
XX IMEKO World Congress
Metrology for Green Growth

September 914, 2012, Busan, Republic of Korea

METROLOGICAL SELF-ASSURANCE

OF DATA PROCESSING SOFTWARE

Kreinovich V. Ya.¹, Reznik L. K.², Semenov K. K.³, Solopchenko G. N.

3

¹ Department of Computer Science, University of Texas, El-Paso, USA, vladik@cs.utep.edu

² Department of Computer Science, Rochester Institute of Technology, New York, USA, lr@cs.rit.edu

³ Department of Computer Science, Saint-Petersburg State Polytechnic University,
Saint-Petersburg, Russia, semenov.k.k@gmail.com, g.n.solopchenko@mail.ru

Abstract: The metrological self-assurance for data proc-

essing software is discussed. The way to achieve this prop-
erty for software is presented.

Keywords: metrological self-assurance, data processing,
software metrological control.

1. INTRODUCTION

At present time, almost all measurement systems and
units include digital processors and a specialized software
usually employed in measurement data processing proce-

dures like digital filtering, scaling, indirect measurement
processing, etc. It is safe to state that no measurement result
can be obtained without a calculation.

The important requirement of international metrological
standards is that all software using in metrology and for
measurements must be calibrated. One should determine

metrological characteristics for each data processing result
that one provides. We can analyze programs code and de-
termine such characteristics manually. This way is very
time-expensive. It might be contemplated for research pur-
poses but is definitely not suitable for industrial applications.
Much better is to perform this analysis automatically.

We will say that computer program for measurement
data processing has metrological self-assurance if each cal-
culation result has its interval characteristics of uncertainty
and these characteristics are calculated automatically, and
provided along with the result itself. This property is also
called "self-validation", "self-verification" of computer pro-

grams in some publications. The main goal of this paper is
to discuss ways to achieve the metrological self-assurance
for data processing software.

This paper is organized as follows. After the Introduc-
tion, in section 2, mathematical prerequisites for metrologi-
cal self-assurance problem formulization are presented. In

section 3, the motivation for representing uncertainty as
fuzzy variable is described. In section 4, the automatic dif-
ferentiation of program code is chosen for derivatives esti-
mation. And, in section 5, the application examples of re-
searched approach are presented.

2. BACKGROUND INFORMATION

Any measuring procedure, which involves data process-
ing, can be described as a function calculation

 nxxxfy ...,,, 21 , where
nxxx ...,,, 21

 are measurement

results taken directly from the sensors and entered as inputs
into computer procedures while y represents the final meas-
urement result produced by this procedure. Measurement

science postulates that all values of
nxxx ...,,, 21
 are impre-

cise and we don’t know their true values
nxxx ~...,,~,~

21
. In

practice pretty often all information that we know is that

,~
111 xxx  ,~

222 xxx  …,
nnn xxx  ~ , where

1x ,
2x , …,

nx represent some measurement uncertainty

characteristics, which can be obtained from technical data
sheets and other documentation. We might or might not
know the error distribution estimates inside intervals
bounded by these inequalities, but we often can know the er-
ror type (systematic or random).

According to the international and many national stan-
dards all measurement results

nxxx ...,,, 21
 should be repre-

sented not by simple numbers but as one of the possibilities

by the interval set    ,, 11111 xxxxxI 

   ,, 22222 xxxxxI  …    ,, nnnnn xxxxxI 

such, that      nn xIxxIxxIx  ~...,,~,~
2211

.

Let  nxxxfy ~...,,~,~~
21 be the true value of data proc-

essing result. Our main goal is to determine such interval

 ,yI that  yIy ~ , and to propose a computationally inten-

sive fast algorithm, that would allow to determine this inter-
val and implement it in the resource constrained environ-

ment that is quite typical in many industrial measurement
devices. Then we will have the method to create metrologi-
cal software with metrological self-assurance. There are
several approaches to this problem solution.

1. Optimal interval analysis approach. We can try to get

the precise boundaries y and y of  ,yI i. e.

 
 

 n

xIx

xIx
xxxfy

nn

...,,,inf 21...,,11




 and

 
 

 n

xIx

xIx

xxxfy

nn

...,,,sup 21
...,,11






.

We should try to find two optimums to find the problem so-
lution for concrete function f. The computational cost of this
optimization algorithm could be very high for the metro-

logical self-assurance: we will have to calculate values of f
many times for different arguments values. So we will have
no result for one calculation.

The stochastic variant of interval analysis is Monte-
Carlo techniques and that’s why the statistical modeling
isn’t the way to achieve metrological self-assurance.

2. We can try to get interval  yI  that    yIyI  . We

can calculate such interval automatically using different in-
terval arithmetics. The main idea of this approach is to re-
place calculations with numbers

nxxx ...,,, 21
 by calcula-

tions with intervals      nxIxIxI ...,,, 21
:

        nxIxIxIfyI ...,,, 21 .

Let  fk =
  
  yIL

yIL 
, where   yIL = yy  is the

width of interval  yI and   yIL  is the width of interval

 yI  . Then the following heuristic proportion holds: the

faster and easier the interval arithmetic technique that we

have chosen is, the bigger the value of  fk will be.

For metrology the value   5.1fk is acceptable because

of rounding of final calculations result to one or maximum
two significant digits. Bigger values aren’t allowable. Un-
fortunately, when we use easy and fast interval arithmetic

techniques for complex function f the value of  fk is big-

ger than 1.5 and when we use complex interval algebras
techniques the computational cost of calculations is unac-
ceptable. That’s why we have to abandon this approach.

3. We can try to get interval  yI  that    yIyI  , i. e.

the boundaries of  yI  are close to boundaries of  yI , but

it isn’t guaranteed that    yIyI  . We have to round the

final results and that’s why it is acceptable if the boundaries

of  yI and  yI  are close enough.

Requirements for solution become weaker along ap-
proach list and that’s why algorithms for solution may be-
come simpler. In addition to this only if we chose approach
3 as prerequisite for further analysis we can take into ac-
count such suggestion. If all

1x ,
2x , …,

nx are small

enough as it is usually in metrology then we can replace
function  nxxxfy ...,,, 21 with first-order terms from its

Taylor series:

 









n

i

n

i

n x
x

xxf
y

1

1 ...,, . (1)

This linear model is much more simple object for analy-
sis.

3. APPROACHES FOR UNCERTAINTY

REPRESENTATION

There have been quite a few different approaches for un-
certainty representation in published literature. Some of
them better suit for systematic error processing, some – for
random errors processing, but there are not many that can be

universal enough for both types. One of them is the repre-
sentation of uncertainty as a fuzzy variable.

The simple test for different approaches is mean value

calculating for the set of direct measurements results

nxxx ...,,, 21
, errors of which are inside the known intervals

     nxIxIxI ...,,, 21
 with the probability P  1.

As example we can examine any interval arithmetic. Let

1x =
2x =

nx = x and P < 1. Then the error interval

width m for mean value 



n

i

ix
n

m
1

1 doesn’t decrease

corresponding to x as it should be. That’s why interval

arithmetic can sufficiently process only the systematic er-
rors.

Because of using linear model (1) we can process differ-
ent components of uncertainty separately: systematic errors
can be processed independently and random errors can be
processed independently. That’s why we can easily combine

two different approaches together into a complex one. For
example we can represent random errors with probabilistic
arithmetic [1] and represent systematic errors with classic
interval arithmetic, process these uncertainty components
through (1) and combine results into one final error interval
characteristic. The only question is which approaches we

should choose. Because of very weak requirements for in-

terval  yI  we shouldn’t choose complex methods, we can

restrict with very simple estimations for y .

We can get such simple estimates using only one ap-
proach instead of two. We can replace external joining of
two different methods by internal joining of systematic and
random errors representation inside one well-known
mathematical apparatus as it follows from Occam’s razor.

The separate representation of systematic and random er-

ror components inside one mathematical object can be
achieved by fuzzy interval introduced in [2]. Fuzzy interval
membership function can be determined as curvilinear tra-
pezium, which is presented on picture 1 by the solid line.

Picture 1. Fuzzy interval membership function.

The trapezium latter sides are halves of Gaussian curve

  











2

2

2
exp



x
xg , whose parameter  is proportional to

the standard deviation of random error. Nested interval
J

is interval that contains not less than 1P part of error,

the upper side boundaries are the limit values of systematic
error component.

From continuum of different rules for arithmetic opera-
tions for fuzzy variables we choose the following. Let r1 and

r2 be fuzzy intervals,  1rS and  2rS be their supports, r3 is

a result of an arithmetical operation,  is symbol of arith-

metical operation. Then membership function (MF) of num-
ber r3 can be determined by well-known algebraic rule:

 

   

    21

,

3 21

2211

213
3

sup xxx rr

rSrrSr

xxx
r  





 (2).

If we now return to the mean value calculating test then

the mean of m = 16 fuzzy intervals with membership func-
tion as solid line on picture 1 will have MF as dashed line on
picture. The MF trapezium upper side for the mean value
will be the same with MF trapezium upper side of averaging
fuzzy intervals as it should be for systematic error compo-
nent and the projection of latter sides will reduce propor-

tionally
m

1 as it should be for random error component.

The membership function of fuzzy interval can be de-

scribed only with two numbers  2, : with the boundaries

  ,

of upper side of trapezium and with the value of

parameter  of latter sides Gaussian curve. Then if uncer-

tainty for all direct measurement results
nxxx ...,,, 21
 will be

represented by fuzzy intervals  2

11, ,  2

22 , , …,

 2, nn  then it can be shown that uncertainty for y from

formula (1) will be represented by fuzzy interval:

   




































n

i

i

i

n
i

n

i i

n

x

xxf

x

xxf

1

2

1

1

1 ...,,
,

...,,
 .

Its components are well-known formulas for uncertainty
systematic and random components estimates, which are
used in classic metrology. The separate processing of sys-
tematic and random error through formula (1) can be easily

organized with fuzzy interval technique and can be calcu-
lated fast.

4. DERIVATIVES ESTIMATES

Statement (1) contains the derivatives  

i

n

x

xxf



 ...,,1 of

calculating function f . We should estimate them automati-

cally, fast and accurate. The best technique for this is well-
known automatic differentiation of functions, which are pre-
sented by their program code [3]. This approach is based on
Clifford algebra of dual numbers and its main idea is to re-
place calculations with real numbers

nxxx ...,,, 21
 by calcu-

lations with dual numbers
nDDD ...,,, 21
. Any dual number

 iii baD , for i = 1, 2, … n, where  taa ii  is the real

part of dual number and  tab ii
 is infinitesimal part.

All arithmetic operations for the dual numbers are de-
termined in such manner:

     2121221121 ,,, bbaababaDD  ,

     122121221121 ,,, babaaababaDD  ,

 
  







 


2

2

1221

2

1

22

11

2

1 ,
,

,

a

abab

a

a

ba

ba

D

D and

in addition the functional transformation

      afafDf  , .

 The automatic differentiation realization doesn’t request
calculating finite differences. It produces accurate deriva-
tives for each calculation fast. So if we join in one program
uncertainty representation as fuzzy intervals and automatic
differentiation then we will be able to achieve metrological

self-assurance for it without serious modification in its code.
The necessary code changing contains only connecting the
program library, where a presented approach is realized, and
replacing data type for input and intermediate variables from
floating-points numbers to new type, which represents data
and its uncertainty characteristics. An example for C++ lan-

guage head file is given in Table 1. Code modifications are
typed in bold, the meaningful program part has no changes.

Table 1. Code modifications example

Unmodified source code Modified source code

#include <math.h>
#include <stdlib.h>

void func (void)
 {
 double x=2, z;
 z = x * x * exp(x)+log(x);
 printf(‘%f ”, z);

 }

#include <math.h>
#include <stdlib.h>

#include “edouble.h”

void func (void)
 {
 edouble x(2, 1);
 edouble z;

 z = x* x*exp(x)+log(x);
 printf(‘%f ”, z);
 }

5. SOME EXAMPLES

The presented approach has been programmed and tested
on some applications. Two of them are described in this sec-
tion.

1. The presented approach has been used for finding root

estimates for transcendental equation   xxk  exp ,

where k and  are measured values and x is a variable. Root
has been estimated by classic iterative Newton method. Let

measured value of  is 2.718 and measured value of k is

1.000. Then the equation has the only root that value is x =
1.000, which is corresponding to the point in which straight

line   xxy   touches the exponent    xkxy  exp .

Such conditions cause the ill-defined root-estimation prob-

lem. If we change the value of parameters k and  with a

very little deviation, the equation may have no roots.

Let values of k and  were measured with the only sys-
tematic error, which values are not greater than 0.01. Let the
initial root estimation for Newton method be x = 0.0. We

modify the program for root estimating with a proposed ap-
proach and create its analogy with a metrological self-
assurance property. Then on the different iterations we will
have root estimations and their error interval characteristics,
which are illustrated by picture 2.

Picture 2 shows that iterations converge to the equation
root x = 1.000 but error interval increases with new itera-
tions. It looks reasonable to determine the iteration process

stop condition as follows: if the error interval width increas-
ing is for the next iteration larger than the value of root es-
timation clarification for the current iteration then process
should be stopped. So we should finish root estimation on
the iteration number 4. The result root estimation is [0.775,
1.132]. This interval contains the true value x = 1.000.

Picture 2. Root estimation iterations.

2. As the second example we have chosen the program

that performs calculations corresponding to standard algo-
rithm [4], which is described by the following functions:









 



8

5

2

4

1

1125.0
i

i

i

i UaUaU 
,

2ln1 




I

Ud 
 ,





16

9

125.0
i

iy UU ,
BI

Ud
R

y






2

410
,




R
 .

Values 1a and 2a are the roots of equation

























aaA

A 2ln
exp

2ln

1

1
cosh2 , which is solving for the

variable a when parameter A values are equal to

43

21
1

UU

UU
A




 and

87

65
2

UU

UU
A




 .

 The program purpose is to calculate values of germa-
nium single-crystal parameters: electrical resistivity  , Hall

mobility  and Hall coefficient R. The initial data for calcu-
lations are direct measurements results for crystal plate

thickness d, electric currents
1I and

2I through crystal, the

induction B of magnetic field, in which the crystal is, and
Hall potential differences

1U , …,
16U through 16 different

directions along the crystal plate.
 This program is taken from the real metrological prac-
tice. It is employed in the high-impedance germanium crys-
tals control system. There are no standard germanium crys-
tals, which parameters have a priori known values and
which can be used for a system error estimation. That is why

we need to use numeric methods for metrological control of
this complex measuring part and there is real necessity in
metrological self-assurance of this measured data processing
software.
 We tested several models of uncertainty. In the first ver-
sion all initial data uncertainties had only systematic error

component and no random component. The limit values for
relative errors were %3B , %1

21
 II  , %1d ,

%1...
1621
 UUU  . Other versions differ from first:

all initial data have the random error as in the first version
and has also random component with increasing value of a

standard deviation limit value  from version to version.

These versions can be characterized by ratio t =

B

B

B 




 =

1

1

1 I

I

I 




 = … =

16

16

16 U

U

U 




 which is equal for all initial data.

 We calculated limit values of uncertainty for parameter

 and compared them with Monte-Carlo modeling results.
Results are identical as it is illustrated with table 2.

Table 2. Modeling results for parameter .

Version Ratio t
Monte-Carlo

modeling
Presented
approach

1 0.0 7.0 % 7.0 %

2 0.2 8.1 % 8.1 %

3 0.4 9.2 % 9.2 %

4 0.6 10.4 % 10.4 %

6. COCNLUSIONS

High efficient modern computers and their widespread
application in metrology allow us to try to develop software,
which performs its own metrological analysis automatically.
The main idea of software metrological self-assurance is to
make this analysis for any calculation and at the same time
with this calculation inside the program without human par-

ticipation.
The combined use of automatic differentiation and initial

data uncertainty representation as fuzzy intervals provides
metrological self-assurance even for discontinuous functions
calculations. At the same time it allows to take into account
not only the systematic uncertainty component but also the

random component. The provided examples illustrate the
approach described.

7. REFERENCES

[1] R. C. Williamson, T. Downs. Probabilistic Arithmetic. I.
Numerical Methods for Calculating Convolutions and De-

pendency Bounds, in International Journal of Approximate
Reasoning. Vol. 4, pp. 89–158, 1990.

[2] L. K. Reznik, W. C. Jonson, G. N. Solopchenko. Fuzzy in-
terval as a Basis for Measurement Theory, in Proc. NASA

Conf. NAFIPS’94. San-Antonio, Texas. Pp. 405–406, 1994.
[3] A. Griewank. On Automatic Differentiation, in:

Mathematical Programming: Recent Developments and
Applications. Kluwer Academic Publisher, pp.83–108, 1989.

[4] USSR Standard GOST 16153-80. Single-crystalloid
germanium. Technical conditions. (In Russian).

