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Abstract—Computer systems based on fuzzy logic
are capable of generating a reliable output even when
handling inaccurate input data by applying a rule based
system. The main contribution of this paper is to show
that quantum computing can be used to extend the
class of fuzzy sets. The central idea associates the
states of a quantum register to membership functions
(mFs) of fuzzy subsets, and the rules for the pro-
cesses of fuzzyfication are performed by unitary quan-
tum transformations. Thus, this paper describes multi-
dimensional quantum registers, associated to mFs on
the unitary interval U, in order to introduce a novel
interpretation of aggregations found in fuzzy set theory.
In particular, t-norms and t-conorms based on quan-
tum gates allows the modeling and interpretation of
union, intersection, difference and implication among
fuzzy sets, also including an expression for the class
of fuzzy S-implications. Furthermore, an interpretation
of the symmetric sum was achieved by considering the
quantum register sum operator.

Index Terms—Aggregation Operations, Fuzzy Logic,
Quantum Operators, Quantum Computing.

I. INTRODUCTION

The similarities between Fuzzy Logic (FL) and Quan-
tum Computing (QC) motivate researches towards a bet-
ter understanding of their relationship, as can be seen in
(1], 2], [3], [4] and [5]. Since both FL and QC describe
types of uncertainties, is important to investigate possible
contributions from one area to another. Such study is rele-
vant to understand how one can explore the phenomena of
quantum mechanics to improve the efficiency of algorithms
employed in the design of expert systems.

In this context, the logical structure describing the
uncertainty associated with the fuzzy set theory can be
modeled by quantum transformations (qTs) and quantum
states (qSs). Thus, it is possible to model quantum algo-
rithms which represent operations on fuzzy sets (union,
intersection, difference, implication), and the mFs are
encoded by ¢Ss, whether in superposition or not.

Our main contribution is the modeling of quantum
algorithms for specifying basic fuzzy operations as union,
intersection, difference and implication functions. Extend-
ing a previous work [6], this paper focuses on the in-
terpretation of aggregation functions. In particular, the
symmetric sum is obtained by the summation operator
in terms of quantum registers together with its geometric
interpretation.

The operations were also studied and simulated in
the visual programming environment VPE-qGM (Visual
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Programming Environment for the Quantum Geometric
Machine Model), described in [7] and [8]. The VPE-
qGM aims to support the modeling and the sequential or
parallel simulation of quantum algorithms through a set
of graphical interfaces. The simulations were performed
for the union, intersection, difference and implication, but
it also can be extended to the symmetric sum and other
fuzzy operators.

This paper is organized as follows: Section II presents
the foundations on FL. Section III brings the main con-
cepts of QC. In Section IV, the study includes the mod-
eling of fuzzy sets using QC, including some classical
concepts such as quantum fuzzy set. Section V presents
the operations on fuzzy sets modeled from Ts. Finally,
conclusions and further work are discussed in Section VI.

II. PRELIMINARIES ON Fuzzy Locic

The non well-defined borders sets called fuzzy sets
(FS) were introduced in order to overcome the limitations
related to the use of classical sets for dealing with problems
where the transitions from one class to another happen
smoothly. The definition, properties and operations of FSs
are obtained from the generalization of classical set theory,
which can be seen as a particular case of fuzzy set theory.

The classical set theory is based on the characteristic
function defined from a subset A of X # () to the Boolean
set {0,1}, i.e., it assigns to each z € X an element of a
discrete set {0, 1} according to the expression:

) ={ 5 dash 1)

The fuzzy set theory is based on a generalization of the
characteristic function for the interval U = [0, 1]. For the
membership fa(z): X — U, the element x € X belongs
to the subset A with a membership degree given by fa(z),
such that 0 < fa(z) < 1.

Definition 1. A fuzzy set A related to a set X # () is
given by the expression:

A={(z, fa(x)) : x € X}. (2)

A. Fuzzy connectives

Definition 2. A function N : U — U is a fuzzy negation
(FN) when it verifies the following conditions:

N1 N(0) =1 and N(1) = 0;

N2 Ifx <y then N(z) > N(y), for all z,y € U.



FNs verifying the involutive property:
N3 N(N(z)) ==, for all x € U,
are called strong FNs. See, e.g., the standard negation:

Ng(z)=1-—=. (3)

Let N be a FN. For all ¥ = (x1,...,2,) € U™, the
N-dual function of f: U™ — U is given by the expression:

fn (%) = N(f(N())), (4)

where N (%) = (N(z1),...,N(z,)) € U™. Moreover, when
fn(&) = f(&), then f is a self-dual function.

Based on [9], [10], [11], [12] and [13], the general mean-
ing of an aggregation function in FL is to assign a single
real number on U to any n-tuple of real numbers belonging
to U™, that is, it is a non-decreasing and idempotent
(i.e., it is the identity when an n-tuple is unary) function
satisfying boundary conditions.

Among several definitions we will use the following one.

Definition 3. [14, Definition 2], An aggregation func-
tion (AG) A:U™—U demands, for all = (x1,22,...,ZTn),
7=y1,Y2,---,Yyn) € U™, the following conditions:

Al: A(0) = A(0,0,...,0) =0; A(I) = A(1,1,...1) = 1;
A2: If # < ¢ then A(Z) < A(Y);

A3: A(Z))=Ag) Toy, . - - T, )=A(T1, Lo, .. ., 20)=A(Z).

Extra properties for AGs are reported below:

Ad: A(z,z,...,x) =z, for all z € U (idempotency);

A5 A(F) = Ang (%) (self-duality).

Let V,A: U? — U be the binary idempotent AGs
defined as V(z,y) = max(z,y) and A(x,y) = min(z,y).
So, when A verifies A4, for all x,y € U, then

Nx,y) < A(z,y) < V(z,y), (5)

and A is said to be compensatory in the unit interval.

Among the most often used AGs, frequently classified
as compensatory and weighted operators, this paper con-
siders the symmetric sum, which is, for all ¥ € U™,
a continuous (with respect to each of its variables) and
self-dual aggregation (verifying A5). In [15], a binary
symmetric sum is expressed as

G(7)

G(7) + G(Ns (7))
whenever G : U? — U is a continuous, increasing and
positive function satisfying G(0,0) = 0. It is worth notic-
ing that there is not a unique function G characterizing

each symmetric sum. Additionally, symmetric sums are in
general not symmetric or commutative.

Proposition 1. Let a,b € U and G : U?—=U such that
G(z,y)=(avz + b\/@)Q. A function Ag : U*—=U given as:
ay/x +b\/y
Ag(x, y): 2 f 5
(ava+by/y) +(av1 — z+byT—y)

is defined as a symmetric sum as expressed in (6).

AG (.’E, y) = (6)

(7)

Proof. The continuity of Ag follows from the composition
over continuous functions on U. And, for all (z,y) € U?,

a\/z + by
Ag(ﬂ% y) = 2 2
(av1 = z+byT=y) +(ay/z+b\/y)
av/1—xz+by/1—y
(av1 — a+by/T = y)2+(a\/5+b\/§)2
So, Ag(w,y) = Ans(z,y) = NsA(Ns(z), Ns(y)), imply-
ing that Ag is a self Ng-dual function. Moreover, it is
immediate that G is a continuous, increasing and positive
function satisfying G(0,0) = 0.

Now, conjunctive and disjunctive AGs are reported.

A triangular (co)norm (t-(co)norm) is a binary AG
(S)T: U? — U satisfying the boundary condition, which
is, respectively, given by the expressions:

T1: T(x,1) = z; S1: S(x,0) =z,

and the associativity property, respectively expressed as:

T2 T(@l(y2) — T(T(z.y)2): S2 S@S(y,2) —
S(S(x, ) 2)-

There are many references reporting different definitions
of t-norms and t-conorms [16]. Herein, for all z,y € U, we
consider the respective t-norm and t-conorm:

o Algebraic product and algebraic sum:

Tp(v,y) =x-y; and Sp(z,y) =rv+y—z-y. (8)

A binary function I : U? — U is an implication operator
(implicator) if the following conditions are satisfied:
10: I(1,1)=1(0,1) =1(0,0) =1 and I(1,0) =0.
In [17] and [18], additional properties are considered to
define a fuzzy implication obtained by an implicator:

Definition 4. A fuzzy implication I : U? = U is an
implicator verifying, for all x,y,z € U, the conditions:
I1: Antitonicity in the first argument:
if v <z then I(z,y) > I(z,y);
12: Isotonicity in the second argument:
if y <z then I(x,y) < I(z,z2);
13: Falsity dominance in the antecedent: 1(0,y) = 1;
14: Truth dominance in the consequent: I(x,1) = 1.

Among the implication classes with explicit representa-
tion by fuzzy connectives (negations and AGs) this work
considers the class of (S, N)-implication, extending the
classical equivalence p — ¢ < —pV q.

Let S be a t-conorm and N be a fuzzy negation. A
(S, N)-implication is a fuzzy implication (g ny : U? = U
defined by:

I(S',N)(xay) :S(N(Z‘)7y),v.’lj‘,y€ U. (9)

If N is an involutive function, an S-implication is

defined as in (9) [19]. The Reichenbach implication given
as:

IRB(m,y)=1—$+x~y,Vx,y€U, (10)

is an S-implication, obained by a fuzzy negation Ng(z) =
1 —x and a t-conorm Sp(z,y) =z +y — x -y, previously
presented in Egs. (3) and (8b), respectively.



B. Operations over fuzzy sets

Consider in the following definitions and examples of
operations defined over the fuzzy sets A, B C X

Let T,S : U? — U be a t-(co)norm. [20].

The complement of A is a fuzzy set A’ = {(z, fa’) :
x € X}, with fa : X = U is given by:

far(z) = Ns(fa(z)) =1~ fa(x), VoeX. (11)

Let Ag : U> = U be the symmetric sum, according to
(7). The symmetric sum between the fuzzy sets A
and B, is the fuzzy set A® B = {(z, fagn(z)) : x € X},
with fagp(z): X — U given by:

faep(x) = Ag(fa(x), fe(x)), Vo € X.

The intersection between the fuzzy sets A and B

(12)

results in a fuzzy set AN B = {(z, fanp(z)) : z € X},
with fanp(x): X — U given by:
fanp(z) =T (fa(x), fB(x)), Vo € X. (13)

An important characterization of the mF related to an
intersection A N B is obtained by applying the algebraic
product to the fuzzy sets A and B, given by the following
equation:

fane(x) = falz) - fB(2),V2 € X.

Let S : U2 — U be a t-conorm. A union operation
between fuzzy sets A and B results in a fuzzy set AU
B ={(x, faup(x)) : x € X'}, whose membership faup(z) :
X — U is given by:

faus(z) = S(falz), fe(x)),Vx € X.

A characterization of the fuzzy union AU B is obtained
by applying the algebraic product defined by

faup(x) = fa(@) + fp(2) — fa(z) - f(2),Ve € X. (16)

Let S : U? — U be a t-conorm. An implication
operation between fuzzy sets A and B results in
a fuzzy set A B ={(z, fasp(z)) : z € X}, whose mF
fasp(x) : X = U is given by:

favp(x) = S(N(fa(®)), fB(z)), Vo € X.

Extending the classical equivalence —(p — ¢)<p A —q,
we obtain the difference operator.

Let S be t-conorm, N be a strong FN and I be an S-
implication, A and B be FSs. A difference between A

(14)

(15)

(17)

and B results in a FS AU B = {(z, fa_p(z)) : © € X},
withfy_p: X = U given by:
fa—p(z) = N(Is(fa(®), fp(2)))Ve € X. (18)

By the composition of Ng and Igp in Egs.(10) and (3),
respectively, see a fuzzy set A U B obtained by the mF:

fa—(x) = Ns(Sp(Ns(fa(z)), fe(x))

= fal@) = fa(z) - fp(x), Vo e X. (19)

III. FOUNDATIONS ON QUANTUM COMPUTING

The QC considers the development of quantum com-
puters, exploring the phenomena predicted by the QM
(superposition of states, quantum parallelism, interfer-
ence, entanglement) for better performance when they are
compared to the analogous classical approach [21]. These
quantum algorithms are modeled considering mathemati-
cal foundations which describe the phenomenae of QM.

A. Quantum state spaces

In QC, the qubit is the basic unit of information, being
the simplest quantum system, defined by a state vector,
unitary and bi-dimensional, generally described, in the
notation of Dirac [21], by the expression

[¢) = al0) + B1).

The coefficients a and 8 are complex numbers corre-
sponding to the amplitudes of the respective states of
the computational basis of one-dimensional quantum state
space, verifying the normalization condition |a|?+|3]? =1
and ensuring the unitary of the state vector of the quan-
tum system, represented by (a, 3)*.

The state space of a quantum system with multiple
qubits is generated (span) by the tensor product of the
state space of its subsystems. Considering a two qubits
quantum system, [19) = a|0) + B[1) and |ig) = 7]0) + 3[1),
its tensor product |1) ® |¢) is described by

[hp) = a-v]00) + a - 6|01) + 8- ~|10) + 5 - 6|11).

(20)

(21)

B. Quantum transformations

The state transition of a quantum system is performed
by unitary qTs associated with orthonormalized matrices
of order 2V, with N being the amount of qubits within
the system. For instance, the definition of the Pauly X
transformation and its application over a one-dimensional
quantum system is described by

0 1 a\ (B

10 B8 ) \a )’
A Dbi-dimensional construction related to the tensor

product of two Pauly X Ts is described in Eq (23):

()@ (1 0 )-
(23)

Controlled transformations also modify the state of one
or more qubits considering the current state of another
qubit. The Toffoli transformation [21] is a controlled oper-
ation performed over 3 qubits, which is obtained by a qT
that applies the NOT operator (Pauly X) over the qubit
|o) when the current states of the first two qubits |¢) and
|p) are both assigned as |1).

xtu) = ( (22)

0 0 0

—_ o O
OO O

0 1
1 0
0 0



C. Measurement operations

The reading of the current state of a quantum system
is performed by a measurement operator, which is defined
based on a set of linear operators M,,, also called projec-
tions, acting on the state spaces. The index m refers to the
possible measurement results. If the state of a quantum
system is |[¢) immediately before the measurement, the
probability of an outcome occurrence is given by [21]:

M [)
(| M, M |

The measurement operators satisfy the completeness rela-
tion Y, M), M,, = I'. For one-dimensional quantum sys-
tems, there exist the Hermitian (and thus, normal) matrix
representation of these operators, described by

10

0 0
MO:(O O) and M1:<O 1>.

Measurement operators are self-adjoint non-reversible
operators, satisfying the completeness relation

MZ=MZ2, M2=M? and M} My + M} My=I,=M, + M.

When a qubit |[¢), with «,8 # 0, the probability of
observing |0) and |1) are, respectively, given by:

= 2(10)) = (#[Mq Molg) = (¢IMo|¢) = |of?; and

o p(11)) = (8| M{Mi|¢) = ($|Mi]¢) = |B|*.

Therefore, after the measure, the quantum state |¢) has
||? as the probability to be in the classical state |0); and
|3|? as the probability to be in the other one, the state |1).

p(ly)) = (24)

IV. Fuzzy SETS FROM QUANTUM COMPUTING

The description of FS A from the quantum computing
viewpoint considers f4(x), as state in (2).

Without losing generality, let X be a finite subset
with cardinality N (|X| = N). Thus, the definitions can
be extended to infinite sets, considering in this case, a
quantum computer with an infinite quantum register [21].

A. Classical fuzzy states - CFS
Definition 5. [22, Definition 1] Consider X # 0,|X| =
N,ieNy=1{1,2,..,N} and a function, f : X — U. The
state of a N-dimensional quantum register, given as:
|8f ® \/1—fA.Z‘1 |O —l—\/fol ‘1
1<i<N

is called classical fuzzy state of N-qubits (CFS). In
addition, [CFS] denotes the set of all CFSsg.

(25)

Remark 1. Interpreting fuzzy set operations

Let A= {A;} be a finite collection of fuzzy sets related to
an arbitrary set X, x be an element of X and |sz ) be an
one-dimensional classzcal fuzzy state defined as:

s7a,) = (/1 = fa,;(@)[0) + 1/ fa; (2)]1).

1M7Tn denotes the transpose complex conjugate of the matrix My,.
P p. Jug

Then an interpretation to an N-ary fuzzy operator per-
formed over all the collection A can be obtained by the
following expression:

2) = @ lspa, (@)
1<G<N

In particular, such interpretation extends the notion of
union and intersection to the collection A.

Remark 2. Interpreting type-2 fuzzy sets

Under the same conditions stated in Definition 5, let Ny =
{1,2,...,N} be a set of independent measurement sources
and |sg, (x;)) be a one-dimensional CFS defined as:

L= fa(@i)]0) ++/ fa(z:)|1).

Then, the following expression

2) = Q) Ispalzi)

1<i<N

|84 (i) =

provides an interpretation for the fuzzy set whose values
are different membership degrees of an element x € X and
related to the same fuzzy set A. Such membership degrees
can possibly be obtained by different measurement sources.
More specifically, sy, (x;) indicates the membership degree
of the element x to the set A measured by the source i.

Henceforth, this paper considers the i%terpretation of
Remark 1. Generalizing, a state |s¢) in C?" is reported as
the following definition:

Definition 6. [22, Section 3] The CFS of N—qubits,

|sf) € [CFS], can be expanded in 2V by
Isg) = (1= f(1)3(1 = f(2)% ... (1 f(n))2]00...00) +
fz(1—=f(2)2...(1 = f(n)2]10...00) +
F)ZF2)2 ... (1= £(2)2 f(n)2[11...01) +...
FEFR)2 .. f(n)F]11...11). (26)

Concluding this section, from the perspective of QC, a
fuzzy set consists on a superposition of crisp sets. Each
|sf) € [CFS] is a representation of a quantum register
described as a superposition of crisp sets and generated
by the tensor product of non-entangled quantum regis-
ters [21].

B. Quantum Fuzzy Sets (QFS)

According to [22], it appears that the fuzzy sets are
obtained by overlapping qSs from a conventional fuzzy
quantum register. Moreover, from the set of mFs rep-
resenting the fuzzy classical states, we obtain a linear
combination, formalizing the notion of a fuzzy quantum
register. In this context, it may be characterized:

e quantum fuzzy sets as quantum superposition of fuzzy
subsets, which have different shapes, simultaneously.
e quantum fuzzy sets that are subsets of entangled
superpositions of crisp subsets (or classical fuzzy sets).



Proposition 2. [22, Theorem 1] Consider N = |X|, A as
o fuzzy subset. A quantum fuzzy subset related ]fo a fuzzy
set A is a point in the quantum states space C? .

Proposition 3. [22, Theorem 2] Let f,g : X — U be
mF's with respect to X. The classical fuzzy sets |s¢) and
|sg) are mutually orthonormal CFSs if and only if there
exists x € X such that either f(x) =0 and g(x) = 1 or the
converse, f(x) =1 and g(x) =0 .

By Proposition 3, a pair of |s;) and |sy) in [CFS]
are mutually orthogonal CFSs if and only if there exists
x € X such that f(z) - g(z) = 0. In Eq (26), a oS
|sf) in c2" is characterized, when all vectors are two by
two orthonormal elements of a base in C2" . For further
specifications, see [21], [23] and [24].

Definition 7. Consider f; : X - U, i € {1,....k}, as a
collection of mF generating FSs A; and {|sy,),...,|sf.)} C
[CFS], such that their components are two by two or-
thonormal wvectors. Let {c1,...,cx} € C. A quantum
Sfuzzy set (QFS) |s) is a linear combination given by:

) = calsg,) + .+ culsy,)- (27)

[CFQ] denotes the set of all CFQs.

From Def. 7, a fuzzy qS of a N-dimensional quantum
register, as described in (27), can be entangled or not,
depending on the family of classical fuzzy states |sy,) and
the set C; of chosen amplitudes.

Notice that, in Def. 7, non-entangled fuzzy states can
be transformed into classical fuzzy states, by image of
rotations on the Bloch’s sphere axis (such as rotations of
the meridian to achieve a zero phase), see details in [23].

V. MODELING Fuzzy SET OPERATIONS FROM
QUANTUM TRANSFORMATIONS

According to [22], fuzzy sets can be obtained by quan-
tum superposition of classical fuzzy states associated with
a quantum register. Thus, interpretations related to the
fuzzy operations as complement and intersection are ob-
tained from the NOT and AND qTs. Extending this
approach, other operations are introduced, such as union,
difference and fuzzy implication, which may be derived
from interpretations of OR, DIV and IMP quantum
operators.

For model, implement and validate these constructions
from fuzzy quantum registers we make use of the visual
programming environment VPE-qGM. It provides inter-
pretations of the quantum memory, quantum processes
and computations related to transition quantum states
obtained from the simulation of related qSs and qTs.

For that, let fa, fg : X — U be mF's obtained according
to (25) and by a pair (|sf,), |sfs)) of CFS, given as:

Vfa(zi)|1) + /1 = fa(2:)]0), (28)
\/fB(.’L'Z')‘1> + 11— f3(1'1>‘0>,vxl S X(29)

|SfA>
|Sts)

In the next sections, in order to simplify the notation,
the membership degree defined by fa(z;), which is related
to an element z; € X in the fuzzy set A, will be denoted
by fa, once only one element will be considered to achieve
interpretations for the main fuzzy set operations.

A. Fuzzy Complement

In the interpretation of the complement of a fuzzy set,
the standard negation is obtained by the NOT operator
related to a multi-dimensional quantum system. The ac-
tion of the NOT operator is given by the expression:

NOT(|s,) = /1= fall) + /fal0)

The complement operator can be applied to the state
sr,), resulting in an N-dimensional quantum superposi-
fa g

(30)

tion of 1-qubit states, described as ¢V in the computa-
tional basis, according to (31):

NOTN (|s4,)) = NOT(@1<i<n (£a(0)2[1)(1 — fa(4))2]0)))
=@1<i<n((1 = fa(0)2]1) + f4()%0)) (31)

Now, Egs. (32) and (33) describe other applications
related to the NOT transformation acting on the 2nd and
3rd-qubits of a quantum system, respectively:

NOTy(|sg,)lsp.)) =1s5,) @ NOT|sp,); (32)
NOTy3(|sp.)|sp)ls55)) =157, ) ©NOT |55, ) ONOT |5 1, X33)

In the next sections, these equations will describe other
fuzzy operations, such as implications and differences.

B. Symmetric Sum

In the interpretation of AGs between the fuzzy sets A
and B, related to the mFs f4, fg : X — U, respectively,
the symmetric sum is obtained by the summation operator
between two one-dimensional quantum registers. The ac-
tion of such operator interpreting the binary symmetric
sum, as stated in (6), is given as a linear combination
|¢)=alss,)+Db|ss,) performed over the registers |sy,) and
|sf,), by considering scalars a,b € U:

|6) = (av/Fa+b/FB)[1)+H(ay/T=Fatby/1-f5)|0)).

Thus, we obtain the following quantum register by
applying the normalization operator:

) _ (aV/fatbv/FB) 1) +(av/1=Fa)+bVI-F5)|0)

18)] ~ /(av/Tatby/T5)2 + (av/I—Ja) o/ I—J5)2

And, one of the following situations is obtained by a
measurement performed over the above normalized state:
(1) an output (classic state) |¢]) = |1), with probability

- (aN/Fa+b\/[B)?
(a/Fat+bV/fB)2 + (ay/T—Fa)+by/1-f5)2

Then, p; indicates the membership degree of an element
in the fuzzy set A @ B, as given by Egs. (13) and (7).




(2) an output |¢h) =

_ (aVT=Fatbv/T-75)
(av/Tatby/T5)" + (ay/T=Fatby/T=F5)

In this case, an expression of the complement of the
symmetric sum between fuzzy sets A and B is given by
po = 1 — p1. This probability also indicates the non-
membership degree of an element in the fuzzy set A & B.

|0) with probability

Proposition 4. Forallz € X, let 0 < QT""B < % such that
fa =sin?« and fg = sin® 5. Then it holds that:

faeB = Sm(a"_ﬁ)

Proof: If f4(z) = sin® a and fp(z) = sin® B, we have:

a+p., 1
5 ) 2(1—cos(oz—|—5))

5 1+\/fAfB—\/(1—fA)(1—fB)
(\/ﬂ—\ﬁ) (L+VFafs — /1= fa) Q- fr)
2(fa— fB)?

_ (Fa+ VB + Viafs — V(1 - f4)( — f5)
20+ vV fafp)? = (1= fa)(1 - fB)

sin(

(\/ﬂJr\ﬁ)Q
(\/fiAJr\ﬁ 1= fa)+V1- fp)?
So, by Eqs.(7) and (12), if a = b =1, sm(a+5) = faeB-
|

A geometric representation of results obtained in
Proposition 4 is decribed in Figure 1. Moreover, the
QFS described by Eqs.(28) and (29) are also quan-
tum registers given as |sf,) = sina?|1) + cosa?|0) and
|s¢,) = sin B2|1) + cos 32]0), respectively.

4

1)

Can®) 7/
Fsin(aspi)

E sin(a)

10)

Interpreting symmetric sum from quantum registers.

o

Figure 1.

C. Fuzzy Intersection

Let |s;,) and |sy,) be quantum registers given by
Egs. (28) and (29), with mFs fa, fg : X — U related to
an element z; € X respectively; and T be a Toffoli gate,
which is an 3-qubits qT. An AND operator models a
fuzzy intersection according to the expression:

AND(|sp:): |s9:)) = T(Is5:)5159:0,10))

=(VRIVI=Fal0)) & (Vsl)+/1=7500))
@ (VIafsl)+V/(=F)f510))

(34)

So, by the distributivity of tensor product related to
sum in (34), the next expression is held:

AND([sz,), |59,)) = v/ fafe|111) 4/ Fa(l — f5)[100) +
(v/(1=fa) f5|010)+v/(1—f4) (1—f5)[000).

Thus, a measurement performed over the third qubit
(|1)) in the ¢S expressed by (35), provides an output
|S1) = |111), with probability p = fa - fp. Then,
for all i € X, fa and fp indicate the probability of
x; € X is in the FS defined by fa(z) : X — U and
ga(z) : X — U, respectively. And then, f4 - fp indicates
the probability of z; is in the intersection of such FSs.
Analogously, a measurement of third qubit (|0)) in the qS
given by (35), returns an output state defined by:

! . 1 _
1S5) = 7(1_fA)fB(VfA(1 f5)[100) +

V(L= f4)f51010) + /(1 = fa)(L — f5)]000))

with probability pg = 1 — fa - fp. In this case, an
expression of the complement of the intersection between
fuzzy sets A and B is given by 1 — pg = fa - fp. This
probability indicates the non-membership degree of z is
in the fuzzy set A N B. We also conclude that, by (35),
it corresponds to the the standard negation of algebraic
product as described in (8) [16].

Consider now, the initial S resulting the tensor product
|sf,) ® |sg,) @ 0), according to (36):

?mom + §|010> + ?uoo) + §|110> (36)

(35)

15) =

A simulation of the algorithm, considering the ¢S |S)
n (36), was performed in the VPE-qGM, as illustrated in
Figure 2. The final state is in accordance with the spec-
ification of the intersection operation described in (34).
After a measurement, two possible situations are held:

o |S1) = |111> with probablhty p = 17%;

o |S5) = ¥72|000) + ¥3C|010) + ¥72]100), and p = 83%.
(] Quantum Simulator
E é ; 2 Process |fhome/adriano/\ =) Memor
Operation Position Qubits Parameters
0 I
] IdF
R L]
(conty 3 - Frovabiiy — (i)
=

Mem0

110> ‘ 111> ‘

|ooo> | Joo1> | Jo10> ‘ [o11> ‘ 100>
0.6324/0.00001 0.4472.0.0000! 0.6324,0.0000 0.0000i 0.0000¢

101>

0.83

Simulation Controls Type of Simulation

simulate | | Pass to Pass | | Stop Points | sequential | | Distributec Lt

Figure 2. Modeling and simulation in the VPE-qGM of a quantum
register interpreting a intersection between fuzzy sets.



D. Fuzzy Union

Let |sy,) and |sg,) be qSs given by Egs. (28) and (29),
respectively. The union of fuzzy sets is modeled by the OR
operator, based on the expression:

=NOT*(T(NOT|sy,), NOT|s,),[0)))
=NOT*(T(\/ fafBl000) +/fa(1 — f5)[010) +
V(1= f4)fB[100) + /(1 — fa)(1 — f5)[110))). (37)

In the sequence, applying the Toffoli transformation and
the fuzzy standard negation we have that:

OR(|Sf1 |591 \/ 1 fA 1 fB |000 (38)
(v (I=fa) fB|011)+ / fa(1—=fB)|101)++/ fa fB[111))

After a measure performed on third qubit of gS:
1) when it is related to |1), we have the ¢S:

e VATl

V fa(1=fB)|101)++/Fa f5|111))

with corresponding probability p1 = fa+fe—fa - [B
of x; € X is in both fuzzy sets A e B. See also that
union is expressed by (39), which is related to the
product t-conorm [16].

2) when it is related to state |0), returns the qS |S}) =
|000) with po = (1 — fa) - (1 — fp), indicating that
x; € X is not in such fuzzy sets (neither A nor B).

1S1) =

The modeling, implementation and simulation on VPE-
qGM were performed in accordance with the description of
union operation in (37) and considering the initial state as
defined by (36). Similarly to the intersection operator, an
interpretation of the final qS was performed in the VPE-
qGM simulator. After the measurement process, one of two
states is able to be reached:

o |S7) = L1011) + ¥2[101) + $|111), such that p = 67%;

e |S%) =|000), with probability p = 33%.

E. Fuzzy Implications

Fuzzy implications, as many other fuzzy connectives,
can be obtained by a composition of quantum operations
applied to quantum registers. In the following, this paper
introduces the expression of the quantum operator denoted
by IMP, over which an interpretation of Reichenbach
implication is obtained.

For that, consider again the pair |s;,) and |s,,) of
gSs given by Egs. (28) and (29), respectively. The IMP
operator is defined by:

IMP(|ss,),|s4,)) = NOT:(AND(|sy,), NOT s, )|39)

=NOT; (T(|sfi>7 NOT|SQi>’ |0>))

=NOT»(T(\/1—fa) fB|000)++/1—f4)(1—f5)|010)+
V fa(fB)1100)+v/ fa(1=[p)[110))))

In the following of (40), applying the Toffoli and nega-
tion quantum transformations, we have that:

IMP(|ss.), |s4.)) = v/ Fa(1=5)[100)) + (40)
VOF ) Fal011 0/ (—F ) (I 5)|001 1/ Fa F 5| 111).

Applying the same procedure, by a measure performed
over the third qubit in the state defined by (40) we can get
the two following qSs:

1) an output |S), such that

VT Vo +
V(1=fa) f|010)+/ fafB[111))

with probability p1 = 1— fa+ fa-fB = fasB.
Therefore, p; indicates the membership degree of an
element in the fuzzy set A> B (see in (17) related to
Irp fuzzy implication [25], as defined in (10).

2) an output |S5) = |100) with probability pp = fa(1—
fB). In this case, an expression of the complement
of the Reichenbach fuzzy implication related to the
fuzzy sets A and B is given by pg = 1 — p;.
This probability also indicates the non-membership
degree of an element in the fuzzy set A> B.

Taking |sf,) ® |sf,) ® |1), according to (36). The mod-
eling, implementation and simulation in the VPE-¢GM
based on the operator described in (40) yielded the possi-
ble final results as in the following statements:

o [P}y = ¥2|001) + 1|011) + L[111), with probability

p=67%;

o |Py) =100}, with probability p = 33%.

151) =

(41)

F. Fuzzy difference

In this section, we introduce the quantum operator
denoted by DIF| in order to provide interpretation to the
difference between fuzzy sets based on quantum comput-
ing. The DIF operator is modeled by a composition of
NOT and IM P qTs, previously presented in Sections V-A
and V-E, considering the same initial conditions.

The DIF quantum operator is defined as follow:

DIF(|Sfi>, |591>) = NOT2’3(AND(|Sfi>7NOT|SQi>))
:NOTQ,S(T(|SJ"1’>,NOT|sg7z>v |1>)
=NOT55(T(\/1—fa)fB|000)++/1—f4)(1—f5)]|010)+

V fa(fB)[100) + v/ fa(1-f5)[110)))) (42)

Then, by (33) together with (42) the DIF operator can
be expressed as:

DIF(|y),[¢)) = v/(1=fa) f5]01) & |0) +
vV (A=fa)( 1*fB )00 @ [0) + v/ fa(fe)11® |0) +
VIa(=fz)[10)) @ (|1)))
Thus, also in this last case study, we are able to provide

an interpretation. After a measure performed over the
third qubit of this ¢S, it returns one of the two the ¢Ss:

(43)



1) [S1) = [101), with p; = fa — fa-fB = fa—p related
to the membership degree of an element to the
corresponding fuzzy set A — B, see in (18); and

2) the superposition quantum state |S5), given as:

, 1

1S5) = NESAE: fAfB)(v (1= fa(l - f5)|00) +
V(1= fa)fBl01) ++/fafB|11)),

with po=1— fa + fafs=1— fa_p indicating the
membership degree of an element in the FS A — B.

Preserving the configuration of previous case studies, the
initial S over that the difference operator is implemented
and simulated in VPE-qGM is given by the tensor product
|sf,) ®1sp,)®]1), according to (36).

According to the results presented by the VPE-qGM
simulator, both possible qSs are given as:

e |S1) =]101), with probability p = 33% ;
o |S5) = ¥2|000) + 1]010) + 1[110), with probability
p = 67% obtained by a simulation on VPE-qGM.

VI. CONCLUSION AND FINAL REMARKS

This paper describes fuzzy sets and operations on fuzzy
sets through concepts of QC. The mFs are modelled as
quantum registers and the operations over fuzzy sets are
described by Ts. Hence, this work shows basic cons-
tructions in the specification of fuzzy expert systems from
QC, in order to obtain new information technologies based
on fuzzy approach.

This paper not only analyses the operations of fuzzy
complement and fuzzy intersection as described in [22]
but also implements and simulates them in the VPE-
qGM presenting an extension of such construction to other
important fuzzy operations. This extension considers the
modeling of the following fuzzy operations obtained from
quantum operators: union, difference and implications,
focuses on the class of S-implications.

Furthermore, another aggregation operation, now re-
lated to the symmetric sum, was defined in terms of
quantum registers, expanding the range of possible AGs
that can be represented by QC.
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