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Abstract—In fuzzy logic, there are two main approaches to
eliciting membership degrees: an approach based on polling
experts, and a Likert-scale approach, in which we ask experts
to indicate their degree of certainty on a scale – e.g., on a scale
form 0 to 10. Both approaches are reasonable, but they often
lead to different membership degrees. In this paper, we analyze
the relation between these two approaches, and we show that
this relation can be made much clearer if we use models from
quantum computing.

I. INTRODUCTION

Need for fuzzy logic. A large part of our knowledge about the
world is described in precise terms: we have equations (like
Newton’s equation) that describe the dynamics of systems,
we have exact values characterizing the results of measuring
physical quantities, we know the probabilities of different
outcomes in a physical experiment, etc. However, a significant
part of our knowledge comes from experts, be it medical
doctors of skilled pilots. Experts can often only describe their
knowledge by using imprecise (“fuzzy”) words from natural
language, such as “small”, “young”, etc. In contrast to well-
defined terms, these words are not precise. While a medical
doctor can be sure that a skin blemish of size 1 mm is small
and a 5 cm size blemish is not small, this doctor may not be
100% certain whether intermediate values are small or not.

How can we describe this uncertainty? When we are abso-
lutely confident in a statement, we declare this statement to be
true; in a computer, “true” is usually represented as 1. When
we are absolutely confident that a given statement is false,
we declare this statement to be false; in a computer, “false”
is usually represented as 0. To describe intermediate degrees
of certainty, L. A. Zadeh proposed to use numbers between
0 and 1; see, e.g., [3], [5], [9]. These numbers are known
as membership degrees because, e.g., the expert’s degree of
certainty that a 1 cm blemish is small can be viewed as a
degree to which 1 cm belongs to the fuzzy set of all small
values.

How can we elicit the corresponding degrees? There are
many ways to elicit membership degrees from the experts.

One of these methods is polling: we ask several experts
whether, e.g., a 1 cm blemish is small or not. If 7 out of 10
experts claim that it is small, we assign a degree 7/10 = 0.7
to the statement that a 1 cm blemish is small. In general, if
m out of n experts agree with the statement, we assign it a
degree of certainty m/n.

When we only have one expert, we cannot use polling. In
this case, we can ask the expert to mark his or her degree
of certainty in this statement on a scale, e.g., from 0 to 10;
such scales are known as Likert scales. If the expert selects
7 on a scale from 0 to 10, we assign, to this statement, a
degree 7/10 = 0.7. In general, if the expert describes his or
her confidence in a statement by marking m on a scale from 0
to n, we assign, to this statement, a degree of certainty m/n.

Problem. Both above elicitation methods are reasonable, both
lead to reasonable useful results. However, usually, these two
methods led to different membership degrees. It is therefore
reasonable to find out how these different degrees are con-
nected.

Comment. Of course, degrees are subjective, so in general,
different experts assign different Likert-scale degrees of cer-
tainty to the same statement. Because of this subjectivity, we
cannot expect an exact one-to-one correspondence between the
polling and Likert-scale degrees. What we want to discover is
an approximate relation between the corresponding scales.

What we do in this paper. In this paper, we analyze
the relation between the polling and Likert-scale elicitation
techniques, and we show that this relation becomes clearer if
we use formulas from quantum computing.

II. RELATION BETWEEN PROBABILISTIC (POLLING) AND
LIKERT-SCALE ELICITATIONS: ANALYSIS OF THE

PROBLEM

Probabilistic description of polling uncertainty. Formally,
the formula m/n for the polling uncertainty is the same as
the formula for a frequency (probability) of an event. This
formal analogy makes sense. Indeed, our main objective in



describing the expert’s knowledge is to use it. For example, we
want to know whether a 1 cm blemish is small or not because
a medical expert describes her recommendations in terms of
“small”: one cure is proposed for a small blemish another for
a large one. So, a possible way to find out whether a 1 cm
blemish is small or not is to observe cases when treatment
which works for small blemishes was actually used for a 1
cm blemish.

An expert who had such a patient and successfully used a
cure intended for small blemishes (or, vice versa, unsuccess-
fully tried to use a cure intended for big blemishes) will vote
that a 1 cm blemish is small. On the other hand, a doctor
who, for a 1 cm blemish, unsuccessfully tried a cure intended
for small blemishes (or, vice versa, successfully used a cure
intended for big blemishes) will vote that a 1 cm blemish is
not small.

In such an interpretation, the polling ratio m/n is equal to
the frequency with which a randomly selected 1 cm blemish
can be cured by a small-blemish cure. In general, in this
interpretation, the polling ratio µP (x) describing to what
extent a given value x satisfies the given property P is
(approximately) equal to the frequency with which

• methods intended for objects satisfying the property P
• work for objects with the value x of the corresponding

property.

From frequencies to a Likert scale: main idea. To determine
the corresponding frequencies, we analyze several cases when
a P -designed method was applied to x-valued objects. If out
of N observations, the method worked M times, we take
µP (x) = M/N .

The resulting frequency values depend on how many situa-
tions we observed – and which exactly situations. For example,
if on average, P -method works on a half on x-objects, it does
not mean that we always get µP (x) = 1/2: sometimes we may
get µP (x) < 1/2, sometimes µP (x) > 1/2. This is similar to
a usual statistical situation: if we flip two fair coins 10 times
each, the first coin may falls heads 4 times and the second 6
times.

So, if for two different values x and x′, we get different
frequencies f < f ′, we should not automatically conclude
that objects with value x′ are more certain to have property
P : the observed difference in frequencies may be simply
caused by the finiteness of the sample. The only case when
we can make such a conclusion with confidence is when we
are confident that the underlying probabilities p and p′ differ.
Such a conclusion is possible when the difference between the
frequencies f and f ′ is sufficiently large.

In principle, out of N observations, we may have 0, 1, 2,
. . . , N cases when the P -method worked. Usually, frequencies
0/N and 1/N may come from the same probability p = p′;
similarly, 0/N and 2/N may come from the same probability,
etc. As we increase m = 1, 2, . . ., we will finally reach a
value m1 for which observed frequencies f0 = 0 and f1 =
m1/N indicate that (with a given level of confidence) the
actual (unknown) ing probabilities differ.

Similarly, the values f1 = m1/N and (m1 + 1)/N are
usually indistinguishable, in the sense that these two frequen-
cies may result from the same probability. As we increase
m = m1+1,m1+2, . . ., we will reach the level m2 for which
observed frequencies f1 = m1/N and f2 = m2/N indicate
that (with a given level of confidence) the corresponding
probabilities differ, etc.

By repeating this procedure, we get a sequence of dis-
tinguishable frequencies f0 < f1 < f2 < . . . such that
each observed frequency is indistinguishable from one of the
frequencies from this sequence:

• frequencies between f0 and f1 are indistinguishable
from f0;

• frequencies between f1 and f2 are indistinguishable
from f1;

• frequencies between f2 and f3 are indistinguishable
from f2;

• etc.

In other words, we have a finite number of distinguishable
outcomes f0, f1, . . . , and the only reliable conclusion that we
can make based on the observed frequency f = M/N is to
mark one of these outcomes. This is exactly what a Likert
scale is about:

• we have a finite number of possible estimates, and
• to each situation, we place into correspondence one of

these estimates.

From probabilities to a Likert scale: details. Let us use
the known formulas from probability and statistics to derive
explicit formulas for the corresponding frequencies f0, f1, . . .

Let us start with the simple case when we have a single
observation. In this case:

• the probability of observing the favorable event (when a
P -method worked on an x-object) is equal to p, and

• the probability of observing the opposite event (when a
P -method did not work on an x-object) is equal to 1−p.

In other words, the number X1 of observed favorable events
during a single observation is equal:

• to X1 = 1 with probability p and
• to X1 = 0 with probability 1− p.

Thus, the expected number E1 = E[X1] of observed favorable
events during a single observation is equal to E1 = p · 1 +

(1− p) · 0 = p. Similarly, the variance σ2
1

def
= E[(X1 − E1)

2]
is equal to

σ2
1 = p(1− p)2 + (1− p)(0− p)2 = p(1− p)2 + (1− p)p2 =

p(1− p)[p+ (1− p)] = p(1− p); (1)

(see, e.g., [7]).
Let us now consider a more general situation, when we have

N ≥ 1 observations. If out of N observations, the favorable
event happened in M cases, we compute the frequency f as

the ratio f =
M

N
. One can easily check that this ratio is equal



to the sum of N variables X1, . . . , XN corresponding to N
observations divided by N :

f =
X1 + . . .+XN

N
. (2)

It is known that the expected value of the sum is equal to the
sum of expected values [7], so

E[X1 + . . .+XN ] = E[X1] + . . .+ E[XN ] = Np. (3)

When a random variable is divided by a constant, its expected
value decreases by the same constant [7], so we get

E[f ] =
E[X1 + . . .+XN ]

N
=

Np

N
= p. (4)

For N independent events, the variance of the sum is equal to
the sum of variances [7], so we get

σ2[X1 + . . .+XN ] = σ2[X1] + . . .+ σ2[XN ] =

Np(1− p). (5)

When a random variable is divided by a constant, its variance
decreases by the square of this constant [7], so we get

σ2[f ] =
σ2[X1 + . . .+XN ]

N2
=

Np(1− p)

N2
=

p(1− p)

N
. (6)

Due to the Central Limit Theorem [7], for large N , the
distribution of the sum X1 + . . .+XN is close to Gaussian;

thus, the distribution of the frequency f =
X1 + . . .+XN

N
is

also close to Gaussian, with mean p and standard deviation

σ =

√
p(1− p)

N
. (7)

Since for large N , we have f ≈ p, we can similarly conclude
that for a given frequency f , the (unknown) value of the
probability p is normally distributed, with mean f and standard
deviation

σ =

√
f(1− f)

N
. (7a)

Now, we are ready to derive the formula for fk. This
derivation is based on the following situation:

• we have two different observations, with frequencies f
and f ′, and

• we would like to know whether the observed difference
f ̸= f ′ enables us to conclude that the corresponding
probabilities p and p′ are also different.

The corresponding distributions for p and p′ are independent,
so the difference p′−p between the corresponding probabilities
is equal to the difference between two independent (almost)
normal distributions. Thus, the difference p′ − p is also
normally distributed. The mean value of this difference is equal
to the difference between the means, i.e., to f ′ − f , and the
variance is equal to the sum of the variances, i.e., to

σ2 =
f(1− f)

N
+

f ′(1− f ′)

N
. (8)

When can we guarantee – with a given degree of confidence
– that p′ ̸= p? In statistics, it is known that the probability of
being ≥ 2σ away from the mean E is ≈ 10%, the probability
to be at least 3σ away from the mean is ≈ 0.1%, etc. For
each degree of confidence, there is a value k0 such that values
from the interval (E − k0σ,E + k0σ) are consistent with
the observations, while values outside this interval are too
improbable.

Thus, we can distinguish between probabilities when all
consistent values (i.e., all values from the above interval) are
different from 0, i.e., when |E| ≥ k0σ.

For each value fk, what is the next distinguishable value
fk+1? According to the above description, it is the smallest
value fk+1 = fk for which

∆f
def
= |fk+1 − fk| ≥

k0

√
fk(1− fk)

N
+

fk+1(1− fk+1)

N
. (9)

For large N , we get fk+1 ≈ fk, so

fk(1− fk)

N
+

fk+1(1− fk+1)

N
≈ 2

fk(1− fk)

N
, (10)

and thus, the above condition (9) takes the form

∆f ≥ k0
√
2

√
fk(1− fk)

N
. (11)

The smallest of such values is

∆f = k0
√
2

√
fk(1− fk)

N
. (12)

In the Likert-scale approach, frequencies f0 < f1 < . . . <
fk < fk+1 < . . . correspond to marks 0, 1, . . . , k, k + 1,
. . . on the corresponding scale from 0 to n. According to the
Likert-scale definition of the membership function, we assign
to each mark k a value µ = k/n.

Let us denote, by µ(f), the Likert-scale membership degree

corresponding to the frequency f . Then, we have µ(fk) =
k

n
,

and the next value fk+1 = fk+∆f corresponds to the degree

µ(fk +∆k) =
k + 1

n
. In other words, for every frequency f ,

we have
µ(f +∆f) = µ(f) +

1

n
. (13)

When we have a reasonably large number of observations
N , then the value ∆f is small. When ∆f is small, we have

µ(f +∆f)− µ(f)

∆f
≈ lim

∆p→0

µ(f +∆f)− µ(f)

∆f
= µ′(f),

where µ′(f) denotes the derivative. Multiplying both sides of
the approximate equality

µ(f +∆f)− µ(f)

∆f
≈ µ′(f) (14)

by ∆f , we conclude that

µ(f +∆f)− µ(f) ≈ µ′(f)∆f. (15)



In this approximation, the formula µ(f + ∆f) = µ(f) +
1

n

takes the form µ′(f)∆f =
1

n
, or, equivalently,

µ′(f) =
1

n∆f
. (16)

Substituting the above expression (12) for ∆f into this for-
mula, we conclude that

µ′(f) =
1

nk0
√
2

√
f(1− f)

N

. (17)

We can simplify this expression into

µ′(f) =
c√

f(1− f)
(18)

for some constant c.
For f = 0, when no expert claims that the statement is

true, we should have µ(0) = 0. Thus, the general expression
for µ(f) can be obtained by integrating the above formula:

µ(f) = c

∫ f

0

dq√
q(1− q)

. (19)

A textbook way to compute this integral is to use an auxiliary
variable t for which q = sin2(t). In this case,

√
q = sin(t), (20)√

1− q =

√
1− sin2(t) =

√
cos2(t) = cos(t), (21)

dq = d(sin2(t)) = 2 sin(t) cos(t) dt, (22)

and thus, the integral takes the form∫ p

0

dq√
q(1− q)

=

∫ t0

0

2 sin(t) cos(t) dt

sin(t) cos(t)
=

2

∫ t0

0

dt = 2t0, (23)

where t0 is the value corresponding to f , i.e., the value for
which sin2(t0) = f . So, we conclude that µ(f) = 2ct0, where
sin2(t0) = f . In other words, we have t0 = Cµ, where we

denoted C
def
=

1

2c
. Thus, the relation between µ and f takes

the form
f = sin2(Cµ). (24)

The value C can now be determined from the condition
that the absolute confidence µ = 1 corresponds to f = 1. For
µ = 1, we get f = 1 = sin2(C), so C =

π

2
. Finally, we get

the relation between the polling membership value f and the
Likert-scale membership value µ:

f ≈ sin2
(π
2
µ
)
. (25)

Discussion. At first glance, this relation looks very mathemat-
ical and non-intuitive. We will show, however, that it becomes
much clearer if we use the techniques of quantum computing;
see, e.g., [6].

III. QUANTUM COMPUTING CLARIFIES THE RELATION
BETWEEN POLLING AND LIKERT-TYPE DEGREES

Probabilities in quantum computing: reminder. The main
idea of quantum computing is that by using quantum effects,
we can often drastically speed up computations. For example,
in classical physics, if we want to look for an element in
an unsorted array of n elements, then we need at least n
computational steps – because if we use fewer steps, we will
not look into all n cells and thus, we may miss the desired
element. Interestingly, in quantum case, we can perform the
search in

√
n steps (and

√
n ≪ n); see, e.g., [1], [2], [6].

This possibility comes from the fact that in quantum physics,
in addition to the usual classical states, we can also have
superpositions of these states.

For a single bit, in addition to the usual states 0 and 1 –
which are denoted as ⟨0| and ⟨1|, we also have superpositions,
i.e., states of the type a0⟨0|+ a1⟨1|, where a0 and a1 are, in
general, complex numbers (in quantum computing, only real
values of a0 and a1 are used). Each such state can be described
as a vector with coordinates (a0, a1) in a 2-D vector space.
The corresponding quantum version of a bit is known as a
qubit.

In a general qubit state a0⟨0|+ a1⟨1|,
• the probability of observing 1 is equal to a21, and
• the probability of observing 0 is a20.

Since we always observe either 0 or 1, these probabilities
must add up to 1, i.e., we must always have a20 + a21 = 1.
In geometric terms, this means that the vector (a0, a1) must
be on the unit circle with a center at 0. Each such vector can be
uniquely described by its angle φ with the axis corresponding
to ⟨0|: in terms of this angle, we have a1 = sin(φ) and
a0 = cos(φ).

Because of this relation, a state of a qubit is (almost)
uniquely determined by the probability p = a21 of observing 1.
Once we know this probability, we can determine a1 as ±√

p
(this ± is what we meant by almost uniquely), and we can
determine a0 as ±

√
a20 = ±

√
1− p.

Resulting relation between polling and Likert-scale de-
grees. For each probability p, we can form a qubit state

√
p ⟨1|+

√
1− p ⟨0| (26)

corresponding to this probability; see, e.g., see [4], [8]. For
this state:

• on the one hand, due to the geometry of quantum states,
we have p = a21 = sin2(φ);

• on the other hand, due to the above relation (25) between
frequencies and Likert-scale values, we have

p ≈ f ≈ sin2
(π
2
µ
)
. (27)

Thus, we have sin2(φ) ≈ sin2
(π
2
µ
)

. In general, we would

thus be able to conclude that sin(φ) ≈ ± sin
(π
2
µ
)

. In our

case, µ ∈ [0, 1] and thus,
π

2
µ is between 0 and π/2, so



sin
(π
2
µ
)

≥ 0. The angle between the two straight lines is
also usually defined as ranging from 0 to π/2. In particular,
the angle φ between the straight line corresponding to the state
a0⟨0| + a1⟨1| and the axis corresponding to the “false” state
⟨0| is also between 0 and π/2. Thus, sin(φ) ≥ 0 and therefore,
sin(φ) ≈ sin

(π
2
µ
)

. Since both angles are from interval
[0, π/2], from the fact that they sines are approximately equal,
we conclude that the angles are approximately equal as well,
i.e., that the angle φ between the vector corresponding to this
state and the vector corresponding to the “false” state ⟨0| is
equal to

φ ≈ π

2
µ. (28)

So, the Likert-scale degree µ can be geometrically interpreted
as (proportional to) the angle between the two states:

µ ≈ 2

π
φ. (29)

Fuzzy interpretation of a superposition between the two
states (see [8]) . Superposition is a basic operation in quantum
physics. In addition to superposition between the basic states
⟨0| and ⟨1|, we can also consider a superposition of states

√
p ⟨1|+

√
1− p ⟨0| (30)

and √
p′ ⟨1|+

√
1− p′ ⟨0| (31)

corresponding to uncertainty. To describe a superposition, we
can simply add the corresponding vectors (

√
p,
√
1− p) and

(
√
p′,

√
1− p′), and then “normalize” the resulting sum

(
√
p+

√
p′,

√
1− p+

√
1− p′), (32)

i.e., divide it by the length√
(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2 (33)

of this vector sum, to make sure that the resulting vector
belongs to the unit circle (and is, thus, a legitimate quantum
state). In terms of the probabilities p and p′, the resulting
vector has the form

(a′′1 , a
′′
0) =

 √
p+

√
p′√

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

,

√
1− p+

√
1− p′√

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

 (34)

with

a′′1 =

√
p+

√
p′√

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

. (35)

Thus, the probability p′′ of observing 1 in this state is equal
to

p′′ = (a′′1)
2 =

(
√
p+

√
p′)2

(
√
p+

√
p′)2 + (

√
1− p+

√
1− p′)2

. (36)

In terms of probabilities, this looks like a very complex
expression. However, in terms of angles, it becomes much
simpler. Indeed, if we take a sum of two unit vectors at angles
φ and φ′ from the ⟨0| axis, we get a bisecting vector at an
angle

φ′′ =
φ+ φ′

2
. (37)

Since the Likert-scale degree is simply proportional to the
angle, we conclude that

µ′′ =
µ+ µ′

2
. (38)

So, superposition corresponds to simple averaging of Likert-
scale degrees.

IV. CONCLUSION

In applications of fuzzy techniques, two main techniques
are used for eliciting a membership degree µ of a given
statement S:

• polling, when we ask several (n) experts and if m of
them claim this statement to be true, we take µ = m/n;
and

• a Likert-scale approach, in which we ask an expert to
mark his/her degree of certainty in the statement S on
a scale from 0 to n; if the expert marks m, we take
µ = m/n.

Usually, these methods lead to different membership degrees.
It is therefore reasonable to find out what is the relation
between these two scales.

To uncover such a relation, we analyze the meaning of both
scales. In both cases, we need to estimate the degree µP (x)
to which the value x satisfies the given fuzzy property P :
e.g., the degree to which a 1 cm skin blemish is small. A
consequence of classifying the blemish to be small or not is
whether we should apply, to this blemish, techniques designed
for small blemishes. In practice, when we are not certain
whether x satisfies the property P , this usually means that
the corresponding techniques do not always work for objects
of value x. By observing many such objects, we can find the
probability p (to be more precise, frequency f ) with which
P -methods (i.e., methods intended for objects that satisfy the
property P ) work for x-objects (i.e., objects which have the
value x of the corresponding quantity).

• An expert who observed that a P -method worked on an
x-object will vote that x satisfies the property P .

• An expert who observed that a P -method did not work
on an x-object will vote that x does not satisfy the
property P .

Since the P -property works, on average, on the fraction
p of x-objects, the proportion of experts who vote that x
satisfies the property P is equal to the corresponding frequency
f (and is, thus, approximately equal to the corresponding
probability p). Thus, the polling membership degree is equal
to the frequency f .

The same probabilities p can also explain different values
on a Likert scale, if we take into account that the observed



frequency f is, in general, slightly different from the actual
probability p. For a sample of limited size N , nearby frequen-
cies f ≈ f ′ can come from the same probability; only if the
difference f ′−f is large enough, we can be sure (with a given
degree of confidence) that the corresponding probabilities p
and p′ are also different. Thus, while potentially, we can have
N + 1 different frequencies 0, 1/N , 2/N , . . . , (N − 1)/N ,
1, we have much fewer distinguishable ones, i.e., frequencies
f and f ′ for which we are confident that they correspond to
different probabilities. It is therefore natural to associate these
distinguishable probabilities with marks on a Likert scale.
This identification leads to the following relation between the
polling membership value f and the Likert-scale membership
value µ: f ≈ sin2

(π
2
µ
)

.
This relation is somewhat too mathematical and not very

intuitively clear. It turns out that this relation becomes much
clearer if we use models from quantum computing. Specif-
ically, in quantum computing, an event with probability p
is associated with a qubit state a0⟨0| + a1⟨1| in which the
probability of observing 1 is equal to p. It turns out that the
corresponding value µ can be then geometrically interpreted

as µ ≈ 2

π
φ, where φ is an angle between a straight line corre-

sponding to the state a0⟨0|+a1⟨1| and the axis corresponding
to the “false” state ⟨0|. Thus, the use of quantum computing
models clarifies the relation between the polling and Likert-
scale membership degrees:

• a polling membership degree corresponds to the proba-
bility of observing a given property in a given state, while

• a Likert-scale membership degree is proportional to the
angle between the given state and the “false” state (a state
in which the given property is always false).
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