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Abstract. In the analysis of time series, it is important to decompose the original values into
trend, cycle, seasonal component, and noise. In this paper, we provide a theoretical justification of
the fact that the F-transform can be used for this purpose. We formulate “natural” requirements
on the trend extraction procedure and then show that the inverse F-transform fulfils all of them.
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1 Introduction

Need for the time series analysis. In application areas such as meteorology, financial analysis, etc., it
is desirable to predict the value of a monitoring variable, e.g., temperature, stock price, and so on. To
make this prediction, we observe values of the monitoring variable at different time moments, and use
the results of these observations to make a prediction. Usually, measurements are performed at regular
time intervals, i.e., at moments t1, t2 = t1 +∆, . . . , tk = t1 + (k− 1)∆, . . ., – e.g., daily, monthly, hourly,
etc. The result of each measurement at the corresponding time moment tk, k ≥ 1, is a real number, say
xtk . The result of all measurements, i.e. the (ordered) sequence of real numbers is called a time series,
see e.g., [3].

xt = (x1, . . . , xN ) (1)

where N > 0 is an integer. If N denotes the set of natural numbers, [1, N ] ⊂ N and R denotes the
set of reals, then we can say that the time series xt is a function x : [1, N ] → R such that xt = x(t),
t = 1, . . . , N . Thus, we will identify the denotation xt of the whole time series as a sequence with the
denotation of its value at the moment t.

Seasonal and other components of a time series. An observed time series xt can be naturally represented
(additively decomposed) as a sum of four time series with different behavior: a long-term trend (slowly
changing time series), cycles (medium-term changes), seasonal (short-term changes), and noise; see,
e.g., [2]. Namely,

xt = Trt + Cyt + Set + Not, t = 1, . . . , N, (2)

where Trt is a trend, Cyt is a cycle, Set is a seasonal time series, and Not is the random error (quite
often assumed to be a white noise).

In applications (see, e.g., [2]), it is important to separate seasonal (short-term) changes from long-
term ones. In such situation, it is reasonable to combine trend and cycle into a single trend-cycle time

series yt
def
= Trt + Cyt, and to combine seasonal time series and noise into a single seasonal-noise time

series zt
def
= Set + Not. After this combination, the decomposition (2) takes the simplified form

xt = yt + zt, t = 1, . . . , N. (3)
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2 F-transform approach to time series: a background.

In [5, 6, 8], we propose to apply the F-transform to time series analysis and forecast. The F-transform
technique itself was introduced in [7]. Before we explain how the F-transform is used in the analysis of
time series, let us remind its main principles. In particular, the discrete form of the F-transform will be
recalled. The definition below is adjusted to the denotation above, so that a time series is identified with
a function x : [1, N ]→ R where [1, N ] is an interval of N.

The first step in the definition of the F-transform of x is the selection of a fuzzy partition of the interval
[1, N ] by a finite number n ≥ 3 of fuzzy sets A1, . . . , An. In [7], we used five axioms to characterize a fuzzy
partition. In [9], the number of axioms was reduced to three and a fuzzy partition was called relaxed.
Below, we repeat the last definition and adjust it to the case of [1, N ]. This means that we will drop the
axiom of continuity and leave only two axioms.

Definition 1. Let [1, N ] be an interval of N, n ≥ 3, and t0, t1, . . . , tn, tn+1 ∈ [1, N ] be nodes4 such that
1 = t0 ≤ t1 < . . . < tn ≤ tn+1 = N . We say that the fuzzy sets A1, . . . , An : [1, N ]→ [0, 1], identified with
their membership functions, constitute a fuzzy partition of [1, N ] if the following conditions are satisfied:

1. (locality) - for every k = 1, . . . , n, Ak(t) = 0 if t ∈ [1, N ] \ (tk−1, tk+1);

2. (density) -
∑N

t=1Ak(t) > 0, k = 1, . . . , n.

The membership functions A1, . . . , An of the respective fuzzy partition are called basic functions.
A point t is covered by Ak if Ak(t) > 0. A fuzzy partition is called uniform if basic function A1 is
symmetrical (with respect to the axis t = t1) and A2, . . . , An are shifted copies of A1, i.e.,

Ak(t) = A1(t1 + t− tk), tk−1 ≤ t ≤ tk+1, k = 2, . . . , n. (4)

In the case of uniform partition, basic function A1 is called generating.

The direct F-transform. Once the basic functions A1, . . . , An are selected, we define (see [7]) the (direct)
F-transform of the time series x : [1, N ] −→ R as a vector Fn(x) = (X1, . . . , Xn), where the k-th
component Xk is equal to

Xk =

∑N
t=1 x(t) ·Ak(t)∑N

t=1Ak(t)
, k = 1, . . . , n. (5)

The definition is correct due to the property “density”. To stress that the F-transform components
X1, . . . , Xn depend on A1, . . . , An, we say that the F-transform is taken with respect to A1, . . . , An.

The following properties characterize the F-transform Fn(x) [7]:

P1. The mapping Fn : RN → Rn such that Fn : x 7→ Fn(x) is linear. In the formulation of this property,
the time series x is identified with the vector (x1, . . . , xN ) of its values on [1, N ].

P2. If the time series x is constant, i.e., x(t) = C, t = 1, . . . , N , then the components of its F-transform
Fn(x) are constants as well; moreover, Fn(x) = (C, . . . , C).

P3. Components X1, . . . , Xn of Fn(x) minimize the following function:

Ψ(y1, . . . , yn) =

n∑
k=1

N∑
t=1

(x(t)− yk)2Ak(t), (6)

which can be considered to be a weighted least square mean criterion. By this property, the F-
transform components are weighted least square means of x.

The inverse F-transform. In our Definition 1, we have used the relaxed fuzzy partition of [1, N ] (e.g.,
the so called Ruspini condition was not demanded). One of the consequences of this is the fact that the
inverse F-transform has a slightly different form, see below.

The inverse F-transform of the time series x is defined on the set D = {t :
∑n

k=1Ak(t) > 0} where
it is given by the inversion formula

xF,n(t) =

∑n
k=1XkAk(t)∑n
k=1Ak(t)

, t = 1, . . . , N, (7)

which represents a function on [1, N ].
Similarly to [7], it can be shown that the inverse F-transform xF,n approximates the original time

series x on the set D.
4 The nodes t0, t1, . . . , tn, tn+1 establish a (sparse) grid on the set [1, N ].



3 Formalization of Trend

3.1 Our goal

Our goal is to show that given a time series xt, a trend-cycle of it (below, we will write “trend” instead of
“trend-cycle”) can be represented by the respective inverse F-transform xF,n where n is the the number
of basic functions in the partition A1, . . . , An of [1, N ]. To realize this goal, we will formalize the notion
of trend by listing its properties and then show that the inverse F-transform fulfils all of them. In more
details we will proceed as follows.

Let xt, t = 1, . . . , N , be a time series. Based on the observed values xt, we want to represent this
time series in the form (3). It is clear that the solution of this problem is not unique. In practice, every
decomposition (3) is an acceptable solution, if yt is a slowly changing discrete function and zt is the rest.
Therefore, we will formulate reasonable properties of a single trend value ys where s is a time moment
within [1, N ], and analyze how ys depends on values of xt in a certain neighborhood of xs. Then we will
show that the inverse F-transform interpolates values ys for a chosen sequence of time moments s and
by this, can be considered as a trend of xt.

Assume that ys is a trend value of a time series xt, t = 1, . . . , N , at a time moment s, s = 1, . . . , N .
Being a trend value, ys characterizes a “behavior” of the time series xt in a certain neighborhood,
say [xs−`, xs+u] of its value xs. To be more precise, we assume that integers `, u > 0 are such that
1 ≤ s − ` < s + u ≤ N and that the value ys depends on values xt for t ∈ [s − `, s + u]. Moreover,
we assume that this dependence is the same for all time moments s, i.e. there exists a function F
of q = ` + u + 1 real variables v1, . . . , vq, such that whenever v1 = xs−`, . . . , vq = xs+u, the value
F (xs−`, . . . , xs+u) is the trend value ys at the moment s.

Thus, the necessary requirements on a trend will be formulated in the form of necessary properties
of the “trend extraction” function F (v1, . . . , vq). Once these properties are listed, we will describe the
class of functions that satisfy all of them.

3.2 Trend Extraction and Its Properties

Let xt, t = 1, . . . , N , be a time series and F : Rq → R be a function. Below, we list properties of F such
that for some `, s, u, where 1 ≤ s − ` ≤ u − s ≤ N , the value F (xs−`, . . . , xs+u) can be considered as a
trend value of the time series xt on the interval [s − `, u − s] in the sense that the following properties
are fulfilled.

Continuity. The values of a time series come from measurements or from expert estimates. Neither
measurements nor expert estimates are absolutely accurate. Thus, an actual value xactt of a time series is
slightly different from its observed values xt. It is therefore desirable that the values F (xacts−`, . . . , x

act
s+u) and

F (xs−`, . . . , xs+u) are slightly different as well. In other words, we wish the function F to be continuous.

Additivity. Assume that a time series xt is sum of two different time series, i.e. xt = x
(1)
t +x

(2)
t , and that

each of x
(1)
t and x

(2)
t is decomposed according to (3), so that x

(1)
t = y

(1)
t + z

(1)
t and x

(2)
t = y

(2)
t + z

(2)
t .

For example, the varying price of the financial portfolio can be represented as a sum of the prices
corresponding to different parts of this portfolio: e.g., stocks and bonds. In this case,

xt = x
(1)
t + x

(2)
t = (y

(1)
t + z

(1)
t ) + (y

(2)
t + z

(2)
t ) = (y

(1)
t + y

(2)
t ) + (z

(1)
t + z

(2)
t ).

The sum y
(1)
t + y

(2)
t contains slowly-changing (trend-cycle) terms, while the sum z

(1)
t + z

(2)
t contains

shortly-changing (seasonal-noise) terms. Thus, the sum y
(1)
t +y

(2)
t is the trend-cycle of the resulting time

series xt = x
(1)
t + x

(2)
t . Therefore, the trend extraction function F should be additive, i.e., for every two

q-tuples (v1, . . . , vq) and (u1, . . . , uq), the following should be valid:

F (v1 + u1, . . . , vq + uq) = F (v1, . . . , vq) + F (u1, . . . , uq). (8)

Non-negativity. In economical and financial analysis, experts compare time series according to behavior
of their trends, e.g., they compare share indices, behavior of the Gross Domestic Product (GDP) in
successful years, etc. Therefore, it is important to distinguish between increases and decreases of time
series and the respective changes of their trends. Formally, we require that the trend extraction function
F should be non-negative, i.e.

if v1 ≥ 0, . . . , vq ≥ 0 then F (v1, . . . , vq) ≥ 0. (9)



It is easy to show that if the trend extraction function F fulfils (9) then it is non-decreasing in the sense
that

if v1 ≤ u1, . . . , vq ≤ uq then F (v1, . . . , vq) ≤ F (u1, . . . , uq).

Constant Preserving. If a time series is equal to a constant c such that xt = c for all t = 1, . . . , N , then
the trend of xt should also be equal to the same constant c. Therefore, it is reasonable to require that
the trend extraction function F is a constant preserving, i.e.

F (c, . . . , c) = c. (10)

Noise damper. The next property is a noise damper with respect to a point-spread noise5. By this we
mean that when a time series xactt = c is constant, but the observed time series xt contains a point-spread
noise then it is desirable that the trend extraction function F “recognizes” its presence and diminishes
its influence the more the farther it is from a fixed designated point. In order to formalize this property,
we notice that by the property of additivity, it is enough to consider the time series xt whose values are
zeroes except for one designated time moment with the value 1.

Let us denote 0̄qk the q-tuple whose elements are 0s, except for the k-th one which is equal to 1. We
say that the trend extraction function F works as a “noise damper” centered at s, if it fulfils the following
condition:

if (s ≤ k2 < k1 ≤ q) or (1 ≤ k1 < k2 ≤ s) then F (0̄qk1
) ≤ F (0̄qk2

). (11)

Remark 1. If a trend extraction function F fulfils (11) with the designated point s, then s should be
reflected in its denotation. From now on, the trend extraction function will be denoted by Fs where
1 ≤ s ≤ q is the designated point to which we referred in (11).

By combining all requirements given above, we arrive at the following definition.

Definition 2. Let q ≥ 2 and 1 ≤ s ≤ q. We say that the function Fs : Rq → R is a trend extraction
function centered at s if it satisfies five properties given above, namely: continuity, additivity (8), non-
negativity (9), constant-preserving (10), and noise-damping centered at s (11).

In order to describe all possible trend extractor functions, we will make use of the following notion:

Definition 3. A function A : N→ [0, 1] is called an (`, s, u)-fuzzy number on N if there exist `, s, u ∈ N
such that ` < u, ` ≤ s ≤ u, and

(i) A(i) = 0 for all i ∈ N \ [`, u];
(ii) A(i) non-strictly increases if i ∈ [`, s] and non-strictly decreases if i ∈ [s, u];

(iii) A(s) = 1.

Theorem 1. Let q ≥ 2 and 1 ≤ s ≤ q. A function Fs : Rq → R is a trend extraction function centered
at s if and only if there exists an (1, s, q)-fuzzy number A on N such that for all x1, . . . , xq ∈ R,

Fs(x1, . . . , xq) =

q∑
t=1

A(t) · xt
q∑

t=1
A(t)

. (12)

Proof. One can easily check that for each (1, s, q)-fuzzy number A, the function Fs given by (12) is a
trend extraction function centered at s. Let us prove that, vice versa, for every trend extraction function
Fs centered at s there is an (1, s, q)-fuzzy number A for which Fs has the form (12).

Let Fs be a trend extraction function, i.e. it is continuous and fulfils (8) - (11). We will first prove
that Fs is linear, i.e., it has the following form

Fs(x1, . . . , xq) =

q∑
i=1

fi · xi, (13)

where f1, . . . , fq ∈ R are some coefficients. By the assumption, Fs is continuous and additive, i.e.,
it satisfies the property (8). It is known (see, e.g., [1]) that every continuous additive function is a
homogeneous linear function, i.e., that it has the form (13).

5 We say that an observed time series xt contains a point-spread noise if it differs from an actual time series xact
t

at a single time moment.



Let us prove that coefficients f1, . . . , fq, in (13) fulfil

q∑
i=1

fi = 1. (14)

Indeed, by the assumption, Fs preserves constants, i.e., if c = 1, then Fs(1, . . . , 1) = 1. Together with
(13) it gives

1 = Fs(1, . . . , 1) =

q∑
i=1

fi · 1 =

q∑
i=1

fi.

Let us prove that the coefficients f1, . . . , fq, in (13) are non-negative. Indeed by (9), the trend ex-
traction function Fs is non-negative. If we fix an arbitrary i ∈ [1, q], and consider (13) where xi = 1 and
xj = 0, j 6= i, then (13) takes the form

Fs(0, . . . , 0,

i︷︸︸︷
1 , 0, . . . , 0) = fi.

By (9), fi ≥ 0. Because it is true for all i ∈ [1, N ] the statement above is proven.
Finally, let us prove that the sequence f1, . . . , fq (non-strictly) increases for i ≤ s and non-strictly

decreases for i ≥ s, i.e.,

f1 ≤ . . . ≤ fs ≥ fs+1 ≥ . . . ≥ fq. (15)

By (11), the trend extraction function F works as a “noise damper” centered at s. Let 1 ≤ k ≤ q, and 0̄qk
be the q-tuple whose elements are 0s, except for the k-th one which is equal to 1. By (13), Fs(0̄

q
k) = fk.

Therefore, by (11),

if (s ≤ k2 < k1 ≤ q) or (1 ≤ k1 < k2 ≤ s) then fk1
≤ fk2

,

which coincides with (15).
Let us now define the (1, s, q)-fuzzy number A : N→ [0, 1] which makes (12) true:

A(i) =

{
fi
fs
, if i ∈ [1, q],

0 otherwise
(16)

By (13),

Fs(x1, . . . , xq) =

q∑
i=1

fi · xi = fs

q∑
i=1

A(i) · xi.

By (14),

1 =

q∑
i=1

fi = fs

q∑
i=1

A(i).

Therefore,

Fs(x1, . . . , xq) = fs

q∑
i=1

A(i) · xi =

∑q
i=1A(i) · xi∑q

i=1A(i)
,

which proves (12).

3.3 Trend Extraction and the F-transform

In this subsection, we realize the goal which has been formulated above: a trend yt of a time series
xt can be represented by its inverse F-transform xF,n. We assume that the trend yt is connected with
a certain trend extraction function in such a way that for time moments t1, . . . , tn ∈ [1, N ], ytk =
Fs(xtk−s+1, . . . , xtk−s+q). Then we prove that the respective inverse F-transform xF,n interpolates values
yt, t = t1, . . . , tn, and by this, can be considered as a trend of xt. As a preliminary result, we will show
that the values of a trend extraction function applied to xt are the F-transform components of xt with
respect to a certain fuzzy partition of [1, N ].



Theorem 2. Let xt, t = 1, . . . , N , be a time series, q ≥ 2, 1 ≤ s ≤ q, and Fs : Rq → R be a trend
extraction function centered at s. Then there exists a fuzzy partition A1, . . . , An of [1, N ] with nodes
t0, t1, . . . , tn, tn+1 ∈ [1, N ] such that for every k = 1, . . . , n, the F-transform component Xk of the time
series xt is the value of Fs at the respective q-tuple of arguments, i.e.

Xk = Fs(xtk−s+1, . . . , xtk−s+q). (17)

Proof. Let the assumptions above be fulfilled. Then by Theorem 1, there exists an (1, s, q)-fuzzy number
A on N such that for all x1, . . . , xq ∈ R, (12) holds. For certainty, we assume that s ≤ q− s+ 1 and that
A(1) = A(q) = 0. Let us choose the following nodes: t0 = 1, tk = k(q− s), k = 1, . . . , n, tn+1 = N , where
we denote n = b N

q−sc
6. For all k = 1, . . . , n, tk−1 ≤ t ≤ tk+1, we define the function Ak as follows:

Ak(t) =


0, if tk−1 ≤ t ≤ tk − s,
A(s+ t− tk), if tk − s+ 1 ≤ t ≤ tk + q − s,
0, if tk + q − s < t ≤ tk+1.

(18)

It is easy to see that A1, . . . , An are basic functions of a certain fuzzy partition of [1, N ] with nodes
t0, t1, . . . , tn, tn+1. Moreover, on the interval [1, tn +q−s], this partition is uniform. The rest of the proof
easily follows from (12).

Remark 2. It is clear from the proof of Theorem 2, that a fuzzy partition which guarantees (17) is not
unique.

It remains to show that if a time series xt is decomposed into a trend-cycle yt and a seasonal-noise
component zt, then there exists a fuzzy partition A1, . . . , An of [1, N ] such that the respective inverse
F-transform xF,n interpolates those values yt that belong to a certain sequence of time moments, and by
this, xF,n can be considered as a trend of xt.

Theorem 3. Let a time series xt be decomposed into a trend-cycle yt and a seasonal-noise component
zt and moreover, there exists a trend extraction function Fs : Rq → R, q ≥ 2, 1 ≤ s ≤ q, centered at s
and such that for time moments t1, . . . , tn ∈ [1, N ],

ytk = Fs(xtk−s+1, . . . , xtk−s+q). (19)

Assume that the distance between any two neighboring time moments is not greater than (q− 2), i.e. for
all k = 1, . . . , n − 1, (tk+1 − tk) ≤ q − 2. Then there exists a fuzzy partition A1, . . . , An of [1, N ] with
nodes 1, t1, . . . , tn, N ∈ [1, N ] such that for every k = 1, . . . , n,

ytk = xF,n(tk), (20)

where xF,n is the inverse F-transform of xt which is taken with respect to A1, . . . , An.

Proof. Let all the assumptions above be fulfilled. By Theorem 1, there exists an (1, s, q)-fuzzy number
A on N such that for all x1, . . . , xq ∈ R, (12) holds. For certainty, we assume that s ≤ q − s + 1,
A(1) = A(q) = 0 and A(t) > 0 for t = 2, . . . , q − 1. Let us define a fuzzy partition A1, . . . , An of [1, N ]
with nodes 1, t1, . . . , tn, N ∈ [1, N ] in accordance with (18). Then by similar reasoning as in the proof
of Theorem 2, we have the F-transform component Xk, k = 1, . . . , n, is a value of Fs at the respective
q-tuple of arguments, i.e.

Xk = Fs(xtk−s+1, . . . , xtk−s+q).

This equality together with the assumption (19) imply that ytk = Xk, k = 1, . . . , n. It remains to prove
that the inverse F-transform is an interpolating function on the domain [t1, tn] with nodes t1, . . . , tn and
the respective values X1, . . . , Xn.

At first, we verify that the inverse F-transform that is given by (7), is defined on [t1, tn]. This requires
to prove that for all t ∈ [t1, tn],

n∑
k=1

Ak(t) > 0. (21)

Indeed, let t ∈ [tk, tk+1], where k = 1, . . . , n− 1. By (18), the basic function Ak has q− s positive values
on [tk, tk+1] including the value at tk. Similarly, the basic function Ak+1 has s − 1 positive values on

6 By brc we denote the largest integer such that it is smaller than r.



[tk, tk+1] including the value at tk+1. If Ak and Ak+1 have positive values at different points of [tk, tk+1]
then the number of points in [tk, tk+1] is greater or equal to (q− s) + (s− 1) = q− 1. On the other side,
the number of points in [tk, tk+1] is equal to (tk+1− tk) + 1 = q− 2 + 1 = q− 1. Therefore, at each point
of [tk, tk+1], at least one function Ak or Ak+1 is positive. Thus, (21) is true.

At second, we prove that for all k = 1, . . . , n, xF,n(tk) = Xk. Let k be within [1, n]. By (18),
Aj(tk) = 0, for all j 6= k. By (7),

xF,n(tk) =

∑n
j=1XjAj(tk)∑n
j=1Aj(tk)

=
XkAk(tk)

Ak(tk)
= Xk.

Finally, by the fact that ytk = Xk, we proved (20).

4 Conclusion

We showed that a trend of a time series xt, can be represented by its respective inverse F-transform
xF,n where n is the the number of basic functions in the partition A1, . . . , An of [1, N ]. For this purpose,
we formalized the notion of a trend extraction function by listing its properties and then showed that
components of the F-transform fulfil all of them. Finally, we showed that the respective inverse F-
transform xF,n interpolates values of the trend extraction function at chosen nodes and by this, can be
taken as a trend.
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