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Abstract—In many practical situations, we need to combine
the results of measuring a local value of a certain quantity with
results of measuring average values of this same quantity. For
example, in geosciences, we need to combine the seismic models
(which describe density at different locations and depths) with
gravity models which describe density averaged over certain
regions. Similarly, in estimating the risk of an epidemic to an
individual, we need to combine probabilities describe the risk
to people of the corresponding age group, to people of the
corresponding geographical region, etc. In this paper, we provide
general techniques for solving such model fusion problems.

To properly perform data and model fusion, we need to know
the accuracy of different data points. Sometimes, this accuracy
is not given. For such situations, we describe how this accuracy
can be estimated based on the available data.

I. FORMULATION OF THE GENERAL PROBLEM

Need for data fusion: reminder. In many real-life situa-
tions, we have several measurements and/or expert estimates
W, ... 7™ of the same quantity z.

o These values may come from the actual (direct) measure-
ments of the quantity x.

« Alternatively, these values may come from indirect mea-
surements of x, i.e., from different models, in which,
based on the corresponding measurement results, the ¢-th
model leads to an estimate z; for x.

In such situations, it is desirable to fuse these estimates into
a single more accurate estimate for x; see, e.g., [6].

A typical situation in measurement practice is when each
estimation error Ax; def Z; — «x is normally distributed with 0
mean and known standard deviation o;, and estimation errors
Ax; corresponding to different models are independent.

Comment. In practice, the estimation errors are indeed often
normally distributed. This empirical fact can be justified by
the Central Limit Theorem, according to which, under certain
reasonable conditions, the joint effect of many relatively small
errors is (approximately) normally distributed; see, e.g., [8].
For each model based on measurements of a certain type
(e.g., gravity or seismic), not only the resulting error of each
measurement comes from many different error sources, but

also each estimate comes from several different measurements
— thus further increasing the number of different error com-
ponents contributing to the estimation error.

Data fusion: formulas. For the normal distribution, the prob-
ability density for each estimation error Az; has the form
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and the probability density p(z) corresponding to all n esti-
mates is (due to independence) the product of these densities:

- 1 " (T — x)?
3
(E,/Q.W.UZ) exp( ; 2 (0;)? )

As a single estimate z for the desired quantity, it is reasonable
to select the value for which this probability (density) p(x)
is the largest (i.e., to use the Maximum Likelihood method).
Since exp(z) is an increasing function, maximizing a function
A-exp(—B(z)) is equivalent to minimizing B(z), so we arrive
at the following Least Squares approach: find x for which the
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Differentiating this expression with respect to x and equat-
ing the derivative to 0, we conclude that
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sum is the smallest possible.
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The accuracy of this fused estimate can be described by its
standard deviation o:



Need to go from data fusion to model fusion. In the case
of data fusion, we fuse several results of measuring the same
quantity. In practice, often, some of the results measure the
current value of quantity, while other results measure the
average of this quantity — over time, over a spatial region, or
over a group. In this case, we cannot simply fuse the values
one-by-one, we need to take into account the values of the
given quantity at different points. In other words, instead of
fusing data points, we need to fuse models that describe how
data changes with location and/or with time.

Let us give a few examples where such model fusion is
needed.

First example: geophysics. One of the main objectives of
geophysics is to find out the density at different depths at
different locations. There are many different sources of such
information. For example, we can perform active seismic ex-
periments: make an explosion, and measure the travel time dur-
ing which the resulting seismic waves propagate to different
sensors. Based on the observed travel-times, we can determine
the velocity with which the seismic waves propagate, and this
will enables us to predict the corresponding density values;
see, e.g., [2].

Alternatively, we can measure the exact values of the
gravitation field at different locations, and try to reconstruct
density at different depths and different locations based on
these measurement results. The problem here is that gravitation
is a reasonably weak field, in the sense that it is very difficult to
measure the effect of a small part of the Earth. Our measuring
instruments can only detect the joint effect of reasonably big-
size areas. Thus, each gravity measurement does not measure
the density in a single point, it measures the average density
at a big area.

Combining seismic measurements (which reflect local val-
ues) with gravity measurements (which reflect averages) is
therefore a typical problem of model fusion. Mathematically,
the problem is challenging, but the results are promising; see,
e.g., [3], [4], [5]. [7].

Second example: predicting voters’ behavior. We have
statistics describing how people from different social groups
vote. The problem is that a person usually belongs to several
different voting groups, groups with different voting behavior.
For example, to predict how a female Hispanic professor with
a certain annual salary will vote, we can look at how females
vote, how Hispanics vote, how people of this level of income
vote, etc. We need to combine these probabilities into a single
estimate.

Each of these probabilities corresponds to an average over a
group, so, in our terminology, this is a clear problem of model
fusion.

Comment. In geophysics, the need for model fusion is clear:
it is difficult to get direct information about the deep Earth
structure, so we have to use all the information we can, and it

so happens that a significant part of this information is about
averages.

For voting, this need may be less clear: why not take a
homogeneous group? The main reason is that all people are
different. If we try to narrow our sample down to a very
homogeneous group, we will end up with a sample which is
so small that it is impossible to make statistically meaningful
predictions. To make predictions, we thus need to consider
larger sample; these samples are heterogeneous, and thus, the
corresponding frequencies do not fully reflect the preferences
of the voter of interest. Therefore, we need to fuse these
probabilities.

Estimating the threat of an epidemic. Each individual faces
the same problem when estimating the threat of an epidemic
— and thus, e.g., deciding on whether appropriate prophylactic
measures are in order. We usually have several types of data
about this threat:

¢ we have anecdotal evidence about our close friends,
how many of them got, e.g., flu; this is probably the
most appropriate group — but this group is usually too
small to produce statistically meaningful estimates of the
probability;

o we also have probability with which people of a given
age group get this disease, probability with which people
from this geographic area get this disease, etc.

To make a meaningful decision, we need to combine all
these estimates into a single one. These estimates describe
the behavior of different groups containing a given individual,
so this is a typical problem of model fusion.

What we do in this paper. In this paper, we extend our
previous work [3], [4], [5], [7] — which was based on specific
geophysical applications of data fusion — and provide general
techniques for model fusion.

II. SOLVING THE PROBLEM: GENERAL IDEA

Model fusion: reminder. In model fusion, to estimate the
value v of a certain quantity in a given situation, we use several
estimates v; of averages of v over different groups that contain
this situation.

General idea. The very fact that we can use the estimations v;
of the averages to gauge the desired value v means that these
averages v; are approximations to v. So, a reasonable idea
is to estimate the standard deviation o; of the corresponding
approximation.

Once we know these standard deviations o;, we can use the
above data fusion formulas to fuse these estimates v; into a
single estimate for the desired quantity v.

What remains to be done. To use this idea, we need to be
able to estimate the standard deviations o;. Let us analyze how
this can be done.

Outline.
o We will start our analysis with the simplest case, when

we can ignore the measurement inaccuracy and assume
that all the averages are exactly known.



o After that, we will consider the case when the measure-
ment inaccuracy is known. As a particular case, we will
consider estimates based on observed frequencies — like
in the voting and epidemic situations.

« Finally, we will discuss what can be done if the measure-
ment inaccuracy is not known.

III. CASE WHEN MEASUREMENTS ARE EXACT

Description of the case. Let us start with the case when
measurement errors can be ignored, i.e., when we can safely
assume that the measurements are exact.

Natural solution. In this case, a natural measure of the dif-
ference between the average v; over the group and individual
values within this group is the within-group standard deviation
o;. In other words, if we have a sample of individual values
v(l), ey v®M) within the i-th group, then, as the desired accu-
racy, we can take the sample standard deviation: 0; = Osamp,i>
where

ot | 1 = 2
e
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IV. CASE WHEN WE KNOW MEASUREMENT ACCURACY

Description of the case. Let us now consider the case when
we know the accuracy oj,q with which we measure individual
values, and we also know the accuracy oeas,; With which we
measure the i-th average.

Analysis of the problem. In this case, there are two inde-
pendent reasons why the observed values v(*) differ from the
average:

o first, due to measurement errors, and
o second, due to diversity within the group.

In precise terms, each observed value ) can be represented
as

o®) = B 4 Av®),

act
(k)
act
quantity and Ap(*)
The actual value v
sum

where v, ; is the actual (unknown) value of the corresponding

def k) .
= pk) = vgcz is the measurement error.
k) ..
E(mz, in its turn, can be represented as the

(k) _ (k)
Vact = Vact,i + (vact - UaCt7i)

of the actual average value v, ; and the deviation

k
’Ua(ucz — Vact,i
of the actual individual values from the actual average. Com-
bining these two formulas, we get

U(k) = Vact,i + (v(k) - Uact,i) + Av(k)'

act

In other words, the difference v(*) — Uact,; Detween the
observed individual values v(¥) and the actual average Vact,i
is caused by two independent factors:

p*) (vg’jz — Vact,i) + Av®),

— Vact,i =

Since these factors are independent, the total within-sample
variance aszamp_i is equal to the sum of the two variances
corresponding to individual factors:

o the variance o2, , which describes the deviation of the

actual individual values from the average (and from each
other), and

o the variance o2 ; which describes the measurement error
of individual measurements.

2 _ 2 2 :
In other words, 0., ; = 0ac; + Oing- We can estimate the

within-sample variance O Samp,i* and, in the current case, we
know the measurement accuracy o2 . Thus, we can estimate
the variance azcm (which describes the deviation of the actual
individual values from the average) as

2 2 2

Oact,i — Gsamp,i — Oind-

How does this accuracy translates into the accuracy with
which the observed average v; approximates the desired value
v? Similarly to the above case, the difference v — v; is caused
by two factors:

o first, due to diversity, the value v, in general, differs from
the actual average vact.q;

e second, due to measurement errors, the observed value
v; of the average is, in general, different from the actual
average Vact,i-

In precise terms, we have
v —0; = (U — Vact,i) + (Vact,i — Vi)

So, the difference v —uv; is the sum of two independent random
terms:

o the first term v — vt has standard deviation ot ;, and
o the second term v, ; —v; has standard deviation o peas,i-

Since these factors are independent, the total variance O'iz of

the difference v — v; is equal to the sum of the two variances
corresponding to these two terms:

2 _ 2 2
g; = Jact,i + O—mcas,i'
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act,i into this formula,

Substituting the above expression for o
we arrive at the following formula:

o2
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Resulting estimate. To find the standard deviation o; of
the difference v — v;, we first compute the sample standard
deviation

M
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where
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and then take

2 2 2
i — Osamp,i — Tind + Omeas,i*

V. IMPORTANT PARTICULAR CASE: ESTIMATES BASED ON
OBSERVED FREQUENCIES

Description of the situation. In situations like epidemic
estimates or voting predictions, the value v; are frequencies
based on the i-th group.

How to estimate accuracy of frequency estimates. Accord-
ing to statistics (see, e.g., [8]), the accuracy o7, ; With which
the observed frequency v; estimates the actual probability is
equal to

0_2 :vl(l—vz)
meas,? )
, n;

where n; is the number of elements in the i-th group.

To estimate the within-sample variance, we can subdivide
the sample of n; elements into several (M) subtg{roups of
smaller size n;/M, and estimate the frequency vik) within
each subgroup k, k = 1,..., M. Here, the accuracy of o2 ,
of individual measurements is equal to

2

2 _
Thus, the above formula o7 = 03, ;

the following form:

2 2
~ Oind + Omeas,i takes

2 o vi- (=) i (1—)
0; = Usamp,i - n,/M n; .
VI. WHAT IF WE DO NOT KNOW THE MEASUREMENT
ACCURACY

Formulation of the problem. In the previous sections, we
assumed that we have a good description of the uncertainty
of the original data. In practice, often, we do not have this
information, we need to extract it from the data.

Extracting uncertainty from data: traditional approach.
The usual way to gauge of the uncertainty of the measuring
instrument is to compare the result  produced by this mea-
suring instruments with the result z; of measuring the same
quantity x by a much more accurate (“standard”) measuring
instrument.

Since the “standard” measuring instrument is much more
accurate than the instrument that we are trying to calibrate,
we can safely ignore the inaccuracy of its measurements and
take Z, as a good approximation to the actual value x. In this
case, the difference  — 7, between the measurement results
can serve as a good approximation to the desired measurement
accuracy Ax =7 — x.

Traditional approach cannot be applied for calibrating
state-of-the-art measuring instruments. The above tradi-
tional approach works well for many measuring instruments.

However, we cannot apply this approach for calibrating state-
of-the-art instrument, because these instruments are the best
we have. There are no other instruments which are much more
accurate than these ones — and which can therefore serve as
standard measuring instruments for our calibration.

Such situations are ubiquitous; for example:

o in the environmental sciences, we want to gauge the
accuracy with which the Eddy covariance tower measure
the Carbon and heat fluxes; see, e.g., [1]

o in the geosciences, we want to gauge how accurately
seismic, gravity, and other techniques reconstruct the
density at different depths and different locations.

How state-of-the-art measuring instruments are cali-
brated: case of normally distributed measurement errors.
Calibration of state-of-the-art measuring instruments is possi-
ble if we make a usual assumption that the measurement errors
are normally distributed with mean 0. Under this assumption,
to fully describe the distribution of the measurement errors,
it is sufficient to estimate the standard deviation o of this
distribution.

There are two possible approaches for estimating this stan-
dard deviation. The first approach is applicable when we have
several similar measuring instruments. For example, we can
have two nearby towers, or we can bring additional sensors
to the existing tower. In such a situation, instead of a single
measurement result 7, we have two different results (1) and
T of measuring the same quantity z. Here, by definition of
the measurement error, 71 = 24+ Az and 72 = z+Az®
and therefore,

7MW _ 72 — A2 _ AL@)

Each of the random variables Az(") and Az is normally
distributed with mean O and (unknown) standard deviation
o (i.e., variance ¢2). Since the two measuring instruments
are independence, the corresponding random variables Az(!)
and Az® are also independent, and so, the variance of their
difference is equal to the sum of their variances 02402 = 20°2.
Thus, the standard deviation ¢’ of this difference is equal to
\/2-0. We can estimate this standard deviation o’ based on the

observegl differences 71 — 7 and therefore, we can estimate
o

0 as —.

This approach is not applicable in the geosciences appli-
cations, when we usually have only one seismic map, only
one gravity map, etc. In such situations, we have several
measurement results z(9) with, in general, different standard
deviations o(*). For every two measuring instruments 4 and
j, the difference () — () is normally distributed with the
variance (a(i))z + (O'(j ))2. By comparing actual measurement
results, we can estimate this variance and thus, get an estimate
e;; for the sum. As a result, e.g., for the case when we have
three different measuring instruments, we get three values e;;

for which: ) )
19 = (gu)) i (U@)) :



e13 = (a(l))2 + (0(3)>2;
€93 = (0(2))2 + (0(3))2.

Here, we have a system of three linear equations with three
unknowns, from which gve can uniquely determined all three
desired variances (o(V)":

2 —
(0(1)) _ €12t €13 — €23

aen
()

€12 + €23 — €13
2 _
€13 + €23 — €12
(g<3>) — &3 T e~ én
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Need to go beyond normal distributions, and resulting
problem. In practice, the distribution of measurement errors is
often different from normal; this is the case, e.g., in measuring
fluxes [1]. In such cases, we can still use the same techniques
to find the standard deviation of the measurement error.
However, in general, it is not enough to know the standard
deviation to uniquely determine the distribution: e.g., we may
have (and we sometimes do have) an asymmetric distribution,
for which the skewness is different from O (i.e., equivalently,
the expected value of (Axz)? is different from 0).

It is known that in this case, in contrast to the case
of the normal distribution, we cannot uniquely reconstruct
the distribution of Az from the known distribution of the
difference Az — Az(?). Indeed, if we have an asymmetric
distribution for Az, i.e., a distribution which is not invariant
under the transformation Az — —Axz, this means that the
distribution for Ay 4f _ Az is different from the distribution
for Axz. However, since

Ay — Ay® = Az — Az,

the y-difference is also equal to the difference between two
independent variables with the distribution Az and thus,
distribution for the difference Ay — Ay® is exactly the
same as for the difference Az(Y) — Az, In other words, if
we know the distribution for the difference Az — Az(2), we
cannot uniquely reconstruct the distribution for Az, because,
in addition to the original distribution for Az, all the observa-
tions are also consistent with the distribution for Ay = —Az.

This known non-uniqueness naturally leads to the following
questions:

o first, a theoretical question: since we cannot uniquely
reconstruct the distribution for Az, what information
about this distribution can we reconstruct?

« second, a practical question: for those characteristics of
Ax which can be theoretically reconstructed, we need
to design computationally efficient algorithms for recon-
structing these characteristics.

Techniques to use. To solve these questions, let us use the
Fourier analysis technique.

What we want to find is the probability density p(z)

describing the distribution of the measurement error z &f Az
In order to find the unknown probability density, we will first
find its Fourier transform

F(w)= /p(z) ez,

By definition, this Fourier transform is equal to the mathemat-
ical expectation of the function e

F(w) = E [e"7].

Such a mathematical expectation is also known as a charac-
teristic function of the random variable z.

Based on the observed values of the difference z(1) — 2(2),
we can estimate the characteristic function D(w) of this
difference:

iw (2D —23)

D(w)=FE|e

Here,

ei-w(z(l)fz@)) _ e(i.w.z(l))Jr(,i.w.z(?)) _ ei,w.z(l) ) 6,i.w.z(%.

Measurement errors z(1) and z(?) corresponding to two mea-
suring instruments are usually assumed to be independent.
Thus, the variables eiw " and e * are also independent.
It is known that the expected value of the product of two
independent variables is equal to the product of their expected

values, thus,

Dw)=E {eiwm} E [e*i“'z(z)} :

w2

i.e.,

Here,
F(—w)=E[e*?] = E [(ei'“"z)*} 7

where ¢* means complex conjugation, i.e., an operation that
transforms ¢ = a+b-iinto t* = a—b-1. Thus, F(—w) = F*(w),
and the above formula takes the form

D(w) = F(w) - F*(w) = |F(w)|*.

In other words, the fact that we know D(w) means that we
know the absolute value (modulus) of the complex-valued
function F(w).

In these terms, the problems becomes: how can we recon-
struct the complex-valued function F'(w) if we only know its
absolute value?

How to use Fourier techniques to solve the theoretical
question. First, let us address the theoretical question: since,
in general, we cannot reconstruct p(z) (or, equivalently, F'(w))
uniquely, what information about p(z) (and, correspondingly,
about F'(w)) can we reconstruct?

To solve this theoretical question, let us take into account
the practical features of this problem. First, it needs to be
mentioned that, from the practical viewpoint, we need to take
into account that the situation in, e.g., Eddy covariance tower
measurements is more complex that we described, because the



tower does not measure one single quantity, it simultaneously
measuring several quantities: carbon flux, heat flux, etc. Since
these different measurements are based on data from the
same sensors, it is reasonable to expect that the resulting
measurement errors are correlated. Thus, to fully describe
the measurement uncertainty, it is not enough to describe
the distribution of each 1-D measurement error, we need to
describe a joint distribution of all the measurement errors
z = (21, 22,...). In this multi-D case, we can use the multi-
D Fourier transforms and characteristic functions, where for
.), we define

Fw)=F [ei'w‘z] ,

w = (w1, w2, ..

with
def
W 2 = w1 21 +we-224...

Second, we need to take into account that while theoret-
ically, we can consider all possible values of the difference
2 — 2 in practice, we can only get values which are
proportional to the smallest measuring unit h. For example, if
we measure distance and the smallest distance we can measure
is centimeters, then the measuring instrument can only return
values 0 cm, 1 cm, 2 cm, etc. In other words, in reality, the
value z can only take discrete values. If we take the smallest
value of z as the new starting point (i.e., as 0), then the possible
values of z take the form z = 0, z = h, 2z = 2h, ..., until
we reach the upper bound z = N - h for some integer N. For
these values, in the 1-D case, the Fourier transform takes the

form
Zp

k=0

1wz 1w-k-h
3

Flw)=F

where py, is the probability of the value z = k- h. This formula
can be equivalently rewritten as

N

k

:E Pr s,
k=0

def .. .. . .
where s = el'wh, Similarly, in the multi-D case, we have

z = (k‘l ~hi,ky - ho,.. .), and thus,
ei-w-k-h — ei~w~(k}1-h1+k2-hz+“.) — ei.wl.kl.hl . ei~w~k2-h2 e,
so we have

N1 N>
k
g g Pk 51 ©85% L,

k1=0ko=0

def ... .
where s, = e"“*"% In other words, we have a polynomial
of the variables s1, So,...:

N1 N2

E E k2
Pk 51 ©S97 ..

k1=0k2=0

P(Sl,SQ,...

Different values of w correspond to different values of s =
(s1,52,...). Thus, the fact that we know the values of | F'(w)|?
for different w is equivalent to knowing the values of |P(s)|?
for all possible values s = (s1, Sa, .. .).

In these terms, the theoretical question takes the following
form: we know the values D(s) = |P(s)|?> = P(s) - P*(s)
for some polynomial P(s), we need to reconstruct this poly-
nomial. In the 1-D case, each complex-valued polynomial of
degree N has, in general, N complex roots s1), s(?), etc., and
can, therefore, be represented as

|P(s)|> = const - (s — sV) - (s — s2)) .

In this case, there are many factors, so there are many ways to
represent it as a product — which explains the above-described
non-uniqueness of representing D(s) as the product of two
polynomials P(s) and P*(s)

Interestingly, in contrast to the 1-D case, in which each
polynomial can be represented as a product of polynomials of
Ist order, in the multi-D case, a generic polynomial cannot be
represented as a product of polynomials of smaller degrees.
This fact can be easily illustrated on the example of polyno-
mials of two variables.

To describe a general polynomial of two variables

Z Z cx - 8% - sb in which each of the variables has a degree

< e need to describe all possible coefficients cy;. Each of

the mdlces k and [ can take n + 1 possible values 0, 1,

n, so overall, we need to describe (n + 1)? coefficients.
When two polynomials multiply, the degrees add: s™ sm =

smtm’  Thus, if we represent P(s) as a product of two

polynomials, one of them must have a degree m < n, and

the other one degree n — m. In general:

o we need (m + 1)? coefficients to describe a polynomial
of degree m and
« we need (n—m+1)? coefficients to describe a polynomial
of degree n —m,
e so to describe arbitrary products of such polynomials, we
need (m + 1)2 + (n — m + 1)2 coefficients.
To be more precise, in such a product, we can always multiply
one of the polynomials by a constant and divide another one by
the same constant, without changing the product. Thus, we can
always assume that, e.g., in the first polynomial, the free term
coo is equal to 1. As a result, we need one fewer coefficient
to describe a general product: (m +1)% + (n —m +1)? — 1.
To be able to represent a generic polynomial P(s) of degree
n as such a product

P(S) = Pm(S) . Pn—m(5)7

we need to make sure that the coefficients at all all (n + 1)?
possible degrees s¥ - s, are the same on both sides of this
equation. This requirement leads to (n + 1)? equations with
(m+1)2+ (n —m + 1) — 1 unknowns.

In general, a system of equations is solvable if the number
of equations does not exceed the number of unknowns. Thus,

we must have

n+1)2<(m+1)*+n-—m+1)* - 1.

Opening parentheses, we get

n?+2n+1<m?>+2m+1+(n-—m)>+2-(n—m)+1-1.



The constant terms in both sides cancel each other, as well as
the terms 2n in the left-hand side and 2m +2- (n —m) = 2n
in the right-hand side, so we get an equivalent inequality

n? <m?+ (n —m)2

Opening parentheses, we get
n? §m2+n2—2~n~m+m2.
Canceling n? in both sides, we get
O§2m2—2-n-m.

Dividing both sides by 2m, we get an equivalent inequality
0 < m — n, which clearly contradicts to our assumption that
m < n.

Let us go back to our problem. We know the product
D(s) = P(s)- P*(s), and we want to reconstruct the polyno-
mial P(s). We know that this problem is not uniquely solvable,
i.e., that there exist other polynomials Q(s) # P(s) for which
D(s) = P(s) - P*(s) = Q(s) - Q*(s). Since, in general, a
polynomial P(s) of several variables cannot be represented
as a product — i.e., is “prime” in terms of factorization the
same way prime numbers are — the fact that the two products
coincide means that (Q(s) must be equal to one of the two
prime factors in the decomposition D(s) = P(s)-P*(s). Since
we know that Q(s) is different from P(s), we thus conclude
that Q(s) = P*(s).

By going back to the definitions, one can see that for the
distribution p’(x) = p(—=x), the corresponding polynomial has
exactly the form Q(s) = P*(s). Thus, in general, this is the
only non-uniqueness that we have: each distribution which is
consistent with the observation of differences coincides either
with the original distribution p(x) or with the distribution
p'(z) = p(—x). In other words, we arrive at the following
result.

Answer to the theoretical question. We have proven that,
in general, each distribution which is consistent with the
observation of differences Az(!) — Az(2) coincides either with
the original distribution p(z) or with the distribution

How to use Fourier techniques to solve the practical
question: idea. We want to find a probability distribution p(z)
which is consistent with the observed characteristic function
D(w) for the difference. In precise terms, we want to find a
function p(z) which satisfies the following two conditions:

e p(z) >0 for all z, and
e |[F(w)]? = D(w), where F(w) denotes the Fourier
transform of the function p(x).

One way to find the unknown function that satisfies two
conditions is to use the method of successive projections. In
this method, we start with an arbitrary function p(®)(z). On
the k-th iteration, we start with the result p(*~1(z) of the
previous iteration, and we do the following:

o first, we project this function p(*~1)(z) onto the set of
all functions which satisfy the first condition; to be more
precise, among all the functions which satisfy the first
condition, we find the function p’(z) which is the closest
to p=1 (2);

o then, we project the function p’(z) onto the set of all
functions which satisfy the second condition; to be more
precise, among all the functions which satisfy the second
condition, we find the function p(k)(a:) which is the
closest to p'(2).

We continue this process until it converges.

As the distance between the two functions f(z) and g(z)
— describing how close they are — it is reasonable to take the
natural analog of the Euclidean distance:

d(f,9) o \//(f(z) —g(2))2dz.

One can check that for this distance function:

« the closest function in the first part of the iteration is the
function p’(z) = max(0, p*~1)(z)), and

« on the second part, the function whose Fourier transform
is equal to

F(k)(w) - 7V|D(w)| - F'(w).

P (w)]
Thus, we arrive at the following algorithm.

How to use Fourier techniques to solve the practical
question: algorithm. We start with an arbitrary function
p®(z). On the k-th iteration, we start with the function
p*~1)(z) obtained on the previous iteration, and we do the
following:

o first, we compute p’(z) = max(0, p*~1(2));
o then, we apply Fourier transform to p’(z) and get F'(2);
« after that, we compute

F(k)(w) _V |D<w)|

Fl(w);
|F (w)]

o finally, as the next approximation p(*¥)(z), we take the re-
sult of applying the inverse Fourier transform to F'(®) (w).

We continue this process until it converges.
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