ X ≤ x+∆x)

∆x
;

• we can use moments

Mk
def
= E[Xk] =

∫
xk · ρ(x) dx;

moments are often described in a slightly different but
equivalent form: e.g., instead of describing the first two
moments M1 and M2, we describe the mean M1 and the
variance V = M2 −M2

1 ;
• in some cases, it is convenient to use a characteristic

function of the distribution, i.e., the expected values

E[exp(i · ω ·X)] =

∫
exp(i · ω · x) · ρ(x) dx

corresponding to different values ω;
• in some practical applications, it is useful to consider the

expected values

E[u(X)] =

∫
u(x) · ρ(x) dx

of the utility functions u(x) that describe user prefer-
ences; see, e.g., [10], [16], [20];

• there are many other ways of representing the probability
distribution.

All these representations are mathematically equivalent.
All above ways of representing the probabilistic information
are mathematically equivalent – in the sense that if know one
of these representations, then we can uniquely determine all
the other presentations as well. For example,

• once we know the cdf F (x), we can reconstruct the pdf
ρ(x) as the derivative

ρ(x) =
dF (x)

dx
;

• once we know the pdf ρ(x), we can reconstruct the cdf
F (x) as an integral

F (x) =

∫ x

−∞
ρ(t) dt,



etc.
In particular, if we start with ρ(x), integrate to get F (x), and
then differentiate the resulting cdf F (x), we get the same pdf
ρ(x) with which we started.

Need to take uncertainty into account. In practice, we rarely
have full knowledge of the probability distribution: usually,
several similar probability distributions are consistent with our
knowledge. It is therefore desirable to take into account this
uncertainty when we process and represent the corresponding
probabilistic information; see, e.g., [26].

How probabilistic uncertainty is currently represented. In
terms of cdf, uncertainty means that we do not know the exact
values of F (x). For some x, there are several possible values
F (x) which are consistent with our knowledge. Since we do
not know the exact value of F (x), it is reasonable to describe,
for each x, the interval [F (x), F (x)] of possible values of x.
This representation of imprecise probabilities is known as a
p-box; it is effectively used in many applications; see, e.g.,
[6], [7], [17].

Uncertainty can be similarly taken into account for other
representations of probabilities; see, e.g., [17] and references
therein:

• instead of the exact value ρ(x) of the pdf, for each x, we
can represent an interval [ρ(x), ρ(x)] of possible values;

• instead of the exact values of the moments Mk, we can
represent intervals [Mk,Mk] of possible values;

• instead of the exact values of the characteristic function,
we can represent intervals of possible values of the
characteristic function, etc.

Problem: these representations are no longer mathemat-
ically equivalent. As we have mentioned, when we have
the exact knowledge of the probabilities, all representations
are mathematically equivalent. However, in the presence of
uncertainty, these representations are no longer equivalent. For
example, if we have a random variable which is located on a
known interval [x−, x+] with probability 1, and we know the
bounds ρ(x) and ρ(x) on the corresponding pdf ρ(x), then we
can deduce the corresponding bounds on F (x):

F (x) =

∫ x

x−
ρ(t) dt and F (x) =

∫ x

x−
ρ(t) dt.

For example, when both bounds on ρ(x) are constants, i.e.,
when ρ(x) = ρ and ρ(x) = ρ, we get

F (x) = (x− x−) · ρ and F (x) = (x− x−) · ρ.

Based on these bounds, however, we can no longer reconstruct
the original bounds on ρ(x): for example, these bounds contain
a distribution for which first the cdf F (x) is equal to F (x)
and then at some point x0 ∈ [x−, x+], it jumps to F (x). For
this distribution, the probability density is infinite at x = x0.

Questions: how important is this problem and, if it is
important, how to solve it. We have formulated the problem
in mathematical terms. Natural questions are:

• how important is this problem for practical applications?
do we really need different representations – or should
we only use one of them?

• if this problem is practically important, then how can we
solve it?

These are the problems that we will handle in this paper.

II. THIS PROBLEM IS PRACTICALLY IMPORTANT

Let us first explain that different representations of proba-
bilistic information are necessary in practical applications and
therefore, that the above problem – that different representa-
tions are not equivalent in the presence of uncertainty – is
practically important.

Which is the best way to describe the probabilistic in-
formation. One of the main objectives of data processing is
to make decisions. A standard way of making a decision is
to select the action a for which the expected utility (gain)
is the largest possible. This is where probabilities are used:
in computing, for every possible action a, the corresponding
expected utility. To be more precise, we usually know, for each
action a and for each actual value of the (unknown) quantity x,
the corresponding value of the utility ua(x). We must use the
probability distribution for x to compute the expected value
E[ua(x)] of this utility.

In view of this application, the most useful characteristics
of a probability distribution would be the ones which would
enable us to compute the expected value E[ua(x)] of different
functions ua(x).

Which representations are the most useful for this intended
usage? General idea. Which characteristics of a probability
distribution are the most useful for computing mathematical
expectations of different functions ua(x)? The answer to this
question depends on the type of the function, i.e., on how
the utility value u depends on the value x of the analyzed
parameter.

Smooth utility functions naturally lead to moments. One
natural case is when the utility function ua(x) is smooth. We
have already mentioned, in the previous text, that we usually
know a (reasonably narrow) interval of possible values of x.
So, to compute the expected value of ua(x), all we need
to know is how the function ua(x) behaves on this narrow
interval. Because the function is smooth, we can expand it into
Taylor series. Because the interval is narrow, we can consider
only linear and quadratic terms in this expansion and safely
ignore higher-order terms:

ua(x) ≈ c0 + c1 · (x− x0) + c2 · (x− x0)
2,

where x0 is a point inside the interval. Thus, we can approxi-
mate the expected value of this function by the expected value
of the corresponding quadratic expression:

E[ua(x)] ≈ E[c0 + c1 · (x− x0) + c2 · (x− x0)
2],

i.e., by the following expression:

E[ua(x)] ≈ c0 + c1 · E[x− x0] + c2 · E[(x− x0)
2].



So, to compute the expectations of such utility functions, it
is sufficient to know the first and second moments of the
probability distribution.

Case of several variables. In the above text, we assumed that
the situation is fully described by the value of a single random
variable x. In practice, usually, we need several variables to
describe the situation. For the case when we have several
random variables x1, . . . , xn, we can similarly expand the
dependence of the smooth utility function ua(x1, . . . , xn) in
Taylor series and keep linear and quadratic terms in this
expansion:

ua(x1, . . . , xn) ≈ c0 +
n∑

i=1

c1i · (xi − xi0)+

n∑
i=1

c2i · (xi − xi0)
2+

n∑
i=1

∑
j ̸=i

c2ij · (xi − xi0) · (xj − xj0).

Thus, we can approximate the expectation of this function by
the expectation of the corresponding quadratic expression:

E[ua(x)] ≈ E

[
c0 +

n∑
i=1

c1i · (xi − xi0)+

n∑
i=1

c2i · (xi − xi0)
2+

n∑
i=1

∑
j ̸=i

c2ij · (xi − xi0) · (xj − xj0)

 ,

i.e., by the following expression:

E[ua(x)] ≈ c0 +

n∑
i=1

c1i · E[xi − xi0]+

n∑
i=1

c2i · E
[
(xi − xi0)

2
]
+

n∑
i=1

∑
j ̸=i

c2ij · E[(xi − xi0) · (xj − xj0)].

So, to compute the expectations of such utility functions, it is
sufficient, in addition to the first and second moments of all
the variables xi, to also know the “mixed” moments

E[(xi − xi0) · (xj − xj0)],

which correspond, e.g., to covariance.

In decision making, non-smooth utility functions are com-
mon. In decision making, not all dependencies are smooth.
There is often a threshold x0 after which, say, a concentration
of a certain chemical becomes dangerous.

This threshold sometimes comes from the detailed chemical
and/or physical analysis. In this case, when we increase the

value of this parameter, we see the drastic increase in effect
and hence, the drastic change in utility value. Sometimes, this
threshold simply comes from regulations. In this case, when
we increase the value of this parameter past the threshold,
there is no drastic increase in effects, but there is a drastic
decrease of utility due to the necessity to pay fines, change
technology, etc. In both cases, we have a utility function which
experiences an abrupt decrease at a certain threshold value x0.

Non-smooth utility functions naturally lead to cumulative
distribution functions (cdfs). We want to be able to compute
the expected value E[ua(x)] of a function ua(x) which

• changes smoothly until a certain value x0,
• then drops its value and continues smoothly for x > x0.

We usually know the (reasonably narrow) interval which
contains all possible values of x. Because the interval is
narrow and the dependence before and after the threshold is
smooth, the resulting change in ua(x) before x0 and after x0

is much smaller than the change at x0. Thus, with a reasonable
accuracy, we can ignore the small changes before and after x0,
and assume that the function ua(x) is equal to a constant u+

for x < x0, and to some other constant u− < u+ for x > x0.
The simplest case is when u+ = 1 and u− = 0. In this

case, the desired expected value E[u
(0)
a (x)] coincides with the

probability that x < x0, i.e., with the corresponding value
F (x0) of the cumulative distribution function (cdf). A generic
function ua(x) of this type, with arbitrary values u− and u+,
can be easily reduced to this simplest case, because, as one
can easily check, ua(x) = u−+(u+−u−)·u(0)(x) and hence,

E[ua(x)] = u− + (u+ − u−) · F (x0).

Thus, to be able to easily compute the expected values of all
possible non-smooth utility functions, it is sufficient to know
the values of the cdf F (x0) for all possible x0.

Summarizing: which description should we select. Our
analysis shows, depending on the application, different rep-
resentation are optimal: it can be moments and covariances, it
can be values of the cdf.

Since these two representations are not equivalent in the
case of the usual (interval) approach to uncertainty, it is
therefore desirable to come up with a new representation of
uncertainty that would bring equivalence back.

III. ANALYSIS OF THE PROBLEM

Let us formulate the problem in precise mathematical
terms. In all representations of a probability distribution, we
represent this distribution by storing the values of different
numerical characteristics of this distribution:

• for cdf, we store the values of the cdf F (x) at different
points x;

• for pdf, we store the values of the pdf ρ(x) at different
points x;

• for moments, we store the values of Mk for different
k = 1, 2, . . .;



• for characteristic functions, we store the values corre-
sponding to different ω, etc.

To describe the distribution exactly, we need to know the
values of infinitely many characteristics:

• we need to know the values F (x) (correspondingly, ρ(x))
corresponding to infinitely many points x;

• we need to know the moments Mk corresponding to all
infinitely many integers k, etc.

In practice, at any given moment of time, we can only store
values of finitely many characteristics. Let us denote the total
number of these values by n, and the values themselves by
v1, . . . , vn.

In the case of exact knowledge, we know the exact values
of all n characteristics vi, i.e., we know the exact point
v = (v1, . . . , vn) ∈ IRn. Under uncertainty, we do not know
the exact point v; several such points are consistent with our
knowledge, i.e., we have a set V ⊆ IRn of such points. What
we need is a way to represent such sets.

Traditional way of representing uncertainty. The above way
of representing uncertainty means that for each characteristic
vi, we find an interval [vi, vi] of its possible values. In this
case, the set of all possible combinations v = (v1, . . . , vn)
forms a box

[v1, v1]× . . .× [vn, vn];

(this is where the name of the p-box comes from). The problem
is that to go from F (x) to ρ(x), we need linear transforma-
tions, and in general, a linear transformation transforms a box
into a parallelepiped – and not into a box. In other words,
what was a box in one representation becomes a different
objects in another one, and so, different representations are
not equivalent.

What we need. What we need is to come up with a different
representation, i.e., with a different family of sets – not boxes,
a family that would transform into a similar representation
if we apply all appropriate transformations. In other words,
we need a family F of sets so that if we start with a set V
from this family, and apply an appropriate transformation T
to each element v ∈ V of this set, then the resulting new set
T (V )

def
= {T (v) : v ∈ V } should also be an element of the

family F .

What are appropriate transformations. The formulas for all
the above characteristics are linear in ρ(x), so all appropriate
transformations are linear.

Need to speed up computations. The need to process uncer-
tainty is ubiquitous. Often, these problems appear in situations
like automatic control, when we need to make decision very
fast. In such situations, the faster the data processing, the
better. In general, the more parameters we need to process, the
longer our computations; it is therefore desirable to select a
family of sets which would need the smallest possible number
of parameters to describe.

Comment. Of course, the computational complexity depends
not only on the number of parameters, it also depends on the

complexity of the corresponding computations. We will see
that if we minimize the number of parameters, computations
will become more efficient as well.

IV. ELLIPSOIDS ARE OPTIMAL: FIRST RESULT

Now, we are ready to formulate our main result.

Definition 1. By a closed domain, we mean a closed set that
is equal to the closure of the set of its interior points.

Definition 2. Let M and N be smooth manifolds.
• By a multi-valued function F : M → N we mean a

function that maps each m ∈ M into a discrete set
F (m) ⊆ N .

• We say that a multi-valued function is smooth if for every
point m0 ∈ M and for every value f0 ∈ F (m), there
exists an open neighborhood U of m0 and a smooth
function f : U → N for which f(m0) = f0 and for
every m ∈ U , f(m) ⊆ F (m).

Definition 3. Let G be a Lie transformation group on a smooth
manifold M .

• We say that a class A of closed subsets of M is G-
invariant if for every set X ∈ A, and for every trans-
formation g ∈ G, the set g(X) also belongs to the class.

• If A is a G−invariant class, then we say that A is a
finitely parametric family of sets if there exist:

– a (finite-dimensional) smooth manifold V ;
– a mapping s that maps each element v ∈ V into a

set s(v) ⊆ M ; and
– a smooth multi-valued function Π : G× V → V

such that:
– the class of all sets s(v) that corresponds to different

v ∈ V coincides with A, and
– for every v ∈ V , for every transformation g ∈ G, and

for every π ∈ Π(g, v), the set s(π) (that corresponds
to π) is equal to the result g(s(v)) of applying the
transformation g to the set s(v) (that corresponds
to v).

• Let r > 0 be an integer. We say that a class of sets
B is a r-parametric class of sets if there exists a finite-
dimensional family of sets A defined by a triple (V, s,Π)
for which B consists of all the sets s(v) with v from some
r−dimensional sub-manifold W ⊆ V .

Theorem 1. Let n > 0 be an integer, M = IRn, Ge be the
group of all linear (affine) transformations

vi → ai +
n∑

j=1

aij · vj ,

and B be a Ge-invariant r-parametric family of connected
bounded closed domains from IRn. Then:

• r ≥ n(n+ 3)

2
; and

• if r =
n(n+ 3)

2
, then B coincides either with the family

of all ellipsoids, or, for some λ ∈ (0, 1), with the family



of all regions obtained from ellipsoids by subtracting λ
times smaller homothetic ellipsoids.

Comment. If we restrict ourselves to convex sets (or only to
simply connected sets), we get ellipsoids only. So, the family
of ellipsoids is indeed optimal – in the sense that it needs the
smallest possible number of parameters to describe.

In view of this result, when we describe probabilistic un-
certainty, instead of p-boxes, we should consider p-ellipsoids,
i.e., ellipsoid-shaped regions in the linear space of all possible
cdf functions F (x).

Historical comment. Our proof is similar to the proofs of
similar results presented in [9] and [15].

Proof.

1◦. Let us first show that r ≥ n(n+ 3)

2
. Indeed, it is known

(see, e.g., [3]) that for every open bounded set X , among
all ellipsoids that contain X , there exists a unique ellipsoid
E of the smallest volume. We will say that this ellipsoid E
corresponds to the set X . Let us consider the set of ellipsoids
Ec that correspond (in this sense) to all possible sets X ∈ A.

Let us fix a set X0 ∈ B, and let E0 denote an ellipsoid that
corresponds to X0.

An arbitrary ellipsoid E can be obtained from any other
ellipsoid (in particular, from E0) by an appropriate affine
transformation g: E = g(E0). The ratio of volumes is
preserved under arbitrary linear transformations g; hence, since
the ellipsoid E0 is the smallest volume ellipsoid that contains
X0, the ellipsoid E = g(E0) is the smallest volume ellipsoid
that contains g(X0) = X .

Hence, an arbitrary ellipsoid E = g(E0) corresponds to
some set g(X0) ∈ B. Thus, the family Ec of all ellipsoids that
correspond to sets from A is simply equal to the set E of all
ellipsoids. Thus, we have a (locally smooth) mapping from an

r-dimensional set A onto the
n(n+ 3)

2
-dimensional set of all

ellipsoids. Hence, r ≥ n(n+ 3)

2
.

2◦. Let us now show that for r =
n(n+ 3)

2
, the only

Ge-invariant families A are ellipsoids and “ellipsoid layers”
(described in the formulation of the Theorem).

Indeed, let X0 be an arbitrary set from the invariant family
B, and let E0 be the corresponding ellipsoid. Let g0 ∈ Ge be
an affine transformation that transform E0 into a ball E1 =
g(E0). This ball then contains the set X1 = g0(E0) ∈ B.

Let us show, by reduction to a contradiction, that the set
X1 is invariant w.r.t. arbitrary rotations around the center of
the ball E1. Indeed, if it is not invariant, then the set R of
all rotations that leave X1 invariant is different from the set
of all rotations SO(n). Hence, R is a proper closed subgroup
of SO(n). From the structure of SO(n), it follows that there
exists a 1−parametric subgroup R1 of SO(n) that intersects
with R only in the identity transformation 1. This means that
if g ∈ R1 and g ̸= 1, we have g ̸∈ R, i.e., g(X1) ̸= X1.

If g(X1) = g′(X1) for some g, g′ ∈ R1, then we have
g−1g′(X1) = X1, where g−1g′ ∈ R1. But such an equality
is only possible for g−1g′ = 1, i.e., for g = g′. Thus, if
g, g′ ∈ R1 and g ̸= g′, then the sets g(X1) and g′(X1) are
different. In other words, all the sets g(X1), g ∈ R1, are
different.

Since the family B is Ge-invariant, all the sets g(X1) for
all g ∈ R1 ⊆ Ge also belong to A. For all these sets, the
corresponding ellipsoid is g(E1), the result of rotating the
ball E1, i.e., the same ball g(E1) = E1. Hence, we have
a 1−parametric family of sets contained in the ball E1.

By applying appropriate affine transformations, we will get
1-parametric families of sets from B in an arbitrary ellipsoid.

So, we have an
n(n+ 3)

2
-dimensional family of ellipsoids,

and inside each ellipsoid, we have a 1-dimensional family

of sets from B. Thus, B would contain a
(
n(n+ 3)

2
+ 1

)
-

parametric family of sets, which contradicts to our assumption

that the dimension r of the family B is exactly
n(n+ 3)

2
.

This contradiction shows that our initial assumption was

false, and for r =
n(n+ 3)

2
, the set X1 is invariant w.r.t. ro-

tations. Hence, with an arbitrary point x, the set X1 contains
all the points that can be obtained from x by arbitrary rotations,
i.e., the entire sphere that contains x. Since X1 is connected,
X1 is either a ball, or a ball from which a smaller ball was
deleted.

The original set X0 = g−1
0 (X1) is an affine image of this

set X1, and therefore, X0 is either an ellipsoid, or an ellipsoid
with an ellipsoidal hole inside. The theorem is proven.

V. ELLIPSOIDS ARE OPTIMAL: SECOND RESULT

In the previous section, we showed that ellipsoids are
optimal in the sense that the family of ellipsoids requires the
smallest possible number of parameters to describe. Let us
show that ellipsoids are optimal with respect to many other
optimality criteria as well. Moreover, we will prove that under
reasonable conditions on an optimality criterion, a family of
sets which is optimal with respect to this criterion consists of
ellipsoids.

What is an optimality criterion? When we say “the best”,
we mean that on the set of all such families, there must be
a relation ≽ describing which family is better or equal in
quality. This relation must be transitive (if B is better than
B′, and B′ is better than B′′, then B is better than B′′). This
relation is not necessarily asymmetric, because we can have
two approximating families of the same quality. However, we
would like to require that this relation be final in the sense
that it should define a unique best family Bopt (i.e., the unique
family for which ∀B (Bopt ≽ B)). Indeed:

• If none of the families is the best, then this criterion is
of no use, so there should be at least one optimal family.

• If several different families are equally best, then we can
use this ambiguity to optimize something else: e.g., if we
have two families with the same approximating quality,



then we choose the one which is easier to compute. As
a result, the original criterion was not final: we get a
new criterion (B ≽new B′ if either B gives a better
approximation, or if B ∼old B′ and B is easier to
compute), for which the class of optimal families is
narrower. We can repeat this procedure until we get a
final criterion for which there is only one optimal family.

An optimality criterion should be invariant. It is reasonable
to require that what is better in one representation should be
better in another representation as well. In other words, it is
reasonable to require the relation B ≽ B′ should be invariance
relative to the affine transformations.

Definition 4. Let A be a class of families of sets, and let G
be a group of transformations defined on A.

• By an optimality criterion, we mean a pre-ordering (i.e.,
a transitive reflexive relation) ≼ on the class A.

• We say that an optimality criterion is G-invariant if for
all g ∈ G, and for all B,B′ ∈ A, B ≼ B′ implies

g(B) ≼ g(B′).

• We say that an optimality criterion is final if there exists
one and only one element Bopt ∈ A that is preferable to
all the others, i.e., for which B ≼ Bopt for all B ̸= Bopt.

Theorem 2. Let n > 0 be an integer, M = IRn, Ge

be the group of all affine transformations, and ≼ be a
Ge−invariant and final optimality criterion on the class A
of all r-parametric families of connected bounded closed
domains from IRn. Then:

• r ≥ n(n+ 3)

2
; and

• if r =
n(n+ 3)

2
, then the optimal family coincides either

with the family of all ellipsoids, or, for some λ ∈ (0, 1),
with the family of all regions obtained from ellipsoids by
subtracting λ times smaller homothetic ellipsoids.

Comment. Similarly to Theorem 1, if we restrict ourselves
to convex sets (or only to simply connected sets), we get
ellipsoids only.

Proof of Theorem 2. Since the criterion ≼ is final, there exists
one and only one optimal family of sets. Let us denote this
family by Bopt.

Let us first show that this family Bopt is Ge-invariant, i.e.,
that g(Bopt) = Bopt for every transformation g ∈ Ge.

Indeed, let g ∈ Ge. From the optimality of Bopt, we
conclude that for every B ∈ A, g−1(B) ≼ Bopt. From the
Ge-invariance of the optimality criterion, we can now conclude
that B ≼ g(Bopt). This is true for all B ∈ A and therefore,
the family g(Bopt) is optimal. But since the criterion is final,
there is only one optimal family; hence, g(Bopt) = Bopt. So,
Bopt is indeed invariant.

Now, the result follows from Theorem 1.

VI. EXAMPLES OF HOW ELLIPSOIDS ARE BETTER THAN
BOXES

Historical comment. Before we start listing the way in which
ellipsoids are better in probability representations, we should
mention that in general, ellipsoids have been successfully used
to represent uncertainty (and, more generally, to represent
different sets); see, e.g., [2], [4], [5], [8], [11], [18], [21], [22],
[24], [25]). Several other families of sets have been proposed
to describe uncertainty, such as boxes, parallelepipeds, poly-
topes, etc. Experimental comparison of different families has
lead to a conclusion that in many practical situations, ellipsoids
indeed lead to the best results; see, e.g., [4], [5].

Ellipsoids are known to work better in linear programming,
where we need to find minima or maxima of linear functions
on a set defined by a system by linear inequalities (i.e., on a
convex polytope). The traditionally used simplex method uses
the original polytope; this method is, on average, very efficient,
but in the worst case, it requires the unrealistic exponential
number of computational steps (≈ 2n, where n is the number
of unknowns). For several decades, researchers have tried to
find a polynomial time algorithm for linear programming.
Success only came when they decided to approximate the
original polytope with an ellipsoid; this lead to the well-
known polynomial time algorithms of Khachiyan [13] and
Karmarkar [12].

Ellipsoids also turned out to be better than polytopes or
parallelepipeds (boxes) in many pattern recognition problems;
see, e.g., [1].

Ellipsoids lead to faster computations. In many practical sit-
uations, based on a probability distribution v = (v1, . . . , vn),
we need to estimate the value of a statistical characteristic
S(v1, . . . , vn). In the case of uncertainty, we only know the
range V of possible values of v. Different distributions v ∈ V
lead, in general, to different values of S(v). It is therefore
desirable to compute the range S(V )

def
= {S(v) : v ∈ V } of

possible values of the given characteristic.
The lower endpoint of this range is the minimum of the

function S(v) over the set V , while the upper endpoint of this
range is the minimum of the function S(v) over the set V .
So, computing the range means computing the minimum and
the maximum of a given function S(v) over the set V .

In many cases, we have a reasonably good knowledge about
the probability distribution, so we can expand the dependence
S(v) around an approximate estimate ṽ and keep only terms
which are linear and quadratic in ∆v

def
= v− ṽ. In other words,

instead of general functions S(v), it is sufficient to consider
functions which are quadratic in v. Thus, we face a problem of
finding the minimum and the maximum of a quadratic function

S(v) = s0 +
n∑

i=1

si · vi +
n∑

i=1

n∑
j=1

sij · vi · vj

on a given set V .
Under the traditional interval-type representation, the set V

is the set of all v = (v1, . . . , vn) for which vi ≤ vi ≤ vi. At



first glance, optimizing a quadratic function over such a box is
an easy computational problem. Indeed, according to calculus,
a function S(. . . , vi, . . .) attains its maximum or minimum on
an interval [vi, vi] either at one of the endpoints vi, vi of this
interval, or at a point where the derivative is equal to 0:

∂S

∂vi
= 0.

The derivative of a quadratic function is linear, so for each i
from 1 to n, we have one of the three linear equations:

• vi = vi;
• vi = vi; or

•
∂S

∂vi
= 0.

For each combination of these equations, we have an easy-
to-solve system of n linear equations for finding n unknowns
v1, . . . , vn. However, while each system is easy to solve, there
are 3n possible combinations of these equations, which makes
this approach computationally non-feasible.

Moreover, it has been shown that in general, the problem of
computing the minimum or maximum of a quadratic function
over a box is NP-hard; see, e.g., [14]. This means, crudely
speaking, that under the hypothesis P ̸=NP (which most com-
puter scientists believe to be true), it is not possible to have
an algorithm for solving all particular cases of this problem
in feasible time.

In contrast, if we optimize a quadratic function over an
ellipsoid, i.e., under the condition

E(v) = e0 +

n∑
i=1

ei · vi +
n∑

i=1

n∑
j=1

eij · vi · vj ≤ 1,

then this minimum (maximum) is either attained inside the
ellipsoid – in which case we need to solve a system of n

linear equations
∂S

∂vi
= 0 – or this extremum is attained at the

border of the ellipsoid, i.e., at a point where

E(v) = e0 +
n∑

i=1

ei · vi +
n∑

i=1

n∑
j=1

eij · vi · vj = 1.

To maximize the objective function S(v) under the constraint
E(v) = 1, we can use the Lagrange multiplier method and
maximize the quadratic expression

Sλ(v)
def
= S(v) + λ · (E(v)− 1).

For each value λ, the conditions

∂Sλ

∂vi
= 0

lead to an easy-to-solve system of linear equations. Out of
all solutions vλ, we select the one for which E(vλ) = 1. This
equation with one unknown λ is computationally easy to solve,
so the whole optimization is feasible. In other words, replacing
p-boxes with p-ellipsoids indeed leads to faster computations.

Ellipsoids are in good agreement with additional proba-
bilistic information. Often, in additional to set of possible
values v = (v1, . . . , vn), we also have an information about
which values v are more probably and which values v are less
probable. In other words, we have a probability distribution
on the set V of possible probability distributions.

There are usually many different reasons for the uncertainty
with which we know v, i.e., for the difference between the
actual (unknown) values of the parameters vi and the estimates
ṽi. Each of these reasons contributes to the difference vi− ṽi,
so this difference can be viewed as a sum of a large number
of independent small contributions.

It is known that the distribution of such a sum is close to
Gaussian; this fact follows from the Central Limit Theorem;
see, e.g., [23]. Thus, it is reasonable to conclude that the
probability distribution on the set V ⊆ IRn is Gaussian, with
a Gaussian probability density ρV (v).

Strictly speaking, a Gaussian distribution has positive den-
sity for all possible vector v ∈ IRn. In practice, we dismiss
values for which the probability is too small as not realistically
possible. In mathematical terms, this means that we describe
the set V of (practically) possible values v as the set of all the
vectors v for which ρV (v) ≥ ρ0 for some threshold ρ0 > 0.
It is known that for a Gaussian distribution, this inequality
describes an ellipsoid. Thus, ellipsoids are indeed in perfect
agreement with the additional probabilistic information.

If we reconstruct a p-ellipsoid from data instead of a p-
box, we get better estimates. Whether we use p-boxes or
p-ellipsoids, we need to extract them from the observed data.
When we use p-boxes, then, according to [7], the correspond-
ing p-box can be extracted by using Kolmogorov-Smirnov
criterion of a match between the empirical data x1, . . . , xn and
the hypothetic probability distribution F (x). This criterion is
based on the bounds on the maximum max |F (x) − Fn(x)|,
where Fn(x) is the cdf of the empirical distribution

Fn(x)
def
=

#{i : xi ≤ x}
n

.

Specifically, the Kolmogorov-Smirnov criterion produces up-
per bounds ∆ for which max |F (x) − Fn(x)| ≤ ∆ with
a given confidence level. Once the confidence level is se-
lected and we have the bound ∆, we can then conclude
that the actual (unknown) cdf F (x) belongs to the interval
[Fn(x)−∆, Fn(x) + ∆].

For p-ellipsoids, we can similarly use Cramer-von Mises
ω2 criterion for goodness of fit. This criterion is based on the
bounds for the integral

∫
(F (x) − Fn(x))

2 dFn(x). Once the
bound ∆ on this integral is calculated for a given confidence
level, we can then conclude that the actual (unknown) cdf
satisfies the inequality

∫
(F (x) − Fn(x))

2 dFn(x) ≤ ∆. In
terms of the ordered sample

x(1) ≤ x(2) ≤ . . . ≤ x(n),

this inequality has the form ω2
n ≤ ∆, where

ω2
n =

1

n
·

n∑
i=1

(
F (x(i))−

2 · i− 1

2 · n

)2

+
1

12 · n2
.



In geometric terms, this quadratic inequality describes an
ellipsoid, so we get the desired p-ellipsoid.

It turns out that p-ellipsoids lead to more accurate estimates
than p-boxes. As an example, we can consider computing the
range for the mean

∫
x · ρ(x) dx =

∫
x dF (x).

The Cramer-von Mises criterion does not change if we apply
an arbitrary non-linear transformation x → f(x). Since every
distribution can be contained from a uniform one by using
such a transformation, it is sufficient to use samples x1, . . . , xn

which are distributed according to a uniform distribution on
an interval [0, 1]. We use each such sample to extract a p-box
and a p-ellipsoid (we use 95% confidence level in both cases).
Then, we use the resulting p-box and the resulting p-ellipsoid
to come up with two estimates for the range of the mean. For
each n, we repeat the experiment 105 times.

For n = 10, 25, 50, 100, and 200, we compared the widths
wKS and wCvM of the resulting interval estimates for the
mean m with the width wt estimated based on the t-test. In
all the cases, the width wCvM based on p-ellipsoids is smaller
than the width wKS based on p-boxes:

n 10 25 50 100 200

wKS

wt
1.46 2.05 2.17 2.25 1.88

wCvM

wt
1.21 1.60 1.65 1.67 1.49
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