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Abstract

Probabilistic uncertainty and imprecision in structural parameters and in envi-
ronmental conditions and loads are challenging phenomena in engineering anal-
yses. They require appropriate mathematical modeling and quantification to
obtain realistic results when predicting the behavior and reliability of engineer-
ing structures and systems. But the modeling and quantification is complicated
by the characteristics of the available information, which involves, for example,
sparse data, poor measurements and subjective information. This raises the
question whether the available information is sufficient for probabilistic model-
ing or rather suggests a set-theoretical approach. The framework of imprecise
probabilities provides a mathematical basis to deal with these problems which
involve both probabilistic and non-probabilistic information. A common fea-
ture of the various concepts of imprecise probabilities is the consideration of an
entire set of probabilistic models in one analysis. The theoretical differences
between the concepts mainly concern the mathematical description of the set
of probabilistic models and the connection to the probabilistic models involved.
This paper provides an overview on developments which involve imprecise prob-
abilities for the solution of engineering problems. Evidence theory, probability
bounds analysis with p-boxes, and fuzzy probabilities are discussed with em-
phasis on their key features and on their relationships to one another.

This paper was especially prepared for this Special Issue and reflects, in
various ways, the thinking and presentation preferences of the authors, who are
also the guest editors for this Special Issue.
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1. Introduction

The analysis and reliability assessment of engineered structures and sys-
tems involves uncertainty and imprecision in parameters and models of different
types. In order to derive predictions regarding structural behavior and relia-
bility, it is crucial to represent the uncertainty and imprecision appropriately
according to the underlying empirical information which is available. To capture
variation of structural parameters, established probabilistic models and powerful
simulation techniques are available for engineers, which are widely applicable
to real-world problems; for example, see [1, 2, 3]. The required probabilistic
modeling can be realized via classical mathematical statistics if sufficient data
of a suitable quality are available.

In engineering practice, however, the available data are frequently quite lim-
ited and of poor quality. These limitations can sometimes be substantial. In-
formation is often not available in the form of precise models and parameter
values; it rather appears as imprecise, diffuse, fluctuating, incomplete, frag-
mentary, vague, ambiguous, dubious, or linguistic. Moreover, information may
variously be objective or subjective, possibly including random sample data and
theoretical constraints but also expert opinion or team consensus. Sources of
information may vary in nature and trustworthiness and include maps, plans,
measurements, observations, professional experience, prior knowledge, and so
forth. Changes of boundary conditions and environmental conditions have to
be taken into consideration, but are often of a hypothetical nature. Some il-
lustration of this situation can be found in the challenge problems posed in
[4]. For an engineering analysis it is then a challenge to formulate suitable
numerical models in a quantitative manner, on one hand, without ignoring sig-
nificant information and, on the other hand, without introducing unwarranted
assumptions. If this balance is violated or not achieved, computational results
may deviate significantly from reality, and the associated decisions may lead to
serious consequences.

Solutions to this problem are discussed in the literature from various per-
spectives using different mathematical concepts. This includes BAYESian ap-
proaches [5, 6, 7, 8], interval probabilities [9, 10], random sets [11], evidence
theory [12, 13|, fuzzy stochastic concepts [14] and info-gap theory [15]. These
concepts are part of the general framework of information theory, which is eluci-
dated in [16] in a rigorous manner. The variety of choices provides the engineer
with considerable flexibility in uncertainty modeling, but it creates, at the same
time, the question of the most suitable modeling choice. For practical appli-
cations this question cannot be answered in general. A realistic mathematical
approach can only be formulated by analyzing the nature of the available infor-
mation in each particular case. To support this analysis and modeling choice,
classifications of the available information according to defined criteria are usu-
ally employed.

In Section 2, the classification of uncertainty in engineering is reviewed briefly
with focus on the facets of epistemic uncertainty. An introduction to impre-
cise probabilities with an overview of applications in engineering is provided



in Section 3. Subsequently, specific features and relationships of several se-
lected concepts from the framework of imprecise probabilities are discussed in
Section 4, namely evidence theory in Section 4.2, interval probabilities in Sec-
tion 4.3, probability bounds analysis in Section 4.4, and fuzzy probabilities in
Section 4.5.

Beyond this coarse review, the collection of papers in this Special Issue pro-
vides detailed insight into various imprecise probability approaches and high-
lights their benefits in engineering analyses.

2. Facets of epistemic uncertainty

Aleatory and epistemic uncertainty are often distinguished based on the
sources of the uncertainty; see [17, 18, 19, 20, 7, 4]. Initially, such classification
appears convenient and straightforward. Irreducible uncertainty is classified as
aleatory and refers to a property of the system associated with fluctuations
or variability, whereas reducible uncertainty is classified as epistemic and con-
cerns a property of the analyst associated with a lack of knowledge. Aleatory
uncertainty is stochastic variation which results from an underlying random
experiment and corresponds with the traditional frequentist interpretation of
probability theory. Epistemic uncertainty, however, remains as a collection of
all problematic cases and does not imply a specific mathematical model.

Commonly, the reason for epistemic uncertainty is subjectivity. In this case
a suitable framework for modeling may be provided by subjective probabilities
which are consistent with the axioms of probability [21, 22]. In this context it
is sometimes argued that expert knowledge can compensate for the paucity of
data and limitations of information through the use of BAYESian methods. If a
subjective perception regarding a probabilistic model exists and some data for a
model update can be made available, a BAYESian approach can be very powerful,
and meaningful results using available information can be derived. BAvESian
approaches are attracting increasing attention in engineering. Considerable ad-
vancements have been reported for the solution of various engineering problems
[23, 24, 25, 26, 27, 28, 6, 29, 30, 31] using model updating. Here, one can usually
build on a reasonable basis of expert knowledge to specify a suitable model class
and to cast prior knowledge into subjective distribution functions. If subjective
probabilistic statements can be formulated on rational grounds and some data
of suitable quality are available, then BAyESian updating can play its important
role. The subjective influence in the model assumption decays quickly with a
growing amount of data. When data are available for such updating, a proba-
bilistic model parameter can be estimated with the expected value of a posterior
distribution. The result is then a mix of objective and subjective information.
Alternatively, the epistemic uncertainty represented by the posterior distribu-
tion can be made visible in the result, for example in form of credible intervals,
which can be helpful for the communication of the results as explained in [18]
in the context of risk assessment. This treatment of subjective information en-
ables the consideration of both aleatory and epistemic uncertainty together in
a probabilistic framework.



Epistemic uncertainty, however, is not limited to subjectivity but may also
refer to indeterminacy, ambiguity, fragmentary or dubious information and other
phenomena, which do not support the analyst in forming a subjective opinion
in terms of probabilities. Examples are poor data or linguistic expressions,
which indicate a possible value range or bounds rather than a subjective distri-
bution function. In the early design stage, design parameters can be specified
only roughly and underlie later changes as the design matures. Further, digital
measurements are characterized by a limited precision as no information is avail-
able beyond the last digit. Physical inequalities can frequently be utilized to
determine bounds for parameters but not to specify characteristics concerning
variations, fluctuations, value frequencies, etc. over some value range. The same
applies to the numerical description of individual measurements obtained under
dubious conditions. Conditional probabilities determined under unknown con-
ditions and marginals of a joint distribution with unknown copula (dependence
function) provide bounds for probabilistic models rather than prior probabilistic
information for model options. This facet of epistemic uncertainty is associated
with several different manifestations of an uncertain variable:

e the variable may take on any value between bounds, but there is no basis
to assume probabilities to the options;

e the variable has a particular real value, but that value is unknown except
that it is between bounds;

e the variable may take a single value or multiple values in some range, but
it is not know which is the case;

e the variable is set-valued.

The characteristics of this type of information can be described most appropri-
ately as imprecision. Mathematical models proposed for imprecise variables are
set-theoretical and include intervals [32], BAYESian sets [33], rough sets [34],
clouds [35] and convex models [36]. Overviews on respective applications in
engineering can be found in [37, 38].

The distinction between probabilistic subjectivity and imprecision as dif-
ferent forms of epistemic uncertainty provides a pragmatic criterion to classify
non-deterministic phenomena according to the nature of information. From
this perspective, aleatory uncertainty and the subjective probabilistic form of
epistemic uncertainty can be summarized as probabilistic uncertainty, whereas
imprecision refers to the non-probabilistic form of epistemic uncertainty. This
classification helps to avoid confusion if uncertainty appears with both proba-
bilistic and non-probabilistic phenomena simultaneously in an analysis. An illus-
trative example for this situation is a random sample of imprecise perceptions
(e.g., intervals due to limited measurement accuracy) of a physical quantity.
Whilst the scatter of the realizations of the physical quantity possesses a proba-
bilistic character (frequentist or subjective), each particular realization from the
population exhibits, additionally, imprecision—with a non-probabilistic charac-
ter. If an analysis involves this type of hybrid information, it is imperative to



consider imprecision and probabilistic uncertainty simultaneously but to not
mix the characteristics so that imprecision does not populate into the proba-
bilistic model and vice versa. This conceptual understanding together with the
classification into probabilistic uncertainty and imprecision provides intuitive
motivation for imprecise probabilities and their terminology.

When epistemic uncertainty appears as imprecision, a subjective probabilis-
tic model description would be quite arbitrary. Consider a floor beam with a
strict requirement for the maximum deflection. Suppose the dependency be-
tween load and deflection is known deterministically, but a load parameter is
available in the form of bounds only. This information is naturally modeled as
an interval. Since no information about any probabilities exists, one could now
assign a uniform distribution to the load interval based on the principle of maxi-
mum entropy. This approach is perhaps reasonable in the context of information
theory, but it is disconnected from the engineering context of the problem it-
self. It leads to an averaged result for the deflection of the beam using equal
weights for all possible load values within the available interval. However, the
maximum deflection, which is of interest, is not directly addressed and can only
be retrieved from simulation results with tremendous effort. And for another
assigned probability distribution over the load interval the result would be dif-
ferent. Thus the character of the available information is changed; the interval
input is transformed into a probabilistic result, the meaning of which is purely
based on subjective—or really arbitrary—assumptions and justifications, which
may even be out of context. In contrast to this, an interval analysis ensures a
consistent translation of the input interval into a result interval without asking
for any subjective assumptions. The character of the available information is re-
tained in this analysis. And it delivers directly the maximum deflection, which
is the quantity of interest, as bounds on the quantity. This simple example
shows how inappropriately modeling epistemic uncertainty can undermine the
purpose of an analysis, potentially with severe consequences.

The modeling of imprecision is not limited to the use of intervals. An inter-
val is a quite crude expression of imprecision. The specification of an interval
for a parameter implies that, although a number’s value is not known exactly,
exact bounds on the number can be provided. This may be criticized because
the chore of specifying precise numbers is just transferred to the bounds. Fuzzy
set theory provides a workable basis for relaxing the need for precise values or
bounds. It allows the specification of a smooth transition for elements from
belonging to a set to not belonging to a set. Fuzzy numbers are a general-
ization and refinement of intervals for representing imprecise parameters and
quantities. The essence of an approach using fuzzy numbers that distinguishes
it from more traditional approaches is that it does not require the analyst to
circumscribe the imprecision all in one fell swoop with finite characterizations
having known bounds. The analyst can now express the available information
in the form of a series of plausible intervals, the bounds of which may grow,
possibly even to infinite limits. This allows a more nuanced approach compared
to interval modeling. Fuzzy sets provide an extension to interval modeling that
considers variants of interval models, in a nested fashion, in one analysis; see



[39]. This modeling of imprecision is analogous to probability’s modeling of un-
certainty, and, like the probabilistic approach, it also produces a distributional
answer that is more nuanced than what can be achieved by worst case analysis
or bounding with a simple interval. Fuzziness arises in cases where there are de-
grees or gradations admitting arbitrariness in where defining lines are drawn. In
other fields, this is sometimes called vagueness. Fuzzy numbers can be defined
as special fuzzy sets on the real line, and fuzzy arithmetic operating on these
fuzzy numbers has been defined in [40]. These ideas underpin generalizations to
possibility distributions [41], fuzzy probability [42], and info-gap decision the-
ory [15]. These developments involve the min-max convolution operator and
the extension principle [33, 43] as the standard bases for processing fuzzy infor-
mation, which agrees with the general engineering understanding of processing
set-valued information through engineering computations. Other combination
rules for fuzzy sets as used in fuzzy logic are not utilized for this purpose.

Imprecision and uncertainty can appear together in the same problem. For
example, suppose only bounds on some parameter of a prior distribution are
known. Any appropriate distribution whose parameter is limited to these bounds
might then be considered an option for modeling. But the selection of any par-
ticular distribution would introduce unwarranted information that cannot be
justified except by bald assumption. Even assuming a uniform distribution,
which is commonly done in such cases, ascribes more information than is actu-
ally given by the bounds. This situation may become critical if no or only very
limited data are available for a BAYESian model update. The initial subjectivity
is then dominant in the posterior distribution and in the final result. If these
results, such as failure probabilities, determine critical decisions, one may wish
to consider the problem from the following perspective.

When several probabilistic models are plausible for the description of a prob-
lem, and insufficient information is available to assess the suitability of the indi-
vidual models or to relate their suitability with respect to one another, then it
may be of interest to identify the range of possible outcomes, including especially
the worst possible case, rather than to average over all plausible model options
with arbitrary weighting. The probabilistic analysis is carried out conditional on
each of many particular probabilistic models out of the set of plausible models.
In reliability assessment, this implies the calculation of an upper bound for the
failure probability as the worst case. This perspective can be extended to explore
the sensitivity of results with respect to the variety of plausible models, that is,
with respect to a subjective model choice. A mathematical framework for an
analysis of this type has been established with imprecise probabilities. But this
intuitive view is by no means the entire motivation for imprecise probabilities
[16, 44]. Imprecise probabilities are not limited to a consideration of impre-
cise distribution parameters. They are also capable of dealing with imprecise
conditions, with dependencies between random variables, and with imprecise
structural parameters and model descriptions. Respective discussions can be
reviewed, for example, in [45, 46]. Multivariate models can be constructed [47].
Imprecise probabilities also allow statistical estimations and tests with imprecise
sample elements [48, 49, 50, 51, 52]. Results from robust statistics in the form



of solution domains of statistical estimators can also be considered directly [53].

3. Imprecise probabilities

3.1. Emergence in engineering

A key feature of imprecise probabilities is the identification of bounds on
probabilities for events of interest; the uncertainty of an event is character-
ized with two measure values—a lower probability and an upper probability
[54]. The distance between the probability bounds reflects the indeterminacy
in model specifications expressed as imprecision of the models. This impreci-
sion is the concession for not introducing artificial model assumptions. Such
model assumptions based on expert knowledge are often too narrow, which is
known as expert overconfidence [55]. In imprecise probabilities, this problem
is circumvented by implementing set-valued descriptors in the specification of a
probabilistic model. The model description is thereby limited to some domain,
and no further specific characteristics are ascribed. This introduces significantly
less information in comparison with a specific subjective distribution function
as used in the BAYESian approach. Imprecision in the model description ex-
pressed in a set-theoretical form does not migrate into probabilities, but it is
reflected in the result as a set of probabilities which contains the true probability.
This feature is particularly important when the calculated probabilities provide
the basis for critical decisions. With imprecise probabilities the analysis may
be performed with various relevant models to obtain a set of relevant results
and associated decisions. This helps to avoid wrong decisions due to artificial
restrictions in the modeling.

In the first systematic discussion of imprecise probabilities [44] their seman-
tics is summarized with the term indeterminacy which arises from ignorance
about facts, events, or dependencies. This specifies the context in which impre-
cise probabilities appear in nature and shows a basic distinction with respect
to BAYESian and traditional probabilistic analysis. In view of engineering prob-
lems imprecise probabilities arise, in particular, when probabilistic elicitation
exercises are incomplete, when probabilistic information appears incomplete or
dubious, and when observations of sample elements appear imprecise. Fur-
ther motivations for imprecise probabilities include observations which cannot
be separated clearly, conditional probabilities which are observed with unclear
conditions, and marginals of a distribution on a joint space which are speci-
fied with imperfect information about the accompanying copula function that
characterizes the dependence among the variables.

Imprecise probabilities include a large variety of specific theories and math-
ematical models associated with an entire class of measures. This variety is
discussed in [16] in a unifying context; the diversity of model choices is high-
lighted, and arguments for imprecise probabilities are summarized. Imprecise
probabilities have a close relationship to the theory of random sets [56, 57] and
cover, for example, the concept of upper and lower probabilities [58], sets of
probability measures [59], distribution envelopes [60], probability bounds anal-
ysis using p-boxes [61], interval probabilities [62], CHOQUET capacities [63] of



various orders, and evidence theory (or DEMPSTER-SHAFER Theory) [64, 65]
as a theory of infinitely monotone CHOQUET capacities [66, 67]. Moreover,
fuzzy probabilities [68, 69], with their roots in the theory of fuzzy random vari-
ables [70, 42], are also covered under the framework of imprecise probabilities
and possess strong ties to several of the aforementioned concepts.

Developments in imprecise probabilities appear in an interaction between
mathematics, computer science and engineering. An important source of math-
ematical developments for utilization in engineering is the symposium series
ISIPTA (International Symposium on Imprecise Probability: Theories and Ap-
plications) with its proceedings, e.g. [71], and special issues, e.g. [72]. The
transition of mathematical findings into engineering is then supported by multi-
disciplinary workshops, such as the Workshop on Reliable Engineering Com-
puting, which focus on practical utilization of the theories. The respective
proceedings, e.g. [73], and journal special issues, e.g. [74, 75|, provide a current
overview on the developments. In addition to these regular activities, knowledge
transfer is organized in individual workshops and mini-symposia at engineering
conferences, from which special issues are produced, such as [76, 77, 46, 78, 79].
Also, paper compilations and summarized developments are published in books;
see, for example, [45, 80, 81, 82].

The adoption of imprecise probabilities and related theories for the solution
of engineering problems can be traced, in its early stage, with the publica-
tions [83, 84, 85, 86, 87]. Numerical methods for quantifying and processing
imprecision and uncertainty by means of fuzzy random variables in conjunction
with a nonlinear analysis are proposed in [82] in order to assess the response and
reliability of civil engineering structures. And an entry of imprecise probabilities
into standard engineering literature is recorded with [13] with a consideration
of evidence theory to analyze complex engineering systems under uncertainty
and imprecision in view of a quantitative risk assessment. Along this way and
beyond a variety of specific theoretical developments and applications have been
published using quite diverse terminology for very similar or equivalent facts,
situations and phenomena. This becomes particularly obvious in [46], where
various solutions are proposed for the solution of the same simple academic and
engineering problems defined in [4]. The solution summary [88] shows, on one
hand, how “different” approaches lead to virtually the same results, and on the
other hand, how different subjective decisions in the initial modeling can lead
to deviations in the results. The proposed solution concepts include a com-
bination of probability theory, evidence theory, possibility theory and interval
analysis [20], probability bounds analysis [61], distribution envelope determina-
tion [60], sets of probability measures [59], coherent lower and upper probabil-
ities [58], imprecise coherent probabilities [89], coherent lower previsions [90],
random set theory [91], probability distribution variable arithmetic [92], and
polynomial chaos expansions for equivalence classes of random quantities [93].

3.2. Engineering application fields
From the initial developments imprecise probabilities have emerged into sev-
eral application fields in engineering with structured approaches. The largest



application field appears as reliability assessment, where imprecise proba-
bilities are implemented to address sensitivities of the failure probability with
respect to the probabilistic model choice. As the tails of the distributions are de-
cisive for the failure probability but can only be determined and justified vaguely
based on statistical data and expert knowledge, an analysis with an entire set
of plausible probabilistic models and the identification of an associated upper
bound for the failure probability are beneficial. This reduces the risk of wrong
decisions due to unintentionally optimistic modeling. Implementations and ap-
plications have been reported on a parametric as well as on a non-parametric
basis and with different concepts. For example, evidence theory is used in [54]
to address imprecision in the reliability of individual elements in a system and to
make this effect visible in the system reliability. In [94] intervals are employed
for the description of the imprecision in probabilistic models for a structural
reliability assessment. And a reliability analysis with fuzzy distribution param-
eters is proposed in [95]. The developments in this area have been extended to
applicability to larger, realistic and practical problems. An overview in the con-
text of computational intelligence in systems reliability is provided in [96]. In
[12] evidence theory is proposed to estimate parameter distributions for struc-
tural reliability assessment based on information from previous analyses, expert
knowledge and qualitative assessments. This approach is demonstrated in an
application to estimate the physical vulnerability of an office building to blast
loading.

A comparative study of different modeling options in the framework of evi-
dence theory is presented in [97] and elucidated by means of an example from
flood risk analysis. This study is focused on methods for realistic modeling
of information typically available in practice and the subsequent integration in
industrial risk analysis. Random sets are used in [98] to perform a reliability
assessment based on imprecise data and lack of information as part of a real
tunnel project. This geotechnical application includes a real case history with
model validation by in situ measurements using a random set finite element
framework. Another application of random sets in geotechnical engineering is
presented in [99]. Measurement data are used to construct random set models
in a non-parametric manner using formulations based on the CHEBYSHEV in-
equality. The models are then used in a finite element based reliability analysis
of a sheet pile wall. A systematic development of selected imprecise distri-
bution functions based on imprecise BAYESian inference is presented in [100].
It is shown how limited information can be addressed with a class of priors
to eventually bound probabilities of failure. Imprecise BAYESian inference is
also known as BAYESian sensitivity analysis or robust BAYES analysis [101].
In [102] probability bounds analysis is compared with BAayEsian Markov-Chain
Monte-Carlo (MCMC) methods for uncertainty analysis of an environmental
engineering problem involving the toxic effects of hypersalinity on an endan-
gered fish species. The comparison reveals good agreement in expected (mean)
results, but sometimes strong disagreement in uncertainty characterizations. In
[103] and [104] probability bounds analysis is applied to reliability assessment
for a dike revetment and a finite-element structural analysis respectively, and



the results are compared to traditional probabilistic methods with Monte Carlo
simulation. In these examples, the risks can be underestimated with traditional
methods whereas probability bounding is able to cover the actual risk range
comprehensively, and often with less overall computational effort than Monte
Carlo methods.

The conceptual developments are supplemented by the design of numerical
methods, which aim at computational efficiency and approximation quality to
nurture applicability to real-size engineering problems. In [17] these criteria
were used to consider three modeling approaches: interval-valued probability,
second-order probability and evidence theory. It was found that a combina-
tion of stochastic expansions for probabilistic uncertainty with an optimization
approach to determine interval bounds for probabilities provides advantages in
terms of accuracy and efficiency. A Monte Carlo approach to estimate interval
failure probabilities is presented in [105], which is a combination of stochastic
sampling with an efficient interval finite element method. It employs interval
parameters to define families of distributions characterized by p-boxes. In a
comparison with a BAYESian approach it is shown that interval estimations for
the failure probability based on BAYESian results are contained in the interval
results, which indicates the influence of subjectivity in the modeling and the
potential risk in the case of over-confidence. In [106] the concept of fuzzy prob-
abilities is used for the reliability assessment of an offshore platform. Vagueness
and a lack of knowledge in the specification of corrosion effects are made vis-
ible in the failure probability, which indicates their sensitivity with respect to
assumptions in the corrosion model. Technically, this analysis makes use of the
global optimization method from [95, 82] for processing imprecise structural and
distribution parameters in combination with importance sampling to calculate
failure probabilities. This combination has also been used for time-dependent
reliability estimation as shown for textile reinforced structures in [107]. It is
easily extendable to other sampling methods.

In the analysis of sensitivities of model output, imprecise probabilities
can provide useful new insights with features for systematic and extended inves-
tigations. The consideration of imprecise parameters on a set-theoretical basis
enables the investigation of sensitivities with respect to changes of the param-
eters in the entire set of the input. This reveals sensitivities in a global sense
over a finite domain rather than in a differential manner. Tolerances given in
absolute terms can thereby be translated directly to bounds for model output
without extrapolation as required in differential approaches. The advantages
are obvious in cases when the model behavior is strongly nonlinear or discontin-
uous or when derivatives cannot be determined for some reason. Results from a
set-theoretical approach are then more robust and reliable. Another advantage
of the exploration of an entire domain for input parameters is the identification
of favorable and less favorable parameter adjustments. This information can
be used to collect further information or to perform further analyses systemat-
ically in order to identify the causes for sensitivities or to exclude sensitivities
by parameter restrictions.

In [108] evidence theory is employed to perform a sampling-based sensitivity
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analysis in different stages in a risk analysis of an engineering system. This in-
cludes an exploratory analysis to obtain insight in the model behavior as a basis
for further analyses and a subsequent investigation of incremental effects with re-
spect to the parameter specification. Additionally, an investigation is conducted
to explore the spectrum of variance-based sensitivity analysis results which cor-
responds to the evidence theory model used. Probability bounds analysis is used
for sensitivity investigations in [109, 110], which can be more informative than
traditional probabilistic approaches based on decomposition of variance. Prob-
ability bounds analysis is applied to assess the quality of probabilistic models
in view of risk assessment by means of result sensitivities with respect to as-
sumptions in the probabilistic model for the input including dependencies. A
concept for sensitivity analysis in the framework of coherent lower and upper
probabilities is presented in [111]. Three approaches are examined to derive an
uncertainty-based sensitivity index, namely, a variance-based approach, a par-
tial expected value of perfect information, and a relative entropy. The proposed
interval-valued sensitivity index measures the relative contribution of individual
model input variables, in the form of intervals or sets of distribution functions,
to the uncertainty in the model output. The examples refer to the challenge
problems from [4]. A sensitivity analysis with random sets constructed in a
non-parametric manner is discussed in [99]. This makes use of a visualization
of random sets in the form of a probability box in order to apply a pinching
strategy as explained in [109, 110]. Examples from geotechnical engineering are
provided for demonstration. A case study of various approaches for sensitivity
analysis by way of an aerospace engineering example is provided in [112]. This
includes concepts based on random sets, fuzzy sets, interval spreads, as well as
pure probabilistic concepts. The considered performance criteria are computa-
tional cost, accuracy, interpretability, ability to incorporate dependencies, and
applicability to large scale problems. The findings show that imprecise proba-
bilities provide an extended flexibility in the modeling and competitive features
with respect to the criteria.

In the area of model validation and verification imprecise probabilities
provide extended features in two respects. First, they allow the consideration
of an entire set of models without prior weighting rather than a single specific
one. This refers to model uncertainty. Second, imprecision of data can be taken
into account without artificial preconditioning of the data, which refers to data
uncertainty. In [113] a validation metric is defined in terms of the area between a
predicted distribution from a probabilistic model and the empirical distribution
embodied by relevant sample data. A more general discussion and extension of
this measure to validate imprecise predictions against imprecise observations in
form of intervals, probability distributions, or p-boxes is presented in [114]. A
representation of the shortest possible distance between prediction and observa-
tion is worked out which takes into account the imprecision of the distributions
and their dependencies. In [115] an alternative approach for model validation
is proposed that also allows for interval data to be included in the procedure.
This parametric approach leads to a family of distributions. A heat transfer
problem serves as example. A recursive least-squares estimation with observed
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interval data in a geodetical context is proposed in [116]. This is motivated
by the need to consider uncontrollable external effects and imprecision due to
remaining systematic errors in observation data. The approach is demonstrated
for a damped harmonic oscillation and for the monitoring of a lock. The valida-
tion of complex structural models under a lack of knowledge is also considered
in [117]. Starting from internal variables in the model, intervals are determined
with stochastic bounds to identify envelopes for the parameter of interest such
as a stress or displacement. Like [114], this development includes the consid-
eration of a special distance between the envelopes of the experiments and of
the model prediction. Further developments can be expected to emerge in the
related fields of model updating and system identification, in which interval
methods have attracted attention recently, as documented by [118] and [119]. A
combination of these approaches with stochastic developments to combine their
advantages as suggested in [114] and [113] seems promising.

Benefits of imprecise probabilities have also been reported in the field of
design under uncertainty. Through an implementation of imprecision in
the numerical algorithms it becomes feasible to consider coarse specifications in
early design stages. The models then allow a stepwise reduction of imprecision
as the available information grows over the design process, that is, when design
details are specified and implemented. Further, results from a sensitivity anal-
ysis can be utilized to identify a robust design. A comprehensive study on the
implementation of evidence theory in mechatronic design processes is provided
in [81]. The proposed coherent methodology enables a quantitative analysis in
early design stages based on a limited amount of data and including expert es-
timates. In [120] it is discussed how the issue of robustness can be addressed
directly in the design procedure. Time-dependent structural behavior is ana-
lyzed with fuzzy random variables in order to implement input imprecision in a
quantitative assessment of robustness. This approach is related to the concept
of robust design presented in [121] in a non-probabilistic context. Such design
approaches can significantly contribute to achieving economic benefits by reduc-
ing design and warranty costs while improving quality and have, thus, already
found access to secondary literature such as [122].

The developments discussed above are closely related to decision making
and contain substantial elements for this purpose. Their features for a realistic
modeling of imprecision and uncertainty ensure that the available information is
properly reflected in computational results; and the evaluation of these results
is the basis for deriving engineering decisions [4]. For further reading about
elements for deriving decisions in an imprecise probabilities framework we refer
to 9, 11, 123, 124, 125, 13, 126]. In the mathematical literature an increasing
number of promising developments with imprecise probabilities towards decision
making can be observed. This includes, for example, the identification of robust
decisions when trade-offs between various attributes in utility hierarchies are
not defined precisely. Three methods for this purpose are discussed in [127].
The classical decision rule of maximizing expected utility can be generalized
to account for imprecision among the probabilities and payoffs that define the
expectation, and traditional non-probabilistic decision rules such as maximin
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can likewise be generalized for the imprecise case. These generalized decision
rules are compared in [128].

For complex decision problems in engineering, which involve both uncer-
tainty and imprecision, credal networks provide attractive features. Credal net-
works represent an extension of BAYESian networks to deal with imprecision
in probabilities. Within the framework of imprecise probabilities, they can be
understood as sets of BAYESian networks [129]. As BAYESian networks are cur-
rently developing their usefulness in engineering, for example in the assessment
of reliability and risk in structural and infrastructure engineering [130, 131], it
can be expected that credal networks will also emerge in engineering to deal
with cases involving imprecision. Development can already be seen in [132]
which presents a case study implementing evidence theory for a BAYESian net-
work to assess the reliability of complex systems. Another future development is
seen in the broader use of computational tools from computer science for the im-
plementation of imprecise probabilities in engineering analyses. These tools are
already well developed and widely available, for example, as packages in R and
in MATLAB. They provide features such as statistical estimations and tests on
the basis of imprecise data, the empirical construction of imprecise cumulative
distributions, and simulation schemes for imprecise variables. The implemented
algorithms are described in various publications such as [133, 97, 134, 135, 136].

Although the advancements in engineering achieved with imprecise proba-
bilities are obvious, some reservation has remained in their adoption so far. Two
reasons can be recognized for this reservation. First, imprecise probabilities are
frequently misperceived as competitors against established probabilistic meth-
ods. But actually, imprecise probabilities are not competitors in this sense; they
represent supplementary elements which can complement probability in many
cases. Imprecise probabilities enrich the variety of models and can be combined
with traditional probabilistic analysis in various manners yielding an improved
flexibility and adaptability with respect to the particular situation and providing
extended features for engineering analyses. Second, models of imprecise proba-
bilities are perceived as unnecessarily complicated. This argument is, however,
only typical for a first view and is not supported by the relatively simple con-
ceptual set up and mechanisms of imprecise probabilities. A discussion of this
criticism is provided in [137] against the engineering need for advanced concepts,
in particular, in risk assessment. Another sensitive issue is the diversity of con-
cepts covered under the framework of imprecise probabilities. Although there
are very close relationships between the concepts which can be brought together
in a unified understanding, they are frequently perceived as basically different.
In the following section we try to resolve these critical issues in principle.

4. Selected concepts

4.1. Conceptual categories

The ideas of imprecise probabilities may be categorized into three basic
groups of concepts associated with three different technical approaches to con-
struct, imprecise probabilistic models.

13



1. Events, which may be complex, are observed phenomenologically and are
recorded with coarse specifications. Such a specification might be, for
example, “severe shear cracks in a wall”. In general, these coarse speci-
fications may be the best information available, or they may arise from
limitations in measurement feasibility. The latter applies, for example,
to damping coefficients. There is typically no probabilistic information
available to specify distribution functions for these coarse specifications,
so that modeling as sets is most appropriate. And an expert may then
assign probabilities to entire sets, which represent the observations. Start-
ing from this model, bounds for a set of distribution functions can be
constructed. We shall see below that evidence theory can represent these
concepts.

2. Parameters of a probabilistic model, the distribution type or, in a non-
parametric description, the curve of the cumulative distribution function
may only be specified within some bounds. This imprecision may arise,
for example, when conflicting information regarding the distribution type
is obtained from statistical tests, that is, when the test results for different
distributions as well as for compound distributions thereof with any mixing
ratio are similar. These test results do not provide grounds for assigning
probabilities to the model options. If no additional information is available
in such situations, the most suitable approach for modeling the cumulative
distribution function is as a set of distributions. In the simplest form, this
implies the use of intervals for the distribution parameters. We shall see
below that interval probabilities can be used to represent this group of
concepts.

3. Outcomes from a random experiment may appear as blurred, for example,
due to limitations in the measurement feasibility or due to the manner of
characterization of the outcomes. This characterization can emerge, for
example, in form of linguistic variables such as when asking a group of peo-
ple for their perception of the temperature in a room, the results appear
as “warm”, “comfortable”, “slightly warm” etc. This type of information is
typically described by fuzzy sets, which provide the additional feature of
a membership function in contrast to traditional sets. The membership
function for an individual observation, in this context, does not represent
any probabilistic information; it expresses a degree of truth with which
certain numerical values represent the characterization of the observation,
for example, the statement “warm”. It also provides a tool for a more
nuanced investigation with respect to the magnitude of imprecision. The
imprecise perception of a random variable can be translated into a tradi-
tional set or fuzzy set of distribution functions. We shall see below that
fuzzy random variables can be used to model this group of concepts.

Although some concepts of imprecise probabilities do not completely fall into
one of these groups, they usually show clear relationships to them and can
be constructed out of them or as combinations thereof. There are also strong
relationships between the groups. As we shall see below, probability boxes
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and fuzzy probabilities possess features to cover all three groups of concepts,
and fuzzy probabilities can be considered as nested probability boxes and vice
versa. A categorization may so seem to be not necessary. But from a practical
point of view, this categorization and the associated features of the concepts as
elucidated in the subsequent sections can provide the engineer with a good sense
for the modeling of a problem. In any case, the choice of the concept should be
driven by both the nature of the awvailable information and the purpose of the
analysis.

In the following sections the three representative concepts and combinations
thereof are briefly elucidated, their relationships to one another are examined,
and their features for applications in engineering are highlighted.

4.2. Evidence theory

If the information available possesses some probabilistic or probability-related
background, but does not meet the preconditions to be specified as a random
variable, evidence theory often provides a suitable basis for an appropriate quan-
tification and subsequent processing. Some analysts use subjective assignment
of weights—as a degree of confidence—to events that may overlap and do not
exclude one another, which represents relaxed restrictions with regard to tra-
ditional probability theory. Specifically, the requirement on the probability
measure P of countable additivity

P (UA,) = ZP (4;) (1)

whenever A; are pairwise disjoint events is replaced by the less rigorous condi-
tions of sub-additivity and super-additivity; see [64, 67, 138]. The associated
generalized uncertainty measures M (A;) comply with the monotonicity feature

M(A;) < M(Ay), (2)

whenever A; C Ay as a basic requirement according to the theory of monotone
measures. A mathematical description with details and background informa-
tion is provided in [65]. On this basis various specific uncertainty measures may
be derived within a range from plausibility to belief which include traditional
probability as a special case. Evidence theory, which is also called DEMPSTER-
SHAFER Theory, may therefore be understood as a generalization of traditional
probability theory; it represents a theory of infinitely monotone CHOQUET ca-
pacities [66, 67].

The basic idea, in terms of measure theory, is to distribute the “weight”
w = 1 over the sets A;, which are subsets of the fundamental set, so that the
sum of the weights is

[13

> w(4) =1. (3)

The empty set has weight w(&) = 0 by definition. The sets A; with positive
weights w(A;) > 0 are called the focal subsets. The weight assignment reflects
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the overall evidence that particular events behind the A; are realized. The focal
subsets A; together with their weights w(A;) contain the entirety of available
information and thus constitute the body of evidence. With reference to the
requirement Eq. 3, the weight assignment is called the basic probability assign-
ment in which the weights w(A;) represent probability masses. The compliance
with the traditional definition of probability is, however, not complete because
the focal subsets are not required to be disjoint. The probability mass is directly
assigned to (imprecise) events represented by the focal subsets; the elementary
events behind A; and their probabilities remain hidden.

Rigorous consideration of the evidence for arbitrary events B leads to dif-
ferent uncertainty measures that characterize either the evidence specifically in
support of B, or the evidence that is merely consistent with B. These are the
plausibility measure

Pls(B)= Y w(A), (4)

A;,NB#Q

and the belief measure

Bel(B) = > w(A), (5)

A,CB

which have the complementary property Pls(B) + Bel(B€) = 1. All other
uncertainty measures M (B) that may be derived within this framework are
bounded by Pls(B) which is an upper bound on the probability of B, and
Bel(B) which is a lower bound on its probability.

Depending on the selection of the focal subsets, the measures of plausibility
and belief and the measures between plausibility and belief possess specific char-
acteristics. If, for example, the focal subsets are disjoint singletons (dissonant
case) representing elementary events, the special case of traditional probability
is obtained with Pls(B) = Bel(B) = P(B). For a nested sequence of focal
subsets A; C Ay C ... C A; C ... C A, (consonant case), a possibility measure
II(B) = Pls(B) and a necessity measure N(B) = Bel(B) are obtained. In
this context a plausibility measure (and, thus, the special case of possibility)
represents an upper bound and a belief measure (and, thus, the special case of
necessity) represents a lower bound of the probability measure. Furthermore,
the family of A-uncertainty measures M, (B) introduced in [139] is included
in the evidence theory framework. These measures are characterized by the
weakened additivity property

Mx(By U By) = Mx(B1) + Ma(B2) + A Mx(B1) - Mx(B2), A>-1, (6)

whenever By N B; = @. The adjustability of A according to requirements in
each particular case provides considerable flexibility for My (B;), including the
special case of traditional probability which is obtained with A = 0.

Evidence theory may be used as a basis for an axiomatic characterization of
random sets [45]. This is prompted by the interpretation of the focal subsets
as random sets. Discussions and engineering applications are provided in the
context of sets of probability measures to derive lower and upper probabilities of
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events [140]. The fields of application include, for instance, structural optimiza-
tion [141], reliability assessment [99], and geotechnical stability investigations
[142].

A variety of theoretical developments and applications of evidence theory
in an engineering context are provided in the paper compilation [46] with an
overview of the approaches in [88]. The subjects included in the discussion con-
cern uncertainty quantification, computation of model predictions and system
responses, simulation, optimization and design, and decision making. In par-
ticular, sampling and discretization methods such as the outer discretization
method [91] and the iterative rescaling method [58] are proposed in conjunction
with random set approaches for a numerical treatment of the associated uncer-
tain quantities. An application to structural reliability assessment is proposed
in [12] in this special issue. And the suitability of evidence theory for sensitivity
analysis—a field of increasing importance—is emphasized in [108].

These developments underline the fact that evidence theory provides a use-
ful basis for the treatment of imprecise observations and expert knowledge in
engineering within a probabilistic framework. Its less restrictive structure in
comparison to traditional probability theory enables a direct modeling of in-
formation as it appears in nature. Modifications of the observed phenomena,
or an introduction of additional fictitious constraints just to meet traditional
model requirements are unnecessary. If the available information allows a clear
specification of the basic probability assignment, meaningful results can be gen-
erated. These results are, in fact, not as detailed as in a traditional probabilistic
analysis but sufficient in many cases in view of engineering practice [13].

A crucial point in the practical application of evidence theory is realizing
the basic probability assignment in each particular case. Traditional statistical
methods from estimation and test theory are not usually applicable for this
purpose. The results of the subsequent uncertainty analyses, however, depend
essentially on the quality of the basic probability assignment.

Another critical consideration is the aggregation of information via combi-
nation rules for evidence which are reviewed in [138]. The most popular one is
DEMPSTER’s rule of combination, which may be interpreted as a generalization
of BAYES’ theorem; see [64]. It is, however, known that this rule can yield
counterintuitive results when there is substantial conflict among the estimates
because it excludes the conflict in the specification of the measure [143, 54, 13§],
which might make its use problematic in safety analysis particularly. Some argue
that the rule is correct [144] but that it may be largely irrelevant in probabilistic
argumentation [145].

4.8. Interval probabilities

JUDEA PEARL [146] argues that it would be helpful to have intervals that
“portray the degree of ignorance we have about probabilities—mnamely, the de-
gree to which the information we lack prevents us from constructing a com-
plete probabilistic model of the domain”, adding that such intervals “would in-
deed have a definite advantage over BAYESian methods, which always provide
point probabilities”. Although PEARL claims that intervals computed under
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DEMPSTER-SHAFER evidence theory do not actually have this interpretation, it
is possible to construct intervals for probabilities that do serve this purpose.

The idea of bounding probability with intervals has recurred many times
throughout the history of probability theory. GEORGE BOOLE [147, 148] de-
veloped the notion of interval bounds on probability, which he called minor
and major limits of probability. He asked what can be said about the prob-
ability of an event A given specifications, possibly in the form of bounds, on
the probabilities of related events By, Bs, ..., B,. FRECHET [149] derived the
best-possible ranges of logical functions of event probabilities irrespective of the
stochastic dependence between the event probabilities. These ranges make it
possible to make bounding calculations with probabilities that make no depen-
dence assumptions. Bounding probabilities has continued to the present day,
e.g., [150, 151, 152, 153]. KYBURG [154] reviews the history of interval proba-
bilities and traces the development of the critical ideas from the middle of the
previous century. Probabilistic analyses using bounding arguments of one kind
or another are common throughout engineering today.

Developing a complete traditional probability model implies that one can
precisely specify probabilities for an often huge collection of subsets from the
sample space. In practice, sometimes one may not be able to specify a precise
probability for every possible event. This often happens, for instance, when only
few data or little information is available, or when we wish to model probabilities
that a group agrees with, rather than those of a single individual. In such cases,
it may be reasonable to characterize probabilities not as real values, but rather as
intervals [148, 154, 62, 145]. An event A (a subset of the fundamental set) might
be characterized by some range of probability [P;(A), P2(A)] C [0, 1] considered
reasonable given available information, instead of specifying a crisp probability
P(A) with considerable but unstated uncertainty. This uncertainty may have
arisen from limited, vague, or dubious information, or from doubt about which
of disagreeing experts might be right. An interval probability model may be
defined mathematically as a mapping from the space of events (sigma algebra) to
the space of intervals on [0, 1], which is I = {[a,b], a, b€ R| 0 <a < b < 1} ;see
also [155]. Interval probabilities specify bounds on probability for an uncertain
quantity with underlying randomness that is not known in detail and, thus, they
represent a special kind of imprecise probabilities [44].

Calculating with interval probabilities can be straightforward. If P(A) =
[a1,as] and P(B) = [by, bs], then sure bounds on the logical conjunction (AND,
intersection) and the logical disjunction (OR, union) can be computed with the
FRECHET inequalities [149] which say

P(A&B) = P(AN B) = [max(0, a1 + b1 — 1), min(az, b2)], (7)
P(AV B) = P(AU B) = [max(ay, b1), min(1, az + b2)]. (8)

These complement the analogous but tighter rules for conjunction and disjunc-
tion that assume that events A and B are independent
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P(A&B) = P(AQB) = [a1 X by, as X bg], (9)

P(AVB)=PAUB) =1 = (1 = a1)(1 — b1), 1 = (1 — a2)(1 — b2)], (10)
and the rule for logical negation (NOT, complementation)

PAY=[1 — as, 1 — ajl. (11)

Other operations such as exclusive disjunction (XOR, set difference) can be
computed with similar formulations.

These rules permit the evaluation of probabilistic logical expressions such as
event or fault trees or their cutsets [156], failure risk calculations, reliability or
unavailability models, and other Boolean expressions with probability inputs.
As noted in [145], probabilistic logic can be applied to solve a range of prob-
lems, but in practice it has rarely been employed in engineering. One reason
may be that early attempts to deploy probabilistic logic required real-valued
probabilities and did not admit interval probabilities. They followed a scheme
that conflated structural uncertainty with epistemic and aleatory uncertainties
and improperly overused independence assumptions, which led to several defi-
ciencies. A modern imprecise approach that distinguishes what we know and do
not know about chance events is likely to be more transparently useful. Interval
calculations implicitly analyze infinitely many traditional probabilistic models,
each specified by sets of point probability values from the respective intervals.
Using interval probabilities in engineering is necessary when the information
available is not sufficient to formulate clear probabilistic models with substan-
tial confidence. All tenable probabilistic models can thus be implicitly included
in an analysis. The effects of imprecision in the probabilistic model specification
are clearly reflected in the results so that worrisome prognoses can be detected
immediately. Initial applications, although few, already indicate the usefulness
of interval probabilities and demonstrate their capabilities. Examples include
computation of structural reliability [54, 94], system responses [89], and failure
risks [157, 158].

In these applications it is always possible to obtain rigorous bounds on the
probabilities of interest, but when the expressions to be evaluated are complex
because of cross linkages or subtle dependencies, calculation of the narrowest
such bounds, i.e., the best-possible bounds, may require mathematical program-
ming techniques [148]. However, there are many cases which may appear com-
plex in which the calculation of exact bounds is easy because the expression has
certain monotonicity properties [159].

The notion of interval probability can be extended to other kinds of engi-
neering applications such as artificial intelligence, systems for general reasoning,
syllogistic analysis, and related problems in knowledge engineering. In these
contexts, when logical inferences are made about propositions characterized by
interval probabilities rather than simple binary truth values [160], there can
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be subtleties in the definition, use, and interpretation of these characteriza-
tions [146]. For instance, the probability of A given B is entirely different from
the probability of the implication B — A [161], even though they might seem
to represent the same thing. The former is called the conditional probabil-
ity while the latter might be called the probability of the conditional. Given
P(A) = a and P(B) = b, the conditional probability P(A|B) is bounded by
[max(0, (¢ — 1)/b+ 1), min(a/b, 1)], unless 0 € b in which case the bounds on
the conditional probability are vacuous. The interval constrains the probability
of event A occurring given that event B occurs, assuming nothing about the
dependence between the two events. In contrast, the bounds on the probability
of the conditional are [max(1 — a, b), min(1, 1 — a + b)], which constrain the
probability that event A implies the occurrence of event B, assuming nothing
about the dependence between the two events. Numerically, conditional proba-
bility is quite different from the probability of the conditional. For example, if
a=0.2and b= 0.5, P(A|B) € [0, 0.4], whereas P(B — A) € [0.8, 1]. These
bounds are the best possible given no information except the marginal proba-
bilities for each event separately. The bounds can be tightened by information
about the dependence between A and B.

Conversely, following [161] one can make an inference about the probability
of an event or proposition H from the probability of E and either the conditional
probability P(H | E) or the probability of the conditional P(E — H), either of
which might represent available evidence or argument about the relationship
between H and F, although, clearly, an analyst must distinguish which form
this information takes. In many cases, the different inferences yield numerically
similar results. For instance, if P(F) = 0.8 and P(H | E) = 0.9, the inference
yields the probability interval [0.72, 0.92]. If instead we combine P(FE) = 0.8
with P(E — H) = 0.9, then inference yields [0.7, 0.9]. The differences become
much greater for rare events and weak evidence. For example, if P(F) = 0.2,
then P(H | E) = 0.1 implies P(H) is somewhere in the wide interval [0.02, 0.82],
but the related inference using P(F) = 0.2 with P(F — H) = 0.1 yields the
much narrower interval [0, 0.1] for the probability of the rare event H. Ancillary
knowledge about the stochastic dependence between E and H can tighten such
inferences.

4.4. Probability bounds analysis with p-boxes

Probability bounds analysis [162, 163, 164, 61] is another of the uncertainty
quantification approaches that are considered part of the theory of imprecise
probability [44]. If evidence theory described in Section 4.2 is based on the
idea that z-values can be bounded rather than specified as points, and inter-
val probability described in Section 4.3 is based on the idea that probabilities
can be bounded rather than necessarily given as point values, then probabil-
ity bounds analysis is based on the combination of these dual ideas. It is a
numerical approach that allows the calculation of bounds on arithmetic com-
binations of probability distributions when perhaps only bounds on the input
distributions are known. These bounds are called probability boxes, or p-boxes,
and constrain cumulative probability distributions (rather than densities or mass
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functions). This bounding approach permits analysts to make calculations with-
out requiring overly precise assumptions about parameter values, dependence
among variables, or distribution shapes. In principle, the approach allows the
analyst to decide what assumptions are reasonable and what are not. When the
information about a distribution is very good, the bounds on the distribution
will be very tight, approximating the precise distribution that is used in a Monte
Carlo simulation. When the information is very poor, the bounds will tend to
be much wider, representing weaker confidence about the specification of this
distribution.

Probability bounds analysis is essentially a unification of standard interval
analysis [165, 166, 32, 167] with traditional probability theory [21, 22, 168, 44].
It gives the same answer as interval analysis does when only range information
is available. It also gives the same answers as Monte Carlo simulation does
when information is abundant enough to precisely specify input distributions
and their dependencies. Thus, it is faithful to both theories and generalizes them
to solve problems neither could solve alone. Probability theory has facilities for
modeling correlations and dependencies, but cannot easily distinguish between
variability and ignorance [146, 169]. Interval analysis expresses ignorance, but
it has no useful notions of central tendency or moments and it cannot easily
handle dependence among variables. Probability bounds analysis incorporates
facilities from probability theory for modeling correlations and dependencies
and projecting distribution moments through mathematical expressions. From
interval analysis, it inherits its fundamental conception of epistemic uncertainty,
as well as important ancillary computational techniques described below.

The diverse methods comprising probability bounds analysis provide algo-
rithms to evaluate mathematical expressions when there is uncertainty about the
input values, their dependencies, or even the form of mathematical expression
itself. The calculations yield results that are guaranteed to enclose all possible
distributions of the output variable so long as the input p-boxes were all sure
to enclose their respective distributions. In some cases, a calculated p-box will
also be best-possible in the sense that the bounds could be no tighter without
excluding some of the possible distributions. As a bounding approach, probabil-
ity bounds analysis can effectively propagate some kinds of uncertainties that
cannot be comprehensively addressed by any Monte Carlo or other sampling
approach, even in theory with infinitely many samples. For instance, if an an-
alyst does not know the distribution family for some input, a distribution-free
p-box can be used to bound all possible distribution families consistent with
the other information available about that variable. Likewise, if the nature of
the stochastic dependence between two distributions is unknown, probability
bounds analysis can be used to bound all possible distributions that might arise
as a function of the inputs whatever their interdependence might be. Such cal-
culations are not possible with a Monte Carlo assessment, or even a sensitivity
study involving multiple Monte Carlo simulations, because such problems are
intrinsically infinite-dimensional.

P-boxes are defined by left and right bounds on the cumulative proba-
bility distribution function of a quantity and, optionally, additional informa-
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tion about the quantity’s mean, variance and distributional shape (family, uni-
modality, symmetry, etc.). A p-box represents a class of probability distribu-
tions consistent with these constraints. Let D denote the space of distribu-
tion functions on the real numbers R, i.e., D = {D|D : R — [0,1], D(z) <
D(y) whenever z < y, forall z,y € R}, and let I denote the space of real
intervals, i.e., I = {[i1,i2] |41 <9, 41,12 € R}. Then a p-box is a quintuple
(F, F, m,v, F), where F, F € D, while m, v € I, and 7 C D. This quin-
tuple denotes the set of distribution functions F' € D matching the following
constraints:

F(z) < F(z) < F(2), (12)

[~ arwem -
(o) - ([Lowro) s oo

e FeF. (15)

The constraints mean that the distribution function F' falls within prescribed
bounds, the mean of the distribution (given by the RIEMANN-STIELTJES inte-
gral) is in the interval m, the variance of the distribution is in the interval v,
and the distribution is within some admissible class of distributions F. A p-
box is minimally specified by its left and right bounds, in which case the other
constraints are understood to be vacuous as (F, F, [—00, )], [0,00], D).

An arbitrary collection of distribution functions, i.e., a subset of D, is called a
credal set. In principle, specifying and computing with credal sets would suffice
as the most general theory of imprecise probabilities [44]. A p-box is just a
crude but computationally convenient characterization of a credal set. Whereas
a credal set might be defined solely in terms of the constraint F (which would
imply F, F, m, and v), such a specification is often very difficult to compute
with [111]. A p-box usually has a loosely constraining specification of F, or even
no constraint so that 7 = ID. Calculations with p-boxes, unlike with credal sets,
are often quite efficient, and workable algorithms for all standard mathematical
functions are known [164].

When F' is a distribution function and B is a p-box, the notation F €
B means that F is an element of B = (Bj, By, [m1, ms], [v1,v2], B), that is,
Bsy(z) < F(z) < By(x), for all € R, E(F) € [mq1,ms], Var(F) € [v1,vs2], and
F € B. As the notation X ~ F denotes the fact that X € R is a random
variable governed by the distribution function F', we can likewise write X ~ B
to mean that X is a random variable whose distribution function is unknown
except that it is in B. And X ~ F' € B can be contracted to X ~ B without
mentioning the distribution function explicitly. When there is no additional
information about the moments or distribution family beyond what is implied
by the two bounding distributions then the quintuple representing the p-box
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(B1, Ba,[—00,0],[0,00],D) can be denoted more compactly as [By, Bs]. This
notation harkens to that of intervals on the real line, except that the endpoints
are distributions rather than points. Indeed, p-boxes serve the same role for
random variables that interval probabilities serve for events.

P-boxes can be combined together in mathematical calculations yielding
results that rigorously contain the uncertainty of the output that is implied by
the uncertainties in the input p-boxes. If X and Y are independent random
variables with distributions F' and G respectively, then X +Y = Z ~ H given
by the convolution of F' and G,

H(z) = / F(z)G(y)dz = / F(z)G(z —x)de = F xG. (16)
z=x+Yy —00

A similar operation on p-boxes is straightforward for sums. If X ~ A = [A;, Aj]
and Y ~ B = [By, Bs] are stochastically independent, then the distribution of
Z = X 4+Y is in the p-box [4; x By, A2 x By]. Tt is often most convenient to
effect these two convolutions with a discretization that converts the operation
into a series of elementary interval calculations [170, 163, 61]. Finding bounds
on the distribution of sums Z = X 4+ Y without making any assumption about
the dependence between X and Y is actually easier than the problem assuming
independence. MAKAROV [171, 162, 163] showed that

Z ~ | sup max(F(x)+ G(y) —1,0), inf min(F(z)+ G(y),1] . (17)

z+y=z zt+y=z

These bounds are both rigorous and best-possible in the sense that they could
be no narrower without excluding some possible sum distributions, and they are
also easy to extend beyond precise input distributions to inputs that are p-boxes
[163]. Operations under other assumptions about the dependency between X
and Y can also be computed, including cases corresponding to the extreme
assumptions of perfect positive or perfect negative dependency, as well as cases
where only the sign of the dependence is known. Other operations such as
subtraction, multiplication, division, etc., can be derived using transformations.
For instance, p-box subtraction A — B can be defined as A + (—B), where the
negative of a p-box B = [By, Ba] is [Ba(—x), B1(—x)].

A numerical example illustrates a simple calculation with four imperfectly
understood quantitative variables. A is a normally distributed variable whose
mean is between 10 and 12 and whose standard deviation is between 1 and
2. B is a positive variable not larger than 9, whose mean is 1. C is known
only to be within an interval range between 8 and 15, and D is lognormally
distributed with mean 5 and standard deviation 1. P-boxes sure to enclose the
probability distributions for A, B, and D depicted in the left three graphs of
Fig. 1. We omit the graph for C' which would be a simple rectangle between 8
and 15. If these variables are mutually independent, the p-box for the function
AD + B + C' is depicted as the rightmost graph in the figure. The mean of the
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output quantity is between 58.9 and 76, and its standard deviation is between
11.2 and 16.4. Tts median is between 54 and 79, and p-box’s right tail reveals the
probability the output quantity is larger than 100 is uncertain, but somewhere
between 0 and 12%.
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Figure 1: Function of p-boxes
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Probability bounds analysis has been used in uncertainty computations in
many contexts including series system failure analysis and system reliability
[140], quantification of margins of uncertainty [103], finite-element structural
models [172, 112, 173, 104], differential equations of chemical reactions [174],
engineering design [123, 175], validation [176, 113], pharmacokinetics [177], hu-
man health and ecological risk assessments at Superfund sites [178, 179, 180],
and even global circulation models [181]. The Wikipedia page for probabil-
ity bounds analysis lists over two dozen applications of the method to various
engineering problems.

A significant impediment to using probability bounds analysis in common
engineering applications may arise in some situations. Although it is always
simple to compute bounds that are guaranteed to rigorously enclose the output,
the calculation of bounds that are additionally the best-possible such bounds
can be complicated when there are stochastic or functional dependencies among
the inputs. Best-possible bounds on distributions for elementary functions are
easily evaluated, but it is not always possible to conveniently compute such
bounds for more complex functions. For instance, when a variable or parameter
characterized by a p-box appears multiple times in an expression to be evaluated,
naive application of the convolution methods can lead to an artifactual inflation
or contraction of the uncertainty in the result. For instance, if X is some
probability distribution and the evaluation of the expression X2 + X effectively
assumes that the two terms are stochastically independent of one another, the
result will likely understate the dispersion of the resulting distribution of sums.
The uncertainty in X has in essence been entered into the calculation twice. In
other cases, when independence is not counterfactually assumed, the effect can
lead to uncertainty in the result that is larger than it should be.

Interestingly, difficulty accompanying repeated uncertain variables appears
to a fundamental problem in many other and perhaps all uncertainty calculi.
For instance, it is well known in interval analysis [165] where it is called the
dependency problem, but it also afflicts fuzzy arithmetic [182], probabilistic
logic [183, 159], discrete convolution of probability distributions [184], and even
step-wise implementations of Monte Carlo simulations. This problem is part
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of a more general problem of modeling stochastic and functional dependency in
any probabilistic arithmetic for which probability bounds analysis was originally
created to address [185, 163].

All of these computational problems can be sidestepped by algebraically re-
arranging the evaluation expressions to equivalent forms that do not have repeti-
tions of uncertain inputs. For example, X2+ X can be rewritten as (X +1/2)2—1/4
which has no repetitions. When such rearrangement is not possible, a variety of
algorithms for special cases can still allow computation of best-possible results.
For instance, straightforward methods can handle monotone functions or unate
logical expressions [159], or functions that can be decomposed into montone
functions. For problems that lack monotonicity but have low dimensionality
in the number of uncertain inputs, brute-force computational techniques such
as subinterval reconstitution can reduce or eliminate the artifactual inflation of
uncertainty, e.g. [61].

There are several other techniques that originated in the field of interval
analysis that are likewise fruitfully extended to probability bounds analysis,
three of which we mention here. The first technique is TAYLOR arithmetic
[186, 187, 188] which is a rigorous method for symbolic evaluation of epistemic
uncertainty characterized by intervals. The technique can also be applied to
p-box calculations where it can be used to reduce the artifactual inflation of
uncertainty from repeated variables. A TAYLOR model for a function f over an
input interval X is the TAYLOR polynomial p,, of some order n approximating
f and an interval remainder term R,,, which rigorously encloses the approxi-
mation error |f(z) — p,(x)| over € X. The celebrated TAYLOR theorem is,
after all, an equality, not an approximation. The function f can be replaced in
calculations by p, + R,,. The interval remainder term is evaluated by interval
arithmetic, but the polynomial part of the TAYLOR model is propagated through
expressions symbolically wherever possible. The like terms that arise in these
symbolic calculations are grouped so that repeated uncertain variables are ef-
fectively canceled before they become problems. The order of the TAYLOR poly-
nomial is taken to be high to achieve good fidelity and small uncertainty in the
remainder term, into which all truncation and round-off errors in intermediate
operations can be folded to obtain a strictly rigorous result. TAYLOR arithmetic
has been successfully used to solve nonlinear ordinary differential equations that
have epistemic uncertainty expressed as intervals in either parameters or initial
conditions [189]. TAYLOR arithmetic can also project uncertainty expressed as
p-boxes whether they represent epistemic uncertainty or aleatory uncertainty
or both. The approach has been used to project p-boxes characterizing uncer-
tainties in both coefficients and initial conditions through a variety of nonlinear
differential equations [174].

Another technique from interval analysis that enriches probability bounds
analysis is BERNSTEIN expansion [157, 158, 190, 191, 192] which is a strategy
for bounding the range of an arbitrarily complex finite polynomial function.
This technique can be used, for instance, to complete the TAYLOR arithmetic
computation which involves a polynomial of the initial variables. An ancillary
technique such as BERNSTEIN expansion must be employed to project uncer-
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tainty through this polynomial, which generally has many repeated uncertain
variables appearing as various powers of a variable across the terms of the poly-
nomial. BERNSTEIN expansion is an outside-in strategy in the sense that it
yields conservative bounds that get tighter (but always remain true bounds)
with additional computational investment. Given an arbitrary univariate poly-
nomial with coefficients ap, &k = 1,..., K, the coefficients for its BERNSTEIN
expansion are

S
bizzak 1 (18)
k=1 ( E—1 )
where ¢ = 1,..., K. The largest of these coefficients is a guaranteed upper
bound on the range of the polynomial over the unit interval, and the small-
est is a guaranteed lower bound on it. They are not necessarily best possible,
but they improve quadratically by subdividing the problem, so they approach
the exact bounds very quickly. These expansions are analytic rather than ap-
proximate like the CAUCHY-deviate method [193] or Monte Carlo simulation, so
there is no numerical error associated with the calculation. Although limited to
polynomial functions, BERNSTEIN expansions are quite general for propagating
epistemic uncertainty. They can be used with TAYLOR models as well as any
polynomial function. They work for polynomials whose terms involve a single
uncertain variable, and generalize straightforwardly for the multivariate case.
They are easy to compute for up to perhaps a dozen dimensions, and several
computational shortcuts are available for use in challenging problems. CRESPO
and KENNY [157] describe how they can be applied to aleatory uncertainty, and
to cases where some variables are aleatory and some are epistemic. BERNSTEIN
expansion can be extended to probability bounds analysis in a straightforward
way by applying the method to each of many interval calculation problems into
which a p-box calculation can be decomposed.

The third technique inherited from interval analysis is the CAUCHY-deviate
method [193] which projects intervals through a function using an approximate
rescaling technique based on Monte Carlo sampling from CAUCHY distributions
around (not necessarily within) the input intervals. Monte Carlo simulation is
famously efficient for propagating purely probabilistic uncertainty, but Monte
Carlo methods applied to the interval propagation problem yield gross under-
estimates of the true output uncertainty. The rescaling used in the CAUCHY-
deviate method is essentially a mathematical trick that recognizes how severely
Monte Carlo sampling tends to underestimate epistemic uncertainty and cor-
rects for this underestimation by computing the output range as a function of
the statistical breadth of the propagated samples. The method does not need
to know the specification of the function to which it is applied, but it must be
able to query its value for scalar inputs. The approximation is good when the
function is nearly linear or the breadths of the input uncertainties are small rel-
ative to the nonlinearity. The approximation accuracy depends on the number
of samples employed, but not on the number of uncertain inputs. The CAUCHY-
deviate method escapes the curse of dimensionality in the same way as and for
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the same reason that Monte Carlo simulation does. This insensitivity to the
dimensionality of the problem means that the method works just as well for a
thousand input variables as it does for ten. About 200 sample function evalua-
tions are needed to obtain 20% relative accuracy of half-width of output range.
Fewer samples yield lower accuracy, but scaling the results by the square root of
the number of samples (which is reasonable under a linearity assumption) can
compensate for small samples. The method is most efficient when the dimen-
sionality of the problem is high. Its results are asymptotically correct, but they
are not rigorous, so the method is not one of the techniques in interval analysis
that can be used for automatically verifying the computational results.

Although the CAaucHY-deviate method works only for interval uncertainty,
because probability bounds analysis can be decomposed into a series of inter-
val computation problems, it can be extended to project p-boxes through nearly
linear functions. The degree of nonlinearity for which the method yields good re-
sults can in principle be larger than would be tolerated for simple interval inputs
because the decomposition of p-boxes into constituent intervals gives narrower
ranges. The CAUCHY-deviate method endows probability bounds analysis with
some important new capacities. Like Monte Carlo simulation, it sidesteps the
problem of repeated uncertain variables to approximate best-possible bounds.
The CAucHY-deviate method also permits uncertainty analysis of black-box
functions. Ordinarily, probability bounds analysis is said to be an intrusive
method because it requires knowledge of the individual mathematical opera-
tions involved in a computation which it then decomposes into sequential unary
and binary calculations. Intrusive methods cannot do uncertainty quantifica-
tion for black-box functions whose internal details are not known. Probability
bounds analysis is no longer intrusive once it is enriched with the CAUCHY-
deviate method which only requires that the function can be evaluated and
does not need to know what is inside the function.

The defining general feature of probability bounds analysis is that its results
rigorously enclose the results of a probabilistic analysis. Whether or not the
results can be shown to be best possible, in any case the output p-boxes are
usually merely bounds on possible distributions. They are enclosures of credal
sets, and not always perfect representations of credal sets themselves. This is,
after all, what allows them to be so much more computationally convenient
than working with credal sets. But it means that p-boxes often also enclose
distributions that are not themselves possible. For instance, the p-box specified
by knowing the minimum, maximum and mean values of a variable includes
distributions that do not obey these constraints, even though the p-box can be
shown to be best possible. Likewise, the set of probability distributions that
could result from adding random values without specifying any dependence
assumption between their distributions is generally a proper subset of all the
distributions enclosed by the p-box computed for that sum. That is, there are
distributions within the output p-box that could not arise under any dependence
between the two input distributions. The output p-box will, however, always
contain all distributions that are possible so long as the input p-boxes were sure
to enclose their respective underlying distributions, and it is also the tightest
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such enclosure that does so. This property often suffices for use in risk analysis
and other fields requiring calculations under uncertainty [176, 172, 194, 169].

4.5. Fuzzy probabilities

Fuzzy probability theory can be regarded as a marriage between fuzzy set
theory and probability theory. It enables the consideration of a fuzzy set of
probabilistic models, which are variously plausible according to the available
information. Aleatory uncertainty and subjective probabilistic information are
captured in probabilistic models, and imprecision in the probabilistic model
specification is described with fuzzy sets. This preserves uncertainties as prob-
abilistic information and imprecision as set-theoretical information throughout
the entire analysis and does not let them migrate into one another. In the case
that only fuzzy information is available, the special case of a pure fuzzy analysis
appears. On the other hand, if all information can be captured with precisely
specified probabilistic models, the result is equal to the traditional probabilistic
result.

With the interpretation of fuzzy modeling as an extension to interval model-
ing, as mentioned in Section 2, the very close relationship between fuzzy prob-
abilities and probability boxes becomes obvious. In this context, the min-max
operator and the extension principle [33, 43] are used as the basis for the pro-
cessing of fuzzy information. A fuzzy number Z on X = R" is defined as the
set

7 ={(a,n () |z € X}, p(r) >0V X, (19)

where p (z) is the membership function (also known as the characteristic func-
tion) of the fuzzy number &, which represents the degree with which the elements
x belong to Z; it is assumed to be normalized (in the sense that sup u(z) = 1),
and has only one element x for which u(x) = 1; see Fig. 2. The crisp sets

2o ={r € X[p(z) > a} (20)

extracted from Z for real numbers a € (0, 1] are called «-level sets. These sets
form a sequence of nested sets with the property

Tay C Xo, Vo, ap € (0,1] with o < oy . (21)

On this basis a fuzzy number can be described as a family of a-level sets, via
a-discretization [33] as illustrated in Fig. 2, and a fuzzy set of probabilistic mod-
els can be regarded as a set of probability boxes. This consideration provides
a first access to fuzzy probabilities starting from probability boxes to consider
various box sizes in a nested fashion in one analysis. Developments to approach
fuzzy probabilities from this direction originated from [195] with the notion of
hybrid arithmetic; see [196]. Similarly, a further connection to the conception
of info-gap models for probability distributions exists as described in [197]. A
fuzzy probabilistic model can so be formulated in the same manner as a prob-
ability box, but provides the additional feature of a nuanced description of the
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imprecision in the probabilistic model. This is discussed in a geotechnical con-
text in [198], starting from an interval perspective. Respective discussions on
quantification are provided in [199, 200] and also in [201]. Interval-valued infor-
mation in the specification of parameters, distribution types, dependencies, or
functional values of a distribution can be implemented including a gradual sub-
jective assessment of the interval sizes. For example, the results from interval
estimations on various confidence levels and conflicting statistical test results
for various thresholds of rejection probabilities can be used as the basis for a
modeling with stepwise changing interval sizes. This perspective relates fuzzy
probabilities closely to interval probabilities, where the imprecision emerges in
the probability measure. But it is also connected to evidence theory in the
same way as probability boxes. When the focal sets in evidence theory are
set-valued (interval-valued in the one-dimensional case) images of random el-
ementary events so that the basic probability assignment is determined—and
not a subjective matter left with the analyst, then p-boxes can be constructed
by belief and plausibility distributions. When the focal sets appear as fuzzy-
valued images of random elementary events, then p-boxes can be obtained in the
same way for each a-level leading to a fuzzy probability distribution in overall.
Once a fuzzy probabilistic model is established, the same analysis methods as
in p-box approach can be used for processing, applied to each a-level. That is,
for any selected a-level, the complete framework of probability bounds analysis
is applicable.

In this context, it becomes obvious that the membership function serves only
instrumentally to summarize various plausible interval models in one embracing
scheme. The interpretation of the membership value p as epistemic possibil-
ity, which is sometimes proposed may be useful for ranking purposes, but not
for making critical decisions. The importance of fuzzy modeling lies in the si-
multaneous consideration of various magnitudes of imprecision at once in the
same analysis. As discussed in [202] the nuanced features of fuzzy probabilities
provide extended insight in engineering problems and a workable basis to solve
various problems in an elegant and efficient manner. This is illustrated in Fig.
2 by means of a repeated p-box analysis to calculate a fuzzy failure probability
15f. In this figure the fuzzy number & represents a parameter of a probabilistic
model for an engineering analysis, for example a variance for the distribution
of the stiffness of the foundation soil. In the analysis the failure probability Py
of the engineering structure or system is calculated, and the imprecision of =
is mapped to this result. Using a-discretization this analysis can be performed
with nested p-boxes. Each a-level set x, of T represents an interval parameter
of a probability distribution and so defines a p-box. The engineering analysis
with this p-box for the selected « yields an interval for the failure probability
associated with the same a-level. Repeating the p-box analysis with several
different o then leads to a nested set of a-level sets for the result Py, which
form the fuzzy result ]5f.

The features of such fuzzy probabilistic analysis can be utilized to identify
sensitivities of the failure probability with respect to the imprecision in the
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Figure 2: Repeated p-box analysis to calculate a fuzzy failure probability

probabilistic model specification. Sensitivities of P are indicated when the in-
terval size of Py grows strongly with a moderate increase of the interval size
of the input parameters. If this is the case, the membership function of Pf
shows outreaching or long and flat tails. An engineering consequence would be
to pay particular attention to those model options in the input, which cause
large intervals of Py and to further investigate to verify the reasoning for these
options and to possibly exclude these critical cases. A fuzzy probabilistic anal-
ysis also provides interesting features for design purposes. The analysis can be
performed with coarse specifications for design parameters and for probabilis-
tic model parameters. From the results of this analysis, acceptable intervals
for both design parameters and probabilistic model parameters can be deter-
mined directly without a repetition of the analysis. Indications are provided in a
quantitative manner to collect additional specific information or to apply certain
design measures to reduce the input imprecision to an acceptable magnitude.
This implies a limitation of imprecision to only those acceptable magnitudes
and so also caters for an optimum economic effort. For example, a minimum
sample size or a minimum measurement quality associated with the acceptable
magnitude of imprecision can be directly identified. Further, revealed sensi-
tivities may be taken as a trigger to change the design of the system under
consideration to make it more robust. A related method is described in [121]
for designing robust structures in a pure fuzzy environment. These methods
can also be used for the analysis of aged and damaged structures to generate
a rough first picture of the structural integrity and to indicate further detailed
investigations to an economically reasonable extent — expressed in form of an
acceptable magnitude of input imprecision according to some a-level. A study
in this direction is presented in [203] with focus on robustness assessment of off-
shore structures under imprecise marine corrosion. An engineering discussion of
features, pros and cons of interval models and fuzzy probabilities versus rough
probabilistic models in geotechnical applications, where information is usually
quite vague and limited, is provided in [198].

Whilst the access to fuzzy probabilities via p-box approach is intuitive and,
thus, immediately attractive from a practical engineering point of view, the
second access via fuzzy random variables is rather mathematical and provides
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ground for extensive theoretical considerations. Fuzzy random variables follow
the idea that the observation of a random variable is imprecise. That is, the
image of the random variable appears as fuzzy number rather than the random
variable itself. In so far, traditional probability theory applies completely for the
description of the underlying random variable in the probability space [Q2, F, P],
with the sample space €2, the set of events (o-algebra) F, and the probability
measure P. The key question is how to describe the fuzzy image of the random
variable and its properties including the distribution function in R™. This in-
cludes the problem of measurability in R™. So far, there is no known o-algebra
constructed on R™ that can capture fuzzy realizations and hence fuzzy events.
But this is natural because such a o-algebra would permit assigning crisp mea-
sure values P to crisp events on R™ based on imprecise observations. This is a
contradiction because imprecise observations cannot be assigned to crisp events
in a binary manner without additional restrictions. One potential idea to escape
from this situation could be to construct a o-algebra with reference to a universe
of fuzzy sets § instead with reference to R™. But this would be abstract and not
practicable for engineering purposes as we need to work on R™ and not on g,
where the definition of our events of interest such as structural failure and the
analysis would be problematic. A workable solution to the problem, in partic-
ular in view of engineering applications, can be found when the fuzzy image of
the random variable is understood as a fuzzy set of real-valued images. In this
manner, the analysis comes down to the consideration of a set of real-valued
random variables, which are all plausible given the observation made, together
with their membership values. And for each of these real-valued random vari-
ables the entire framework of traditional probability theory and mathematical
statistics can be utilized. The membership values are processes in parallel using
fuzzy set theory. The fuzziness of the observation is so carried forward to the
measure values for events, which are then obtained as fuzzy sets of probability
measures, or fuzzy probabilities for short. This complies with the intuitive un-
derstanding that the occurrence of a precisely defined event based on imprecise
observations can only be determined in an imprecise manner and hence that the
probability of occurrence can only be measured in an imprecise manner, as well.
The construction of a fuzzy probabilistic framework in this manner (see [68])
leads exactly to the same model as that intuitively motivated by p-boxes; one
deals with a fuzzy set of plausible probabilistic models. And it supports the idea
that imprecision in data implies imprecision in the probability measure, which
is also used in the p-box approach. In addition, the inclusion of the (purely
random) generation scheme of realizations in the model provides a consistent
access to the analysis of imprecise data. Some considerations and examples for
the quantification of engineering data can be found in [201]. The consideration
of fuzzy random variables as a fuzzy set of real-valued random variables also
suggests an analysis, random variable by random variable, in engineering appli-
cations. The engineering analysis, such as a finite element analysis, can so be
implemented as a black box analysis; see [82].

Fuzzy random variables were first introduced in [42, 204] and further devel-
oped with significant steps in[205], [206], [207], and [70]. These developments
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show differences in terminology, concepts, and in the associated consideration of
measurability; and the investigations are ongoing [208, 209, 210, 211, 212, 213,
214, 215, 216]. In [70] it was shown that the different concepts can be unified to
a certain extent. An overview with specific comments on the different develop-
ments is provided in [70] and [217]. Generally, it is noted that a-discretization
is utilized as a helpful instrument. Investigations were pursued on independent
and dependent fuzzy random variables, for which parameters were defined with
particular focus on variance and covariance [218, 219, 220, 221, 222, 223|. Fuzzy
random processes were examined to reveal properties of limit theorems and mar-
tingales associated with fuzzy randomness [224, 225]; see also [226, 227] and for a
survey [228]. Particular interest was devoted to the strong law of large numbers
[229, 230, 231]. Further, the differentiation and the integration of fuzzy random
variables was investigated in [124, 232]. Considerable effort was made in the sta-
tistical evaluation of imprecise data. Fundamental achievements were reported
in [206], [233, 234], and [235]. Classical statistical methods were extended in
order to take account of statistical fluctuations/variability and imprecision si-
multaneously, and the specific features associated with the imprecision of the
data were investigated. Research in this direction is reported, for example, in
[236, 237] in view of evaluating measurements, in [124, 125] for decision making,
and in [238, 239, 240] for regression analysis. Methods for evaluating imprecise
data with the aid of generalized histograms are discussed in [241, 242]. Also, the
application of resampling methods is pursued; bootstrap concepts are utilized
for statistical estimations [243] and hypothesis testing [48] based on imprecise
data. Another method for hypothesis testing is proposed in [244], which em-
ploys fuzzy parameters in order to describe a fuzzy transition between rejection
and acceptance. BAYESian methods have also been extended by the inclusion
of fuzzy variables to take account of imprecise data; see [235, 49] for a compre-
hensive overview. A contribution to BAYESian statistics with imprecise prior
distributions is presented in [245]. This leads to imprecise posterior distribu-
tions, imprecise predictive distributions, and may be used to deduce imprecise
confidence intervals. The effects of imprecise prior distributions and imprecise
data in an engineering context are investigated in [246]. A combination of the
BavEsian theorem with kriging based on imprecise data is described in [247].
A BAYESian test of fuzzy hypotheses is discussed in [248], while in [126] the
application of a fuzzy BAvyEsian method for decision making is presented. The
variety of theoretical developments provides reasonable margins for the formu-
lation of fuzzy probability theory, whereby conceptual choices have to be made
depending on the underlying problem and the envisaged application; see [68].
In view of engineering applications the following choices seem most reasonable,
lead to a complete agreement with p-box approach and correspond to the ini-
tial explanations above. The question of measurability is solved employing the
concept of measurable bounding functions [42, 204]. The integration of a fuzzy-
valued function is realized according to [249] so that any fuzziness, whether in
the integral bounds or in the integrand, is translated into fuzziness of the result
and not averaged. The distance between fuzzy numbers, which is needed in
statistics with fuzzy realizations, is calculated according to the extension prin-
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ciple, [250, 66, 33], leading to fuzzy distances between fuzzy numbers. Moments,
and other parameters, of a fuzzy random variable are so obtained as fuzzy num-
bers. These selections comply with the definitions in [206] and [42]; see also
[217]. They have been used in the engineering developments and applications
in [82].

A fuzzy random variable is defined as the mapping

X: 0= F(X) (22)

where ) be the sample space with the random elementary events w € €2, and
§ (X) is the collection of all fuzzy numbers & on X = R"™. The fuzzy numbers
Z are described with membership functions p (z) using a membership scale p
perpendicular to the hyperplane €2 x X. Each random elementary event w from
2 is so connected to a fuzzy realization & without interaction between Q and pu.
That is, randomness induced by 2 and fuzziness described by py—only for the
images in z-direction—are not mixed with one another; see Fig. 3.

0.0

X; = X(w,): realization of the

real randgm variable X,

X(wy) € X(w)
x€eX=R!

Figure 3: Fuzzy random variable

Generally, a fuzzy random variable can be discrete or continuous with re-
spect to both fuzziness and randomness. The further consideration refers to the
continuous case, from which the discrete case may be derived.

Let X be a fuzzy random variable with realizations #;. Each fuzzy realization
Z; represents a fuzzy set of real-valued realizations, which are all plausible.
Let z;; be a plausible realization out of Z;, x;; € #;. Then, each series of
xji, © = 1,2,..., with z;; € Z; for each 7 can be considered as a series of real-
valued realizations x; of a real-valued random variable X;; and the real-valued
random variable X; can be considered as contained in X, X; € X. X; is also
called original of X in the sense that X; is one plausible real-valued random
variable behind the blurred image X. The X; carry membership values, which
may be utilized to express their degree of plausibility or only for instrumental
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purpose as described at the beginning of this section. Consequently, the fuzzy
random variable X can be described as the fuzzy set of all originals X; contained
in X,

X = {(Xj, 1 (X)) |2y € Vi } . (23)

The special case of a real-valued random variable X is so obtained when a fuzzy
random variable X includes only one original X = X;. And a pure fuzzy variable
is obtained in the case of no randomness. Interestingly, if a repeated observation
yields exactly the same fuzzy realization multiple times, this does not necessarily
imply that no randomness exists in this problem. The model then covers the
case that the imprecision of the observation is too strong to detect the random
properties; it considers all possible variants of random variation that could be in
the problem but are not explicitly detected. It is noted that this feature would
not occur for choices of distance measures between fuzzy sets other than made
herein. Coverage of these special cases enables a simultaneous treatment of real-
valued random variables, fuzzy random variables and fuzzy variables within the
same environment and sharing the numerical algorithms. Vice versa, it enables
the utilization of theoretical results from traditional probability theory and fuzzy
set theory and of established numerical techniques from stochastic mechanics
and from interval and fuzzy analysis.

It is assumed that the a-level sets of the realizations = are connected, com-
pact and convex — which is generally the case in engineering applications and
only very special exceptions might exist. This enables an efficient and convenient
numerical treatment. Again, the min-max operator and the extension principle
[250, 66, 33] are used to process fuzzy information. Then, a-discretization can
be applied to the fuzzy random variable X to obtain random o-level sets

Xo = {X =X, |u(X;) > a} . (24)

which represent closed random intervals [X, 1, X, ] in the one-dimensional case.
This representation of fuzzy random variables with a-discretization establishes
full compliance with p-box approach for each a-level. Consideration of the real-
izations of the random a-level sets X, as focal sets in the framework of evidence
theory leads to distributions for plausibility and belief, which are bounding
probability distributions to all real-valued random variables X € X,. These
bounding distributions represent p-boxes. And, in the same manner as in p-box
approach, these bounding functions can also be formulated directly at the model
level with the imprecision arising from vagueness in the probabilistic model spec-
ification, in addition to imprecision carried forward from observations.

In view of practical applications, probability distribution functions are de-
fined for fuzzy random variables [82, 235, 242, 251, 68]. These represent a fuzzy
set of the probability distribution functions F} (z) of all originals X; of X with
their membership values p (Fj (x)),

Fa) = {(B @), 0 (B () 1% € X, (B (@) = (X)) i}, (29)
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and p-boxes [Fy (2), Fyr (x)] for each a-level with the distribution bounds

Foi(x=(21,...,20)) :17Xma>>(( PXj=t=(t1,...,tn)] z,t € X=R",
jE€EXa

Elthmk,lgkgn), (26)

For(x=(21,...,2,)) = Juax PX;=t=(t1,....tn)| z,t e X=R",
J o

th <zp, k=1, ...,n). (27)

F(2) = {(Fa (€)1 (Fa 2))) | Fa(x) = [Fai (@), Far (2],
i(Fo (@) =avVae (0,1}, (28)

Each original X; determines precisely one trajectory Fj (x) within the bunch of
distributions covered by F (z). And, for each z, the [F; (2), Fy, (z)] appear
as closed connected intervals based on the choices and restrictions made above.

These distribution functions can easily be formulated in a parametric man-
ner by substituting fuzzy numbers for the parameters in probabilistic model
descriptions; see [206, 82, 68]. The fuzzy model parameters can be estimated
using mathematical statistics, and also non-parametric formulations can be es-
tablished; see [206, 235, 201, 49]. Fuzzy distribution functions can easily be
used for further calculations, but they do not uniquely describe a fuzzy random
variable; see [252]. This theoretical lack (which also applies to evidence theory
and p-boxes) is, however, generally without an effect in practical applications
so that stochastic simulations may be performed according to the distribution
functions [104, 105]. Alternative simulation methods were proposed based on
parametric [253] and non-parametric [252, 254] descriptions of fuzziness. The
approach according to [254] enables a direct generation of fuzzy realizations
based on a concept for an incremental representation of fuzzy random variables.
This method is designed to simulate and predict fuzzy time series; it circum-
vents the problems of artificial uncertainty growth or bias of non-probabilistic
uncertainty, which is frequently concerned with numerical simulations. In over-
all, an engineering analysis with fuzzy probabilities can be realized by combin-
ing stochastic techniques applied to the included individual real-valued random
variables with fuzzy analysis techniques in order to process the fuzziness in the
probabilistic model description. A generally applicable fuzzy analysis technique
based on a global optimization approach using a-discretization is described in
[255] as a basis for various analyses including reliability assessment and robust
design; see [95, 82, 256, 107, 120, 106]; whereby the overall analysis is performed
in a nested scheme. If the analysis provides some special features, such as mono-
tonicities or linearities, numerically efficient methods from interval mathematics
[32] may be employed for the a-level mappings instead of a global optimization
approach; see [173, 104]. The examples show that the analysis is feasible even

35



for solving large problems if numerically efficient methods are chosen for the
components of the analysis. From the present point of view, a combination of
a Finite Element based structural analysis with a spectral approach of Monte
Carlo simulation including a response surface method for dealing with random
fields and processes and a-level optimization for processing fuzziness represents
the most general and powerful symbiosis. The fuzzy probabilistic analysis, even-
tually, enables best-case and worst-case studies in terms of probabilities, within
a range of plausible probabilistic models and nuanced with various magnitudes
of imprecision. This can be utilized for various kinds of engineering analysis
including sensitivity analyses and robust design. Fuzzy probabilistic models
combine, without mixing, randomness and fuzziness. These are considered si-
multaneously but viewed separately at any time during the analysis and in the
results. Fuzzy probabilities may be understood as an imprecise probabilistic
model which allows a simultaneous consideration of all plausible probabilistic
models that are relevant to describing the problem in a nuanced manner.

Fuzzy probabilities have been employed in various engineering applications;
see, for example, [257, 85, 82, 37]. In [107] the time-dependent reliability of
reinforced concrete structures is analyzed using efficient simulation techniques.
This includes a consideration of imprecise dependencies in form of a fuzzy cor-
relation length. Time-dependent reliability under corrosion is investigated in
[258]. A method for the prediction of fuzzy structural responses, which oper-
ates on the basis of a fuzzy ARMA process simulation starting from imprecise
measured data, is presented in [259]. Applications to the numerical simulation
of the controlled demolition of structures by blasting are reported in [260, 261].
The reliability of offshore structures with a fuzzy probabilistic model for marine
corrosion is investigated in [106] using importance sampling. Developments and
applications in structural design and in robustness assessment with fuzzy prob-
abilities can be found in [262]. In [263] a robust optimization of tuned mass
dampers is solved in an environment with fuzzy mean and fuzzy variance in the
description of the structural performance. An application to the analysis of the
fatigue problems is reported in [264]. The prediction of surface subsidence due to
mining activities is investigated in[265] with fuzzy parameters in the probabilis-
tic model description. In [266] damage state and performance of structures are
analyzed and indicators are formulated with fuzzy parameters in a probabilistic
model. A neural network based approach to simulate fuzzy time series in fuzzy
stochastic process is proposed in [267] and applied to forecast settlements. A
related work on forecasting fuzzy-time series with neural networks is presented
in [268] in the context of simulating material behavior. These examples indicate
the broad spectrum of possible engineering applications for fuzzy probabilities
and the associated benefits and further potential.

5. Conclusions

In solving engineering problems, it is extremely important to properly take
uncertainty and imprecision into consideration. In engineering applications,
there are two main sources of uncertainty and imprecision. First, the values of
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many important parameters change: weather parameters change, water levels
change, and even for mass manufactured objects, the values of the corresponding
parameters are allowed to change within the required tolerance bounds. Such
an uncertainty is called aleatory uncertainty or variability.

Second, even for an individual object, an object with fixed values of the
corresponding physical characteristics, we usually only know the values of these
characteristics with some uncertainty. Indeed, our knowledge of these values
comes either from measurements or from expert estimates; measurements are
never absolutely accurate, and expert estimates are not absolutely accurate
either. Such an uncertainty is called epistemic.

For both types of uncertainty, we do not know the exact value of the cor-
responding quantity. It is therefore desirable to find out what are the possible
values and what are the frequencies with which different possible values can
occur. For example, when designing a bridge in a windy area, we want to know
the possible values of the wind speed, and we want to know the frequencies with
which winds of different strengths can occur. Similarly, when we measure the
wind and get an approximate value of the wind speed, it is desirable to know
what are the possible values of the measurement error and how frequent are
measurement errors of different sizes.

In other words, for both types of uncertainty, ideally, we should know the
range of possible values, and we should know the probability distribution on
this range. The traditional engineering approach to uncertainty (the one which
is usually taught to engineering students) assumes that we indeed know this
probability distribution.

In many practical situations, we indeed have this information. For example,
when we have a large number of observations, we can determine the probability
distribution corresponding to wind variability. For some measuring instruments,
we have a large sample of comparative measurement results performed by this
instrument and by a much more accurate (“standard”) measuring instrument.
Based on this sample, we can find the probability distribution for this instru-
ments’ measurement uncertainty.

However, in many important engineering problems, we only have partial in-
formation about these probability. This may be because the sample is too small.
This may also be because the actual probability distribution within tolerance
intervals may be different depending on the manufacturer: the only thing which
all manufacturers guarantee is that these values are within the tolerance limits.
An expert may not be comfortable describing his or her uncertainty by exact
probability values. In all these practically important cases, we have imprecise
probability.

Sometimes, the range of possible values is the only information we have; this
corresponds to interval and set-valued uncertainty. Sometimes, we do not know
the exact values of the probabilities but we know bounds on these probabilities.
Sometimes, instead of guaranteed bounds, we only know bounds which are valid
with some certainty, a situation which is often efficiently described by fuzzy-
valued probabilities and fuzzy random variables.

From the theoretical viewpoint, imprecise probabilities are a thriving area
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of research. There has been a large amount of interesting research in impre-
cise probability, both in general theory of imprecise probability and in specific
imprecise probability areas such as interval uncertainty, interval-valued proba-
bilities, fuzzy-valued probabilities, etc. However, in engineering practice, people
still mostly use traditional probabilistic methods, even when it is clear that the
corresponding probabilities are only known imprecisely.

There are several reasons for this scarcity of engineering applications. First,
in order to use imprecise probability techniques, we need to develop efficient
algorithms and methodologies for using them. In contrast to classical statistical
methods—which have been developed and perfected for decades— many impre-
cise probability techniques are not yet very computationally efficient. Second,
applications are rarely a straightforward application of algorithms: usually, en-
gineering knowledge and engineering intuition helps in solving the corresponding
problems. During the centuries of applying traditional statistical methods, en-
gineers and applied mathematicians have gained a lot of intuition about their
use in engineering applications. For many promising imprecise probability tech-
niques, such an intuition still needs to be acquired.

The current special issue is one of the steps towards a wider use of imprecise
probability techniques. With this objective in mind, we solicited papers that re-
solve both issues described above. We have papers that provide new algorithms
and methodologies for using imprecise probabilities in engineering, and we have
papers that describe and analyze practical engineering applications of imprecise
probability techniques. We hope that both types of papers will help practition-
ers apply these techniques — and the remaining open problems highlighted in
many of the papers will inspire theoreticians in making these techniques more
practically useful.

As the reader can see from the previous sections of this overview (and from
the actual papers) different applications use different imprecise probability tech-
niques. At first glance, these methods may sound different, but, as we have
emphasized several times, most of these methods are closely related and reflect
different aspects of the same concept of imprecise probability. We hope that
the reader gets the impression that we have been trying to convey: that the in-
terconnections and mutual complementarities between these methods are much
stronger than the differences between them. There is a unity in these methods,
both on the theoretical and on the algorithmic level.

For example, whether we have a measurement-induced interval uncertainty
about the values coming from a known probability distribution, or we have the
results of very accurate measurements of the quantity whose probability dis-
tribution is only known with interval uncertainty, we end up with the same
technique: the techniques of p-boxes. And this techniques enables us to intro-
duce both types of interval uncertainty at no additional computational cost.
Similarly, whether we have expert-induced fuzzy uncertainty about the values
coming from a known probability distribution, or we have the results of very
accurate measurements of the quantity whose probability distribution is only
known with fuzzy uncertainty, we end up with the the techniques of fuzzy prob-
abilities  which, from computational viewpoint, reduced to processing p-boxes
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corresponding to different thresholds «.

In short, our take-home message to the readers of this special issue is that
whether we are using probabilistic methods, interval methods, p-boxes, fuzzy
techniques, we are drinking the same water of truth from different sides of the
same well. The results of using different imprecise probability techniques are
rewarding, and the more we take into account the unity of these methods, the
more we complement different techniques, the better our solutions to engineering
problems. Let the hundreds applications of imprecise probability bloom!
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