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Abstract—Computer systems based on fuzzy logic
should be able to generate an output from the handling
of inaccurate data input by applying a rule based
system. The main contribution of this paper is to show
that quantum computing can be used to extend the
class of fuzzy sets. The central idea associates the states
of a quantum register to membership functions (mFs)
of fuzzy subsets, and the rules for the processes of
fuzzyfication are performed by unitary qTs. This paper
introduces an interpretation of aggregations obtained
by classical fuzzy states, that is, by multi-dimensional
quantum register associated to mFs on unitary inter-
val U . In particular, t-norms and t-conorms based on
quantum gates, allow the modeling and interpretation
of union, intersection, difference and implication among
fuzzy sets, also including an expression for the class of
fuzzy S-implications. Furthermore, an interpretation of
the symmetric sum was achieved by considering the
sum of related classical fuzzy states. For all cases, the
measurement process performed on the corresponding
quantum registers yields the correct interpretation for
all the logical operators.

I. Introduction

Fuzzy Logic (FL) and Quantum Computing (QC) are
important areas of research aiming to collaborate in the
description of uncertainty: the former refers to uncertainty
modeling in human being’s reasoning, while the latter
studies the uncertainty of the real world considering the
principles of Quantum Mechanics (QM). Many similarities
between these two areas of research have been highlighted
in several scientific papers [1], [2], [3], [4] and [5].

In this context, the logical structure describing the
uncertainty associated with the fuzzy set theory can be
modeled by means of quantum transformations (qTs)
and quantum states (qSs). Thus, it is possible to model
quantum algorithms which represent operations on fuzzy
sets (union, intersection, difference, implication), and the
mFs encoding qSs, possibly overlapping.

The simulation of quantum algorithms performed by
classical computers enables the development of quantum
algorithms, anticipating the knowledge about their behav-
ior when run on a quantum hardware. In this scenario,
the environment VPE-qGM (Visual Programming Envi-
ronment for the Quantum Geometric Machine Model),
described in [6] and [7], aims to support modeling and sim-
ulation of sequential and distributed quantum algorithms,
showing the constructions and the evolution of quantum
systems from a set of graphical interfaces.

Our main contribution considers the modeling of quan-
tum algorithms for specifying basic fuzzy operations as

union, intersection, difference and implication functions.
Extending a previous work [8], this paper focusses on
the interpretation of aggregation functions. In particular,
the symmetric sum is obtained by summation operator
in terms of quantum registers together with its geometric
interpretation. Such operations are also studied in the
visual programming approach for ensuring implementation
and simulation on VPE-qGM.

This paper is organized as follows: Section II presents
the foundations on fuzzy logic, concepts as mFs and fuzzy
operators. Section III brings the main concepts of quantum
computing. In Section IV, the study includes the modeling
of fuzzy sets from quantum computing, including some
classical concepts such as quantum fuzzy states. Section V
presents the operations on fuzzy sets modeled from qTs.
Finally, conclusions and further work are discussed in
Section VI.

II. Preliminaries on Fuzzy Logic

The non well-defined borders sets called fuzzy sets
(FS) were introduced in order to overcome the fact that
classical sets present limitations to deal with problems
where the transitions from one class to another happen
smoothly. The definition, properties and operations of FSs
are obtained from the generalization of classical set theory,
which can be seen as a particular case of fuzzy set theory.

The classical set theory is based on the characteristic
function defined from a subset A of X 6= ∅ to the Boolean
set {0, 1}, i.e, it assigns to each x ∈ X an element of a
discrete set {0, 1} according to the expression:

λA(x) =

{
1, if x ∈ A,
0, if x /∈ A;

(1)

The fuzzy set theory is based on a generalization of the
characteristic function for the interval U = [0, 1]. For the
membership fA(x) : X → U , the element x ∈ X belongs
to the subset A with a membership degree given by fA(x),
such that 0 ≤ fA(x) ≤ 1.

Definition 1. A fuzzy set A related to a set X 6= ∅ is
given by the expression:

A = {(x, fA(x)) : x ∈ X}. (2)

A. Fuzzy connectives

Definition 2. A function N : U → U is a fuzzy negation
(FN) when it verifies the following conditions:

N1 N(0) = 1 and N(1) = 0;



N2 If x ≤ y then N(x) ≥ N(y), for all x, y ∈ U .

FNs verifying the involutive property:

N3 N(N(x)) = x, for all x ∈ U ,

are called strong FNs. See, e.g., the standard negation:

NS(x) = 1− x. (3)

Let N be a FN. For all ~x = (x1, . . . , xn) ∈ Un, the
N -dual function of f : Un → U is given by the expression:

fN (~x) = N(f(N(~x))), (4)

where N(~x) = (N(x1), . . . , N(xn)) ∈ Un. Moreover, when
fN (~x) = f(~x), then f is a self-dual function.

Based on [9], [10], [11], [12] and [13], the general mean-
ing of an aggregation function in FL is to assign a single
real number on U to any n-tuple of real numbers belonging
to Un, that is, it is a non-decreasing and idempotent
(e.i., it is the identity when an n-tuple is unary) function
satisfying boundary conditions.

Among several definitions we will use the following one.

Definition 3. [14, Definition 2], An aggregation func-
tion (AG) A :Un→U demands, for all ~x=(x1, x2, . . . , xn),
~y=(y1, y2, . . . , yn) ∈ Un, the following conditions:

A1: A(~0) = A(0, 0, . . . , 0) = 0; A(~1) = A(1, 1, . . . 1) = 1;
A2: If ~x ≤ ~y then A(~x) ≤ A(~y);
A3: A(−→xσ)=A(xσ1

, xσ2
, . . . , xσn

)=A(x1, x2, . . . , xn)=A(~x).

Extra properties for AGs are reported below:

A4: A(x, x, . . . , x) = x, for all x ∈ U (idempotency);
A5: A(~x) = ANS

(~x) (self-duality).

Let ∨,∧ : U2 → U be the binary idempotent AGs
defined as ∨(x, y) = max(x, y) and ∧(x, y) = min(x, y).
So, when A verifies A4a, for all x, y ∈ U , then

∧(x, y) ≤ A(x, y) ≤ ∨(x, y), (5)

and A is said to be compensatory in the unit interval.
Among the most often used AGs, frequently classified

as compensatory and weighted operators, this paper con-
siders the symmetric sum, which is, for all ~x ∈ Un, a
continuous (with respect to each of its variables) and self-
dual aggregation S (see A5). In [15], a binary symmetric
sum is expressed as

S(x, y) =
G(~x)

G(~x) +G(NS(~x))
(6)

whenever G : U2 → U is a continuous, increasing and
positive function satisfying G(0, 0) = 0. It is worth notic-
ing that there is not a unique function G characterizing
each symmetric sum. Additionally, symmetric sums are in
general not symmetric or commutative.

Proposition 1. Let a, b ∈ U and G : U2→U such that
G(x, y) = a

√
x+ b

√
y. A function S : U2→U given as:

S(x, y)=
a
√
x+ b

√
y√(

a
√
x+b
√
y
)2

+
(
a
√

1− x+b
√

1− y
)2 , (7)

is defined as a symmetric sum as expressed in Eq.(6).

Proof. The continuity of S follows from the composition
over continuous functions on U . And, for all (x, y) ∈ U2,

S(x, y) =
a
√
x+ b

√
y√(

a
√

1− x+b
√

1− y
)2

+
(
a
√
x+b
√
y
)2

= 1− a
√

1− x+ b
√

1− y√(
a
√

1− x+b
√

1− y
)2

+
(
a
√
x+b
√
y
)2 .

So, S(x, y) = SNS
(x, y), implying that S is a self NS-dual

function. Moreover, it is immediate that G is a continuous,
increasing and positive function satisfying G(0, 0) = 0.

Now, conjunctive and disjunctive AFs are reported.
A triangular (co)norm (t-(co)norm) is a binary AG

(S)T : U2 → U satisfying the boundary condition, which
is, respectively, given by the expressions:

T1: T (x, 1) = x; S1: S(x, 0) = x,

and the associativity property, respectively expressed as:

T2: T (x,T (y, z)) = T (T (x, y),z); S2: S(x,S(y, z)) =
S(S(x, y),z).

There are many references reporting different definitions
of t-norms and t-conorms [16]. Herein, for all x, y ∈ U , we
consider the respective t-norm and t-conorm:

• Algebraic product and algebraic sum:

TP (x, y) = x · y; and SP (x, y) = x+ y − x · y. (8)

A binary function I : U2 → U is an implication operator
(implicator) if the following conditions hold:

I0: I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.

In [17] and [18], additional properties are considered to
define a fuzzy implication obtained by an implicator:

Definition 4. A fuzzy implication I : U2→U is an
implicator verifying, for all x, y, z ∈ U , the conditions:

I1: Antitonicity in the first argument:
if x ≤ z then I(x, y) ≥ I(z, y);

I2: Isotonicity in the second argument:
if y ≤ z then I(x, y) ≤ I(x, z);

I3: Falsity dominance in the antecedent: I(0, y) = 1;
I4: Truth dominance in the consequent: I(x, 1) = 1.

Among the implication classes with explicit representa-
tion by fuzzy connectives (negations and AGs) this work
considers the class of (S,N)-implication, extending the
classical equivalence p→ q ⇔ ¬p ∨ q.

Let S be a t-conorm and N be a fuzzy negation. A
(S,N)-implication is a fuzzy implication I(S,N) : U2 → U
defined by:

I(S,N)(x, y) = S(N(x), y),∀x, y ∈ U. (9)

If N is an involutive function, Eq. (9) defines an S-
implication[19]. The Reichenbach implication given as:

IRB(x, y) = 1− x+ x · y,∀x, y ∈ U, (10)



is an S-implication, obained by a fuzzy negation NS(x) =
1− x and a t-conorm SP (x, y) = x+ y − x · y, previously
presented in Eqs. (3) and (8b), respectively.

B. Operations over fuzzy sets

Consider in the following definitions and examples of
operations defined over the fuzzy sets A,B ⊆ X .

Let T, S : U2 → U be a t-(co)norm. [20].
The complement of A is a fuzzy set A′ = {(x, fA′) :

x ∈ X}, with fA′ : X → U is given by:

fA′(x) = NS(fA(x)) = 1− fA(x), ∀x ∈ X . (11)

Let S : U2→U be the symmetric sum, according with
Eq.(7). The symmetric sum between the fuzzy sets A
and B, is the fuzzy set A⊕ B = {(x, fA⊕B(x)) : x ∈ X},
with fA⊕B(x) : X → U given by:

fA⊕B(x) = S(fA(x), fB(x)),∀x ∈ X . (12)

The intersection between the fuzzy sets A and B
results in a fuzzy set A ∩ B = {(x, fA∩B(x)) : x ∈ X},
with fA∩B(x) : X → U given by:

fA∩B(x) = T (fA(x), fB(x)),∀x ∈ X . (13)

An important characterization of the mF related to an
intersection A ∩ B is obtained by applying the algebraic
product to the fuzzy sets A and B, given by Eq. (8a):

fA∩B(x) = fA(x) · fB(x),∀x ∈ X . (14)

Let S : U2 → U be a t-conorm. A union operation
between fuzzy sets A and B results in a fuzzy set A ∪
B = {(x, fA∪B(x)) : x ∈ X}, whose membership fA∪B(x) :
X → U is given by:

fA∪B(x) = S(fA(x), fB(x)),∀x ∈ X . (15)

Let S : U2 → U be a t-conorm. An implication
operation between fuzzy sets A and B results in
a fuzzy set A . B = {(x, fA.B(x)) : x ∈ X}, whose mF
fA.B(x) : X → U is given by:

fA.B(x) = S(N(fA(x)), fB(x)),∀x ∈ X . (16)

A characterization of the fuzzy union A∪B is obtained
by applying the algebraic product defined by Eq. (8a):

fA∪B(x) = fA(x) + fB(x)− fA(x) · fB(x),∀x ∈ X . (17)

Extending the classical equivalence ¬(p → q)⇔p ∧ ¬q,
we obtain the difference operator.

Let S be t-conorm, N be a strong FN and I be an S-
implication, A and B be FSs. A difference between A
and B results in a FS A ∪ B = {(x, fA−B(x)) : x ∈ X},
withfA−B : X → U given by:

fA−B(x) = N(IS(fA(x), fB(x)))∀x ∈ X . (18)

By the composition of NS and IRB in Eqs.(10) and (3),
respectively, see a fuzzy set A ∪B obtained by the mF:

fA−B(x) = NS(SP (NS(fA(x)), fB(x))

= fA(x)− fA(x) · fB(x),∀x ∈ X . (19)

III. Foundations on Quantum Computing

QC considers the development of quantum computers,
exploring the phenomena predicted by the QM (superpo-
sition of states, quantum parallelism, interference, entan-
glement) for better performance when they are compared
to the analogous classical approach [21]. These quantum
algorithms are modeled considering some mathematical
foundations which describe the phenomenon of QM.

A. Quantum state spaces

In QC, the qubit is the basic unit of information, being
the simplest quantum system, defined by a state vector,
unitary and bi-dimensional, generally described, in the
notation of Dirac [21], by the expression

|ψ〉 = α|0〉+ β|1〉. (20)

The coefficients α and β are complex numbers corre-
sponding to the amplitudes of the respective states of
the computational basis of one-dimensional quantum state
space, verifying the normalization condition |α|2+|β|2 = 1
and ensuring the unitary of the state vector of the quan-
tum system, represented by (α, β)t.

The state space of a multiple-dimensional quantum
system is obtained by the tensor product of state spaces
of corresponding component systems. So, a bi-dimensional
quantum system generated by |ψ〉 = α|0〉 + β|1〉 and
|ϕ〉 = γ|0〉+ δ|1〉 is given by the tensor product:

|ψ〉 ⊗ |ϕ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉. (21)

B. Quantum transformations

The transition of state in a quantum system performed
by unitary qTs are associated with ortonormalized ma-
trices of order 2N , and N being the amount of qubits
transformation. For instance, the definition of the Pauly X
transformation and its application over a one-dimensional
quantum system is described by

X|ψ〉 =

(
0 1
1 0

)
×
(
α
β

)
=

(
β
α

)
. (22)

A bi-dimensional construction related to the product
tensor of two Pauly X qTs is described in Eq (23):

X⊗2=

(
0 1
1 0

)
⊗
(

0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (23)

Analogous to qTs of multiple qubits which were obtained
by the tensor product performed over unitary transforma-
tions, the controlled transformations also modify the state
of one or more qubits considering the current state.

The Toffoli transformation [21] is a controlled operation
performed over 3 qubits, which is obtained by a qT that
execute NOT operator (Pauly X ) over |σ〉 state when the
current states of first two qubits |ψ〉 and |ϕ〉 are both
assigned as |1〉.



C. Measurement operations

The reading of the current state of a quantum system
is performed by a measurement operator, which is defined
based on a set of linear operators Mm, also called pro-
jections, acting on quantum state spaces. The index M
refers to the possible measurement results. If the state of
a quantum system is |ψ〉 immediately before the measure-
ment, the probability of an outcome occurrence is given
by [21]:

p(|ψ〉) =
Mm|ψ〉√

〈ψ|M†mMm|ψ〉
(24)

The measurement operators satisfy the completeness rela-
tion

∑
mM

†
mMm = I. For one-dimensional quantum sys-

tems, there exist the Hermitian (and thus, normal) matrix
representation of these operators, described by

M0 =

(
1 0
0 0

)
and M1 =

(
0 0
0 1

)
.

Measurement operators are self-adjoint non-reversible
operators, satisfying the completeness relation

M2
0 =M2

0 , M2
1 =M2

1 and M†0M0 +M†1M1=I2=M0 +M1.

When a qubit |ψ〉, with α, β 6= 0, the probability of
observing |0〉 and |1〉 are, respectively, given by:

• p(|0〉) = 〈φ|M†0M0|φ〉 = 〈φ|M0|φ〉 = |α|2.
• p(|1〉) = 〈φ|M†1M1|φ〉 = 〈φ|M1|φ〉 = |β|2.

Therefore, after the measure, the quantum state |ψ〉 has
|α|2 as the probability to be in the classical state |0〉; and
|β|2 as the probability to be in the other one, the state |1〉.

IV. Fuzzy Sets from Quantum Computing

The description of FS A from the quantum computing
viewpoint considers fA(x), as state in Eq. (2).

Without losing generality, let X be a finite subset
with cardinality N (|X | = N). Thus, the definitions can
be extended to infinite sets, considering in this case, a
quantum computer with an infinite quantum register [21].

A. Classical fuzzy states - CFS

Definition 5. [22, Definition 1] Consider X 6= ∅, |X | =
N , i ∈ NN = {1, 2, ..., N} and a function, f : X → U . The
state of a N -dimensional quantum register, given as:

|sf 〉 =
⊗

1≤i≤N

[
√

1− fA(xi)|0〉+
√
fA(xi)|1〉] (25)

is called classical fuzzy state of N-qubits (CFS). In
addition, [CFS] denotes the set of all CFSS.

Remark 1. Interpreting fuzzy set operations
Let A = {Aj} be a finite collection of fuzzy sets related to
an arbitrary set X , x be an element of X and |sfAj

〉 be an
one-dimensional classical fuzzy state defined as:

|sfAj
〉 =

√
1− fAj

(x)|0〉+
√
fAj

(x)|1〉.

Then an interpretation to an N -ary fuzzy operator per-
formed over all the collection A can be obtained by the
following expression:

|x〉 =
⊗

1≤j≤N

|sfAj
(x)〉

In particular, such interpretation extends the notion of
union and intersection to the collection A.

Remark 2. Interpreting type-2 fuzzy sets
Under the same conditions stated in Definition 5 , let NN =
{1, 2, ..., N} be a set of independent measurement sources
and |sfA(xi)〉 be a one-dimensional CFS defined as:

|sfA(xi)〉 =
√

1− fA(xi)|0〉+
√
fA(xi)|1〉.

Then, the following expression

|z〉 =
⊗

1≤i≤N

|sfA(xi)〉

provides an interpretation for the fuzzy set whose values
are membership degrees of an element x ∈ X and related
to the same fuzzy set A. Such membership degrees can
possibly be obtained by different measurement sources.
More specifically, xi indicates the membership degree of the
element x measured by the source i.

Henceforth, this paper considers the interpretation of
Remark 1. Generalizing, a state |sf 〉 in C2N

is reported as
the following:

Definition 6. [22, Section 3] The CFS of N−qubits,

|sf 〉 ∈ [CFS], can be expanded in C2N by Eq. (26):

|sf 〉 = (1− f(1))
1
2 (1− f(2))

1
2 . . . (1− f(n))

1
2 |00 . . . 00〉+

f(1)
1
2 (1− f(2))

1
2 . . . (1− f(n))

1
2 |10 . . . 00〉+

f(1)
1
2 f(2)

1
2 . . . (1− f(2))

1
2 f(n)

1
2 |11 . . . 01〉+ . . .

f(1)
1
2 f(2)

1
2 . . . f(n)

1
2 |11 . . . 11〉. (26)

Concluding this section, from the perspective of QC, a
fuzzy set consists on a superposition of crisp sets. Each
|sf 〉 ∈ [CFS] is a representation of a quantum register
described as a superposition of crisp sets and generated
by the tensor product of non-entangled quantum regis-
ters [21].

B. Quantum Fuzzy Sets (QFS)

According to [22], it appears that the fuzzy sets are
obtained by overlapping qSs from a conventional fuzzy
quantum register. Moreover, from the set of mFs rep-
resenting the fuzzy classical states, we obtain a linear
combination, formalizing the notion of a fuzzy quantum
register. In this context, it may be characterized:

• quantum fuzzy sets as quantum superposition of fuzzy
subsets, which have different shapes, simultaneously.

• quantum fuzzy sets that are subsets of entangled
superpositions of crisp subsets (or classical fuzzy sets).



Proposition 2. [22, Theorem 1] Consider N = |X |, A as
a fuzzy subset. A quantum fuzzy subset related to a fuzzy
set A is a point in the quantum states space C2N

.

Proposition 3. [22, Theorem 2] Let f, g : X → U be
mFs with respect to X . The classical fuzzy sets |sf 〉 and
|sg〉 are mutually orthonormal CFSs if and only if there
exists x ∈ X such that either f(x) = 0 and g(x) = 1 or the
converse, f(x) = 1 and g(x) = 0 .

By Proposition 3, a pair of |sf 〉 and |sg〉 in [CFS]
are mutual orthogonal CFSs if and only if there exists
x ∈ X such that f(x) · g(x) = 0. In Eq (26), a qS

|sf 〉 in C2N

is characterized, when all vectors are two by

two orthonormal elements of a base in C2N

. For further
specifications, see [21], [23] and [24].

Definition 7. Consider fi : X → U , i ∈ {1, ..., k}, as a
collection of mF generating FSs Ai and {|sf1〉, . . . , |sfk〉} ⊆
[CFS], such that their components are two by two or-
thonormal vectors. Let {c1, . . . , ck} ⊆ C. A quantum
fuzzy set (QFS) |s〉 is a linear combination given by:

|s〉 = c1|sf1〉+ . . .+ ck|sfk〉. (27)

[CFQ] denotes the set of all CFQs.

From Def. 7, a fuzzy qS of a N -dimensional quantum
register, as described by Eq.(27), can be entangled or not,
depending on the family of classical fuzzy states |sfi〉 and
the set Ci of chosen amplitudes.

Notice that, in Def. 7, non-entangled fuzzy states can
be transformed into classical fuzzy states, by image of
rotations on the Bloch’s sphere axis (such as rotations of
the meridian to achieve a zero phase), see details in [23].

V. Modeling Fuzzy Set Operations from
Quantum Transformations

According to [22], fuzzy sets can be obtained by quan-
tum superposition of classical fuzzy states associated with
a quantum register. Thus, interpretations relate to the
fuzzy operations as complement and intersection are ob-
tained from the NOT and AND qTs. Extending this
approach, other operations are introduced, such as union,
difference and fuzzy implication, which may be derived
from interpretations of OR, DIV and IMP quantum
operators.

For model, implement and validate these constructions
from fuzzy quantum registers we make use of the visual
programming environment VPE-qGM. It provides inter-
pretations of the quantum memory, quantum processes
and computations related to transition quantum states
obtained from the simulation of related qSs and qTs.

For that, let fA, fB : X → U be mFs obtained according
with Eq. (25) and by a pair (|sfA〉, |sfB 〉) of CFS, given as:

|sfA〉 =
√
fA(xi)|1〉+

√
1− fA(xi)|0〉, (28)

|sfB 〉 =
√
fB(xi)|1〉+

√
1− fB(xi)|0〉,∀xi ∈ X .(29)

In the next sections, in order to simplify the notation,
the membership degree defined by fA(xi), which is related
to an element xi ∈ X in the fuzzy set A, will be denoted
by fA, once only one element will be considered to achieve
interpretations for the main fuzzy set operations.

A. Fuzzy Complement

In the interpretation of the complement of a fuzzy set,
the standard negation is obtained by the NOT operator
related to a multi-dimensional quantum system. The ac-
tion of the NOT operator is given by the expression:

NOT (|sfA〉) =
√

1− fA|1〉+
√
fA|0〉 (30)

The complement operator can be applied to the state
|sfA〉, resulting in an N -dimensional quantum superposi-

tion of 1-qubit states, described as C2N in the computa-
tional basis, according with Eq. (31):

NOTN (|sfA〉) =NOT (⊗1≤i≤N (fA(i)
1
2 |1〉(1− fA(i))

1
2 |0〉))

=⊗1≤i≤N ((1− fA(i))
1
2 |1〉+ fA(i)

1
2 |0〉) (31)

Now, Eqs. (32) and (33) describe other applications
related to the NOT transformation acting on the 2nd e
3rd-qubits of a quantum system, respectively:

NOT2(|sf1〉|sf2〉) = |sf1〉 ⊗NOT |sf2〉; (32)

NOT2,3(|sf1〉|sf2〉|sf3〉) = |sf1〉⊗NOT |sf2〉⊗NOT |sf3〉.(33)

In the next sections, these equations will describe other
fuzzy operations, such as implications and differences.

B. Symmetric Sum

In the interpretation of AGs between the fuzzy sets A
and B, related to the mFs fA, fB : X → U , respectively,
the symmetric sum is obtained by the summation opera-
tor between two one-dimensional quantum registers. The
action of such operator interpreting the binary symmetric
sum, as stated in Eq.(6), is given as a linear combination
|φ〉=a|sfA〉+ b|sfB 〉 performed over the registers |sfA〉 and
|sfB 〉, by considering scalars a, b ∈ U :

|φ〉= (a
√
fA+b

√
fB)|1〉+(a

√
1−fA+b

√
1−fB)|0〉).

Thus, we obtain the following quantum register by
applying the normalization operator:

|φ〉
||φ〉|

=
(a
√
fA+b

√
fB)|1〉+(a

√
1−fA)+b

√
1−fB)|0〉√

(a
√
fA+b

√
fB)2 + (a

√
1−fA)+b

√
1−fB)2

.

And, one of the following situations is obtained by a
measurement performed over the above normalized state:

(1) an output (classic state) |φ′1〉 = |1〉, with probability

p1 =
(a
√
fA+b

√
fB)2

(a
√
fA+b

√
fB)2 + (a

√
1−fA)+b

√
1−fB)2

.

Therefore, p1 indicates the membership degree of an
element in the fuzzy set A⊕B, as defined in Eq. (13).



(2) an output |φ′2〉 = |0〉 with probability

p0 =

(
a
√

1− fA + b
√

1− fB
)2(

a
√
fA+b

√
fB
)2

+
(
a
√

1−fA+b
√

1−fB
)2 .

In this case, an expression of the complement of the
symmetric sum between fuzzy sets A and B is given by
p0 = 1 − p1. This probability also indicates the non-
membership degree of an element in the fuzzy set A⊕B.

Proposition 4. For all x ∈ X , let 0 ≤ α+β
2 ≤ Π

2 such that
fA = sin2 α and fB = sin2 β. Then it holds that:

fA⊕B = sin(α+β
2 )2.

Proof: If fA(x) = sin2 α and fB(x) = sin2 β, we have:

sin(
α+ β

2
)2 =

1

2
(1− cos(α+ β))

=
1

2
(1 +

√
fAfB −

√
(1− fA)(1− fB)

=
(
√
fA −

√
fB)2(1 +

√
fAfB −

√
(1− fA)(1− fB)

2(fA − fB)2

=
(
√
fA +

√
fB)2(1 +

√
fAfB −

√
(1− fA)(1− fB)

2(1 +
√
fAfB)2 − (1− fA)(1− fB)

=
(
√
fA +

√
fB)2

(
√
fA +

√
fB)2 + (

√
1− fA) +

√
1− fB)2

So, by Eqs.(7) and (12), if a = b = 1, sin(α+β
2 )2 = fA⊕B .

A geometric representation of results obtained in
Proposition 4 is decribed in Figure 1. Moreover, the
CFSs described by Eqs.(28) and (29) are also quan-
tum registers given as |sfA〉 = sinα2|1〉+ cosα2|0〉 and
|sfB 〉 = sinβ2|1〉+ cosβ2|0〉, respectively.

Figure 1. Interpreting symmetric sum from quantum registers.

C. Fuzzy Intersection

Let |sfA〉 and |sfB 〉 be quantum registers given by
Eqs. (28) and (29), with mFs fA, fB : X → U related to
an element xi ∈ X respectively; and T be a Toffoli gate,
which is an 3-qubits qT. An AND operator models a
fuzzy intersection according with the expression:

AND(|sfi〉, |sgi〉) = T (|sfi〉, |sgi〉, |0〉) (34)

=
(√

fA|1〉+
√

1−fA|0〉
)
⊗
(√

fB |1〉+
√

1−fB |0〉
)

⊗
(√

fAfB |1〉+
√

(1−fA)fB |0〉
)
.

So, by the distributivity of tensor product related to
sum in Eq. (34), the next expression is held:

AND(|sfi〉, |sgi〉) =
√
fAfB |111〉|+

√
fA(1− fB)|100〉+

(
√

(1−fA)fB |010〉+
√

(1−fA)(1−fB)|000〉. (35)

Thus, a measurement performed over the third qubit
(|1〉) in the qS expressed by Eq. (35), provides an output
|S′1〉 = |111〉, with probability p = fA · fB . Then, for all
i ∈ X, fA and fB indicate the probability of xi ∈ X is in
the FS defined by fA(x) : X → U and gA(x) : X → U ,
respectively. And then, fA · fB indicates the probability
of xi is in the intersection of such FSs. Analogously,
a measurement of third qubit (|0〉) in the qS given by
Eq. (35), returns an output state given as:

|S′2〉 =
1√

(1− fA)fB
(
√
fA(1− fB)|100〉+√

(1− fA)fB |010〉+
√

(1− fA)(1− fB)|000〉)

with probability p0 = 1 − fA · fB . In this case, an
expression of the complement of the intersection between
fuzzy sets A and B is given by 1 − p0 = fA · fB . This
probability indicates the non-membership degree of x is in
the fuzzy set A ∩ B. We also conclude that, by Eq. (35),
it corresponds to the the standard negation of algebraic
product as described in Eq.(8) [16].

Consider now, the initial qS resulting the tensor product
|sf2〉 ⊗ |sf3〉 ⊗ |0〉, according with Eq. (36):

|S〉 =

√
12

6
|000〉+

√
6

6
|010〉+

√
12

6
|100〉+

√
6

6
|110〉 (36)

A simulation of the algorithm is modeled and performed
in the VPE-qGM environment according with the specifi-
cation of the intersection operation of fuzzy sets described
in Eq. (34) and considering the qS |S〉 in Eq. (36). It is
illustrated in Fig. 2. In this case, after a measurement, two
possible situations are held:

• |S′1〉 = |111〉, with probability p = 17%;

• |S′2〉 =
√

72
6
√

5
|000〉+

√
36

6
√

5
|010〉+

√
72

6
√

5
|100〉, and p = 83%.

Such states are randomly generated in the VPE-qGM
environment. See the Fig. 2, the qS |S′2〉.

D. Fuzzy Union

Let |sfi〉 and |sgi〉 be qSs given by Eqs. (28) and (29),
respectively. The union of fuzzy sets is modeled by the OR
operator, based on the expression:

OR( |sfi〉, |sgi〉)=NOT 3(AND(NOT |sfi〉, NOT |sgi〉))
=NOT 3(T (NOT |sfi〉, NOT |sgi〉, |0〉))
=NOT 3(T (

√
fAfB |000〉+

√
fA(1− fB)|010〉+√

(1− fA)fB |100〉+
√

(1− fA)(1− fB)|110〉)). (37)

In the sequence, applying the Toffoli transformation and
the fuzzy standard negation we have that:

OR(|sfi〉, |sgi〉) =
√

(1−fA)(1−fB)|000〉+ (38)

((
√

(1−fA)fB |011〉+
√
fA(1−fB)|101〉+

√
fAfB |111〉).



Figure 2. Modeling and simulation in the VPE-qGM of a quantum
register interpreting a intersection between fuzzy sets.

A measure performed on third qubit of qS returns both
cases:

1) when it is related to |1〉, we have the qS:

|S′1〉 =
1√

fB(1− fA) + fA)
(
√

(1−fA)fB |011〉+√
fA(1−fB)|101〉+

√
fAfB |111〉),

with corresponding probability p1 = fA+fB−fA ·fB
of xi ∈ X is in both fuzzy sets A e B. See also that
union is expressed by Eq. (39), which is related to
the product t-conorm [16].

2) when it is related to state |0〉, returns the qS |S′2〉 =
|000〉 with p0 = (1 − fA) · (1 − fB), indicating that
xi ∈ X is not in such fuzzy sets (neither A nor B).

The modeling, implementation and simulation on VPE-
qGM were performed according with the description of
union operation in Eq. (37) and considering the initial
state as defined by Eq. (36). Similarly to the intersection
operator, an interpretation of the final qS was performed in
the VPE-qGM simulator. After the measurement process,
one of two states is able to be reached:

• |S′1〉 = 1
2 |011〉+

√
2

2 |101〉+ 1
2 |111〉, such that p = 67%;

• |S′2〉 = |000〉, with probability p = 33%.

E. Fuzzy Implications

Fuzzy implications, as many other fuzzy connectives,
can be obtained by a composition of quantum operations
applied to quantum registers. In the following, this paper
introduces the expression of the quantum operator denoted
by IMP, over which an interpretation of Reichenbach
implication is obtained.

For that, consider again the pair |sfi〉 and |sgi〉 of
qSs given by Eqs. (28) and (29), respectively. The IMP

operator is defined by:

IMP (|sfi〉, |sgi〉) = NOT2(AND(|sfi〉, NOT |sgi〉))(39)

=NOT2 (T (|sfi〉, NOT |sgi〉, |0〉))
=NOT2(T (

√
1−fA)fB |000〉+

√
1−fA)(1−fB)|010〉+√

fA(fB)|100〉+
√
fA(1−fB)|110〉))).

In the following of Eq. (40), applying the Toffoli and
negation quantum transformations, we have that:

IMP (|sfi〉, |sgi〉) =
√
fA(1−fB)|100〉) + (40)√

(1−fA)fB |011〉+
√

(1−fA)(1−fB)|001〉+
√
fAfB |111〉.

Applying the same procedure, by a measure performed
over the third qubit in the state defined by Eq. (40) we
can get the two following qSs:

1) an output |S′1〉, such that

|S′1〉=
1√

1−fA+fAfB
(
√

(1−fA)(1−fB)|001〉+√
(1−fA)fB |011〉+

√
fAfB |111〉), (41)

with probability p1 = 1 − fA + fA · fB = fA.B .
Therefore, p1 indicates the membership degree of an
element in the fuzzy set A . B (see Eq.(16) related
to IRB fuzzy implication [25], as defined in Eq. (10).

2) an output |S′2〉 = |100〉 with probability p0 = fA(1−
fB). In this case, an expression of the complement
of the Reichenbach fuzzy implication related to the
fuzzy sets A and B is given by p0 = 1 − p1.
This probability also indicates the non-membership
degree of an element in the fuzzy set A . B.

Taking |sf2〉 ⊗ |sf3〉 ⊗ |1〉, according with Eq. (36). The
modeling, implementation and simulation in the VPE-
qGM based on the operator described on Eq. (40) yielded
the possible final results as in the following:

• |P ′1〉 =
√

2
2 |001〉 + 1

2 |011〉 + 1
2 |111〉, with probability

p = 67%;
• |P ′2〉 = |100〉, with probability p = 33%.

F. Fuzzy difference

In this section, we introduce the quantum operator
denoted by DIF , in order to provide interpretation to the
difference between fuzzy sets based on quantum comput-
ing. The DIF operator is modeled by a composition of
NOT and IMP qTs, previously presented in Sections V-A
and V-E, considering the same initial conditions.

The DIF quantum operator is defined as follow:

DIF (|sfi〉, |sgi〉) = NOT2,3(AND(|sfi〉, NOT |sgi〉))
=NOT2,3(T (|sfi〉, NOT |sgi〉, |1〉).
=NOT2,3(T (

√
1−fA)fB |000〉+

√
1−fA)(1−fB)|010〉+√

fA(fB)|100〉+
√
fA(1−fB)|110〉))). (42)



Then, by Eq. (33) together with Eq. (42) the DIF oper-
ator can be expressed as:

DIF (|ψ〉, |φ〉) =
√

(1−fA)fB |01〉 ⊗ |0〉+√
(1−fA)(1−fB)|00⊗ |0〉+

√
fA(fB)|11⊗ |0〉+√

fA(1−fB)|10〉)⊗ (|1〉)). (43)

Thus, also in this last case study, we are able to provide
an interpretation. After a measure performed over the
third qubit of the qS, given by Eq. (43), it returns one
of the two the qSs:

1) |S′1〉 = |101〉, with p1 = fA − fA ·fB = fA−B related
to the membership degree of an element to the
corresponding fuzzy set A−B, see Eq. (18); and

2) the superposition quantum state |S′2〉, given as:

|S′2〉 =
1√

(1− fA) + fAfB)
(
√

(1− fA(1− fB)|00〉+√
(1− fA)fB |01〉+

√
fAfB |11〉),

with p0 =1 − fA + fAfB=1 − fA−B indicating the
membership degree of an element in the FS A−B.

Preserving the configuration of previous case studies, the
initial qS over that the difference operator is implemented
and simulated in VPE-qGM is given by the tensor product
|sf2〉⊗|sf3〉⊗|1〉, according to Eq. (36).

According to the results presented by the VPE-qGM
simulator, the both possible results of a simulation are the
qSs in the following:

• |S′1〉 = |101〉, with probability p = 33% ;

• |S′2〉 =
√

2
2 |000〉 + 1

2 |010〉 + 1
2 |110〉, with probability

p = 67% obtained by a simulation on VPE-qGM.

VI. Conclusion and Final Remarks

This paper describes fuzzy sets and operations on fuzzy
sets by using the concept of quantum computing, as quan-
tum registers and quantum gates. The mFs are modelled
as quantum registers and the operations over fuzzy sets
are described as qTs. Hence, this work shows basic cons-
tructions in the specification of fuzzy expert systems from
quantum computing, in order to obtain new information
technologies based on fuzzy approach.

This paper not only analyses the operations of fuzzy
complement and fuzzy intersection as described in [22]
but also implements and simulates them in the VPE-
qGM presenting an extension of such construction to other
important fuzzy operations. This extension considers the
modeling of the following fuzzy operations obtained from
quantum operators: union, difference and implications,
focusing on the class of S-implications. Furthermore, an-
other aggregation operation, now related to the symmetric
sum, was defined in terms of quantum registers, expanding
the range of possible AFs that can be represented by QC.

Further work considers the study of interpretations
related to Type-2 fuzzy sets, as ipointed out by Remark 2
in the subsection IV.
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