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Abstract—In many practical situations, e.g., in signal process-
ing, image processing, analysis of temporal data, it is very useful
to use fuzzy (F-) transforms. In an F-transform, we first replace
a function x(t) by a few local averages (this is called forward F-
transform), and then reconstruct the original function from these
averages (this is called inverse F-transform). While the formula
for the forward F-transform makes perfect intuitive sense, the
formula for the inverse F-transform seems, at first glance,
somewhat counter-intuitive. On the other hand, its empirical
success shows that this formula must have a good justification.
In this paper, we provide such a justification – a justification
which is based on formulating a reasonable compression-based
criterion.

I. F-TRANSFORMS: REMINDER

Data compression: one of the problems for which F-
transforms were invented. In many practical situations, we
need to compress the data. For example, we have records
describing how a certain physical characteristic x (e.g., tem-
perature) changes with time. Sometimes, it takes too much
space to store all this information; sometimes, it takes too
much computation time to process all this information. In all
these situations, we need to compress the data, i.e., to replace
the original values x(t) corresponding to different moments
of time t with a few combinations of these values.

What is the best way to compress a 1-D signal? The
possibility to compress a signal comes from the fact that
usually, the signals slowly change with time, so the values
at nearby moments of time are almost identical. As a result,
within a short time interval [t, t], all the values x(t) are
approximately equal to each other and so, we can represent
all these values x(t) by a single number.

What number should we use? If we knew the exact values
of x(t) for t ∈ [t, t], then we could use any of these values as
the desired single number. In practice, however, the recorded
values x(t) come from measurements, and measurements are
never absolutely accurate. Due to this inevitable measurement
inaccuracy, each recorded value x(t) is, in general, different
from the actual value X(t) of the corresponding quantity.

It is well known that we can decrease the measurement
error if we repeat a measurement several times and then
average the results; see, e.g., [8], [9]. Often, it is better to

take a weighted average, so that we give more weight to more
accurate measurements and less weight to less accurate ones.

The more measurements we make, the more accurate the
resulting average. Thus, instead of a single value x(t), it is
better to take the weighted average of all the corresponding
values x(t). For example, if we are interested in the value
X(tm) in the midpoint tm of the interval [t, t], then:

• the value x(tm) measured at this same moment of time
differs from the desired value X(tm) only by the mea-
surement error,

• while the values x(t) corresponding to t ̸= tm also
differ because the signal somewhat changes between the
moments of time t and tm.

The further away the moment t from tm, the larger the
inaccuracy with which the value x(t) represents X(tm) and
so, the smaller should be the weight with which we take this
value. Thus, it is reasonable to use a weighted average∫

a(t) · x(t) dt

to represent all the values from this interval, where the weight
a(t) increases until it reaches the midpoint tm and then
decreases.
Mathematical comment. While a weighted average sounds
reasonable, a natural question is: why not use some more
general (e.g., non-linear) transformation? The answer to this
question comes from the fact that both the measurement error
∆x(t)

def
= x(t) − X(t) and the signal x(t) itself come from

a large number of different independent factors. According
to the Central Limit Theorem (see, e.g., [9]), a joint effect
of many such factors is approximately normally distributed.
Thus, in a good approximation, we can assume that the joint
distribution of all the corresponding variables X(t) and ∆x(t)
is Gaussian.

Under this assumption, we want to minimize, e.g., the mean
square difference between the actual (unknown) value X(tm)
and the corresponding estimate e(x), i.e., to find an estimate
e(x) depending on all the observed values x(t) for which the
expected value E[(X(tm) − e(x))2] is the smallest possible.
Alternative, instead of reconstructing a single value X(tm),
we can try to reconstruct all the values X(t) corresponding



to t ∈ [t, t], and thus, minimize the (weighted) average of
the corresponding expected values. In all such cases, we want
to find an estimate e(x) that minimizes a certain quadratic
objective function.

It is known that for Gaussian distribution, the optimal esti-
mate to each such quadratic optimization is a linear function
of the inputs [9]. For example, the estimate that minimizes
the expected value is simply equal to the conditional expected
value E[X(tm) |x(t)] under the condition that we know all
observed values of x(t) = X(t) + ∆x(t), and it is known
that for the normal distribution, this expected value is a linear
function of the variables x(t). Thus, the weighted average is
indeed the best possible estimation.

We need weighted averages corresponding to several in-
tervals. To describe the behavior of the observed signal x(t)
in different intervals [ti, ti], we need to know the weighted
averages

∫
ai(t) · x(t) dt corresponding to different intervals.

All these intervals should be of the same width – the largest
width for which we can safely ignore the signal’s change over
this time interval. Indeed:

• if we take intervals which are wider than the largest-static
width, then the compression ignores significant changes
and thus, does not lead to an adequate representation of
the original signal;

• on the other hand, if we take intervals which are narrower
than the largest-static width, this means that we use un-
necessarily many intervals, and thus, miss an opportunity
to compress the original observations even further.

The optimal weights ai(t) depend on the statistical proper-
ties of the signal and the noise. In many practical situations,
these properties do not change much with time: we use the
same measuring instruments, with the same accuracy, and
we observe the same physical process. Sometimes, there are
abrupt changes that are worthy of our interest, but if we
are interested in a local interval in which the signal changes
abruptly, then we should not compress the data from this
interval, we should take each measurement result into account.
The possibility to compress without losing information only
comes when we observe a signal that does not change much,
and whose statistical characteristics do not change much.

Since the weights ai(t) and aj(t) are determined by the sta-
tistical characteristics, and these characteristics do not change
when we move to another time interval, it is reasonable to
conclude that these weights also do not change from one
interval to another. To be more precise, the values of these
weights are the same if we measure them against the midpoints
tmi and tmj of the corresponding intervals: ai(t) = a(t−tmi)
and aj(t) = a(t− tmj) for the same shape function a(t) that
increases until 0 and then decreases.

At first glance, it may seem that it is sufficient to divide the
original time interval into subintervals of equal length

[t0, t0 +H], [t0 +H, t0 + 2H], . . . ,

and replace the original function x(t) with weighted averages
over each of these intervals. The problem with this approach is

that this way, we will reconstruct the values at midpoints well,
but not the values at the endpoints t0+k ·H of the correspond-
ing intervals. A natural way to also reconstruct these endpoint
values is to supplement the original weighted averages with
similar averages centered around these endpoints, i.e., values
corresponding to intervals

[t0 +H/2, t0 + 3H/2], [t0 + 3H/2, t0 + 5H/2], . . .

If we denote h
def
= H/2, we arrive at the following scheme:

we select a function a(t) which is:
• defined on an interval (−h, h),
• increasing for t < 0, and
• decreasing for h > 0,

take the values ti = t + i · h, and replace the original signal
x(t) with weighted averages

xi =

∫ ti+1

ti−1

ai(t) · x(t) dt, where ai(t) = a(t− ti).

If the signal x(t) does not change with time, then we can
compress it into a single value – the value of this signal at
any moment of time. It is reasonable to require that for such a
constant signal x(t) = const, each compressed value coincides
with the same constant, i.e., that∫ ti+1

ti−1

ai(t) dt =

∫ h

−h

a(t) dt = 1.

Because of this property, if we change the step h, we have
to also re-scale the weight function a(t). It is therefore
convenient to fix the weight function, e.g., by requiring that its
largest value is 1 (e(0) = 1), and then, for each h, to normalize
the function e(t) by dividing it by the corresponding integral∫
e(t) dt:

a(t) =
e(t)∫
e(s) ds

.

In terms of the non-normalized weight function e(t), the
weighted average takes the form

xi =

∫ ti+1

ti−1
ei(t) · x(t) dt∫ ti+1

ti−1
ei(t) dt

,

where ei(t)
def
= e(t− ti).

An additional simplifying property. All we want from the
weighted function e(t) is that it is equal to 1 for t = 0,
increases for t < 0, and decreases for t > 0. It make sense to
require that e(−h) = e(h) = 0, since the width of the interval
[ti − h, ti + h] is selected by the condition that values outside
the interval have changed too much to provide the desired
approximation accuracy for the midpoint x(ti).

The simplest such function is a piece-wise linear function
e(t) which linearly increases from 0 to 1 on the the interval
(−h, 0] and then linearly decreases from 1 to 0 on the interval
[0, h), i.e., the function

e(t) = max

(
1− |t|

h
, 0

)
.



For this function, we have an additional property that ei(t) +
ei+1(t) = 1 for all t. This additional property is often helpful.
Thus, we arrive at the following definition; see, e.g., [1], [4],
[5], [6], [7]:

Definition 1. Let t0 and h > 0 be real numbers, let n > 0

be an integer, and let ti
def
= t0 + i · h. Let e(t) be a function

which:
• is non-zero only on the interval (−h, h),
• increases from 0 to 1 for negative t and decreases from

1 to 0 for positive h, and
• for which, for functions ei(t)

def
= e(t−ti), we have ei(t)+

ei+1(t) = 1 for all integers i and all values t ∈ [ti, ti+1].
Then, for each function x(t), its F-transform is defined as a
sequence of values x0, x2, . . . , xn, where:

x0 =

∫ t1
t0

e0(t) · x(t) dt∫ t1
t0

e0(t) dt
,

xi =

∫ ti+1

ti−1
ei(t) · x(t) dt∫ ti+1

ti−1
ei(t) dt

, i = 1, 2, . . . , n− 1,

xn =

∫ tn
tn−1

en(t) · x(t) dt∫ tn
tn−1

en(t) dt
.

Comment. Each function ei(t) increases from 0 to 1, reaches
the value 1 at t = ti, and then decreases from 1 to 0. Thus, it
can be interpreted as a membership function describing to what
extent t is close to the point ti; see, e.g., [2], [3], [10]. Since
on each interval ti, ti+1], only two of the functions ej(t) are
different from 0–the functions ei(t) and ei+1)(t)–the condition

that ei(t)+ei+1(t) = 1 means that
n∑

j=0

ej(t) = 1 for all t, i.e.,

that the membership functions ei(t) form a fuzzy partition.

Inverse F-transform: what it is and how it is usually
defined. Once we finished the compression, we replace the
original signal by the values x0, . . . , xn. As we have men-
tioned earlier, each of these values xi if a good approximation
to the original value x(ti). What if we are now interested in
estimating the value x(t) for some moment of time which is
different from the endpoints ti, i.e., for some moment of time
t which is strictly in between two endpoints ti and ti+1?

In principle, since we assumed that the value of the signal
x(t) does not change much between the moments ti and
ti+1, we can simply take one of the values xi ≈ x(ti) and
xi+1 ≈ x(ti+1) as the desired estimates. But maybe we can do
better by appropriately combining several values xj? Besides,
if we simply replace all the values x(t) with one of the
values xi, we transform the original continuous signal with
a piece-wise constant discontinuous one, and it is desirable,
when reconstructing, to preserve important signal properties
like continuity.

As a result, it was proposed to use the following formula:

Definition 2. Let t0 and h > 0 be real numbers, let n > 0

be an integer, and let ti
def
= t0 + i · h. Let e(t) be a function

which:
• is non-zero only on the interval (−h, h),
• increases from 0 to 1 for negative t and decreases from

1 to 0 for positive h, and
• for which, for functions ei(t)

def
= e(t−ti), we have ei(t)+

ei+1(t) = 1 for all integers i and all values t ∈ [ti, ti+1].
Let x0, . . . , xn be the F-transform of a function x(t). By an
inverse F-transform, we mean a function

x̂(t) =

n∑
i=1

xi · ei(t).

Important remark: applications of F-transform go beyond
compression. It should be mentioned that while our motivation
for F-transform came from compression, F-transforms are use-
ful beyond compression. For example, when we first perform
F-transform and then inverse F-transform, we also get rid of
the high-frequency noise, and so, F-transforms are also very
useful for de-noising and smoothing; see, e.g., [1], [4], [5],
[6], [7].

II. AT FIRST GLANCE, THE FORMULA FOR THE INVERSE
F-TRANSFORM IS SOMEWHAT COUNTERINTUITIVE

Reconstructing the function x(t): a seemingly reasonable
idea. The result of the inverse F-transform is a linear com-
bination of the functions ei(t): x̂(t) =

n∑
i=0

ci · ei(t) for some

coefficients ci. As part of our motivations, we wanted to make
sure that the mean square approximation error is the smallest
possible. It therefore seems to be reasonable to look for the
coefficients ci for which the approximate expression

x≈(t) =

n∑
i=0

ci · ei(t)

is the closest to the original function x(t) in the sense that the
value∫

(x≈(t)− x(t))2 dt =

∫ ( n∑
i=0

ci · ei(t)− x(t)

)2

is the smallest possible.

The above idea leads to an approximation which is
different from the inverse F-transform. The above idea is
reasonable and easy to implement, by using the known fact
that when a differentiable function attains its minimum, its
derivatives are equal to 0. Here, the minimized expression
is linear in terms of the unknown coefficients c0, c1, . . . , cn.
Thus, if we differentiate the above expression with respect to
each unknown cj , we get the following system of n+1 linear
equations for n+ 1 unknown ci:∫

2 ·

(
n∑

i=0

ci · ei(t)− x(t)

)
· ej(t) dt = 0,



or, equivalently,
n∑

i=1

ci ·
∫

ei(t) · ej(t) dt =
∫

x(t) · ej(t) dt.

For the functions ei(t) = e(t − ti) corresponding to F-
transform, this expression can be further simplified if we take
into account that when |i − j| > 1, the functions ei(t) and
ej(t) are different from 0 at non-intersecting intervals and thus,
ei(t) · ej(t) = 0 for all t and

∫
ei(t) · ej(t) dt = 0. Thus, the

above system can be simplified as follows:

c0 ·
∫

e20(t) dt+ c1 ·
∫

e0(t) · e1(t) dt =∫
x(t) · e0(t) dt;

cj ·
∫

e2j (t) dt+ cj−1 ·
∫

ej(t) · ej−1(t) dt+

cj+1 ·
∫

ej(t) · ej+1(t) dt =

∫
x(t) · ej(t) dt,

j = 1, 2, . . . , n− 1;

cn ·
∫

e2n(t) dt+ cn−1 ·
∫

en(t) · en−1(t) dt =∫
x(t) · en(t) dt.

Each right-hand side
∫
x(t)·ej(t) dt can be described, in terms

of the F-transform xj , as xj ·
∫
ej(t) dt; thus, by dividing both

sides of each equation by the integral
∫
ej(t) dt, we get

c0 ·
∫
e20(t) dt∫
e0(t) dt

+ c1 ·
∫
e0(t) · e1(t) dt∫

e0(t) dt
= x0;

cj ·
∫
e2j (t) dt∫
ej(t) dt

+ cj−1 ·
∫
ej(t) · ej−1(t) dt∫

ej(t) dt
+

cj+1 ·
∫
ej(t) · ej+1(t) dt∫

ej(t) dt
= xj ,

j = 1, 2, . . . , n− 1;

cn ·
∫
e2n(t) dt∫
en(t) dt

+ cn−1 ·
∫
en(t) · en−1(t) dt∫

en(t) dt
= xn.

Since the functions ei(t) are obtained from each other by
shift, the integrals∫

e2j (t) dt,

∫
ej(t) dt and

∫
ej(t) · ej−1(t) dt

are the same for all j = 1, 2, . . . , n. We will denote these
common values by

I2 =

∫
e2j (t) dt, I1 =

∫
ej(t) dt, and

I3 =

∫
ej(t) · ej−1(t) dt.

For example, for the above-mentioned triangular function

e(t) = 1− |t|
h

, we have

I2 =
2

3
· h2, I1 = h, I3 =

1

6
· h2.

In these terms, the above system takes the form

c0 · k0 + c1 · k1 = x0;

cj · p0 + cj−1 · p1 + cj+1 · p1 = xj , j = 1, . . . , n− 1;

cn · kn + cn−1 · kn−1 = xn,

where

k0
def
=

∫
e20(t) dt∫
e0(t) dt

; k1
def
=

I3∫
e0(t) dt

;

p0
def
=

I2
I1

; p1
def
=

I3
I1

;

kn
def
=

∫
e2n(t) dt∫
en(t) dt

; kn−1
def
=

I3∫
en(t) dt

.

In particular, for the triangular function e(t), we have∫
e20(t) dt =

∫
e2n(t) dt =

1

3
· h2,∫

e0(t) dt =

∫
en(t) dt =

1

2
· h,

hence

k0 = kn = p0 =
2

3
· h, k1 = kn−1 =

1

3
· h, p1 =

1

6
· h.

So, the above system takes the form

2

3
· h · c0 +

1

3
· h · c1 = x0;

2

3
· h · cj +

1

6
· h · cj−1 +

1

6
· h · cj+1 = xj ; j = 1, . . . , n;

2

3
· h · cn +

1

3
· h · cn−1 = xn.

Clearly, the solution ci = xi corresponding to the inverse F-
transform does not satisfy these equations. Thus, with respect
to the above optimization criterion, the inverse F-transform is
not optimal.

Discussion.
• On the one hand, the inverse F-transform does not mini-

mize the mean square approximation error.
• On the other hand, in many practical problems, the

inverse F-transform works very well.
This means that this practical success corresponds not to
minimizing the mean square approximation error, but to some
other reasonable criterion.

What we do in this paper. In this paper, we describe an
alternative reasonable criterion, and we show that for this
criterion, inverse F-transform is indeed optimal.



III. A GENERAL DEFINITION OF AN INVERSE TRANSFORM

Discussion. We want to go from the F-transform values

x0, . . . , xn of a function x(t) to an approximation
n∑

i=0

ci ·ei(t)

to the original function x(t). For fixed functions ei(t), this
means that we need a mapping that maps a vector (x0, . . . , xn)
into a vector (c0, c1, . . . , cn).

Since the transformation from x(t) to xi is linear, it is
reasonable to restrict ourselves to linear inverse transforma-
tions, i.e., to the transformations of the type ci =

n∑
j=1

ki,j · xj

for some coefficients ki,j . The question is then to define
appropriate coefficients ki,j .

The inverse F-transform corresponds to the unit matrix I
for which ki,i = 1 and ki,j = 0 for i ̸= j.

Definition 3. Let t0 and h > 0 be real numbers, let n > 0

be an integer, and let ti
def
= t0 + i · h. Let e(t) be a function

which:
• is non-zero only on the interval (−h, h),
• increases from 0 to 1 for negative t and decreases from

1 to 0 for positive h, and
• for which, for functions ei(t)

def
= e(t−ti), we have ei(t)+

ei+1(t) = 1 for all integers i and all values t ∈ [ti, ti+1].
By an inverse transform, we mean a matrix K with elements
ki,j , 0 ≤ i, j ≤ n. Let x0, . . . , xn be the F-transform of a
function x(t). For each matrix K, by a K-inverse transform,
we mean a function

x̂K(t) =
n∑

i=0

ci · ei(t),

where ci =
n∑

j=0

ki,j · xj .

IV. A NEW INTUITIVELY REASONABLE CRITERION
JUSTIFIES THE INVERSE F-TRANSFORM

A reasonable property: local consistency. The main purpose
of the F-transform compression is that xi should describe a
behavior of the signal at an interval [ti, ti+1]. It is reasonable
to require that the inverse transform follows the same idea:
for example, if the original x(t) signal was constant in a
neighborhood of this interval, then the reconstructed function
x̂K(t) should also be equal to the same constant for all values
t from this interval.

Let us describe this property in precise terms.

Definition 4. We say that a matrix K is locally consistent if
for every i = 0, . . . , n− 1 and for every function x(t) which
is equal to a constant c on the interval [ti − h, ti+1 + h], the
reconstructed function x̂K(t) is equal to the same constant c
for all t ∈ [ti, ti+1].

Comment. One can easily check that the inverse F-transform
satisfies this property. It turns out that the inverse F-transform
is the only K-inverse transform that satisfies this local con-
sistency property.

Proposition. A matrix K is locally consistent if and only if it
coincides with the unit matrix.

Discussion. In other words, the only locally consistent K-
inverse transform is the inverse F-transform (which corre-
sponds to the unit matrix K = I). So, the above result provides
the desired justification of the inverse F-transform.

Proof of the Proposition. We will describe the proof for the
case when i = 1, 2, . . . , n − 2. The proof for the remaining
values i = 0 and i = n− 1 is similar.

The local consistency property should hold for every con-
stant c, in particular, it should hold for the constant c = 1.
Let x(t) be a function for which x(t) = 1 for all t from
the interval [ti − h, ti+1 + h]. For this function, the local
consistency property implies that x̂K(t) = 1 for all t from
the interval [ti, ti+1].

For values t from this interval [ti, ti+1], only two of the
functions ej(t) are different from 0: the function ei(t) and
the function ei+1(t). Thus, for these t, the general formula

x̂K(t) =
n∑

j=0

cj · ej(t) turns into

x̂K(t) = ci · ei(t) + ci+1 · ei+1(t);

so, the local consistency requirement means that

ci · ei(t) + ci+1 · ei+1(t) = 1

for all t ∈ [ti, ti+1].
In particular, for t = ti, by definition of the functions

ei(t) = e(t − ti) and ei+1(t) = e(t − ti+1) and by the
properties of the function e(t), we have ei(ti) = 1 and
ei+1(ti) = 0. Thus, for t = ti, the displayed equality takes
the form ci · 1 + ci+1 · 0 = 1, i.e., the form ci = 1.

Similarly, for t = ti+1, we have ei(ti+1) = 0 and
ei+1(ti+1) = 1 and thus, the displayed equality leads to
ci+1 = 1.

Thus, for each such function x(t), we must have ci =
ci+1 = 1, i.e.,

n∑
j=0

ki,j · xj = 1 and
n∑

j=0

ki+1,j · xj = 1.

Substituting the expression for the forward F-transform xj into
the first of two equalities, we conclude that

n∑
j=0

ki,j ·
∫

aj(t) · x(t) dt = 1,

where
aj(t) =

ej(t)∫
ej(s) ds

,

i.e., that ∫
w(t) · x(t) dt = 1,

where w(t)
def
=

n∑
j=0

ki,j · aj(t).

We know that x(t) = 1 for t ∈ [ti−h, ti+1+h]; for all other
values t, we can have arbitrary values x(t). Let us therefore



separate the above integral into two parts: an integral over the
interval [ti − h, ti+1 + h] for which we know the values of
x(t) and the integral over all other (unknown) values x(t):

1 =

∫
w(t) · x(t) dt =

∫
t∈[ti−h,ti+1+h]

w(t) · x(t) dt+

∫
t̸∈[ti−h,ti+1+h]

w(t) · x(t) dt.

Substituting x(t) = 1 into the first integral, we conclude that

1 =

∫
t∈[ti−h,ti+1+h]

w(t) dt+

∫
t̸∈[ti−h,ti+1+h]

w(t) · x(t) dt.

Both the left-hand side and the right-hand sides are linear
functions of the unknowns x(t) corresponding to

t ̸∈ [ti − h, ti+1 + h].

These two functions must coincide for all possible values of
these unknowns. It is well known that the values of two linear
functions always coincide if and only they have the same free
terms and the same coefficients at all the variables. In other
words, we must have

1 =

∫
t∈[ti−h,ti+1+h]

w(t) dt

and

w(t) =
n∑

j=1

ki,j · aj(t) = 0

for all t ̸∈ [ti − h, ti+1 + h].
For each integer ℓ ≤ i−2, values from the interval [tj , tj+1]

are outside the interval [ti − h, ti+1 + h], hence we have
n∑

j=1

ki,j · aj(t) = 0

for all such t. On this interval, only two functions aj(t) are
different from 0:

• the function aℓ(t) and
• the function aℓ+1(t).

Thus, the equality
n∑

j=1

ki,j · aj(t) = 0 takes the form

kiℓ · aℓ(t) + ki,ℓ+1 · aℓ+1(t) = 0.

In particular, for t = tℓ, we have aℓ(tℓ) ̸= 0 and aℓ+1(tℓ) = 0,
so ki,ℓ · aℓ(tℓ) = 0 and thus, ki,ℓ = 0.

Similarly, for t = tℓ+1, we have aℓ(tℓ+1) = 0 and
aℓ+1(tℓ+1) ̸= 0, so

ki,ℓ+1 · aℓ(tℓ+1) = 0

and thus, ki,ℓ+1 = 0. In other words, we have

ki,0 = ki,1 = . . . = ki,i−1 = 0.

By considering ℓ ≥ i+ 2, we can similarly get

ki,i+2 = . . . = ki,n = 0.

Thus, from the fact that ci = 1, we conclude that the only
possibly non-zero elements ki,j are ki,i and ki,i+1. This is
true for every i, in particular, ki,i−1 = 0 for every i.

Similarly, from the fact that ci+1 = 1, we conclude that
the only possibly non-zero elements ki+1,j are ki+1,i and
ki+1,i+1. We cannot have ki+1,i ̸= 0 since we have already
proven that we have ki′,i′−1 = 0 for all i′, in particular, for
i′ = i + 1. Thus, the only non-zero element ki+1,j is the
diagonal element ki+1,i+1.

This is true for every i′ = i + 1, so we conclude that the
matrix ki,j is diagonal, its only non-zero elements are elements
of the type ki,i. Thus, we have ci = ki,i · xi.

To complete the proof, let us show that all the diagonal
elements ki,i of the matrix ki,j are equal to 1. Indeed, the
function e(t) is non-zero for values t from the interval (−h, h)
and equal to 0 for all other values. Thus, each function ej(t) =
e(t − tj) is positive for t ∈ (tj − h, tj + h) and is equal to
0 for all other t. In particular, the function ei(t) differs from
0 only for values t from the interval (ti − h, ti + h). On this
interval, the function x(t) coincides with the constant c = 1
and thus,

xi =

∫ ti+1

ti−1
ei(t) · x(t) dt∫ ti+1

ti−1
ei(t) dt

=

∫ ti+1

ti−1
ei(t) dt∫ ti+1

ti−1
ei(t) dt

= 1.

Thus, the requirement that ci = ki,i · xi = 1 leads to

ki,i = 1.

Since this is true for each element of the diagonal matrix
ki,j , we thus conclude that this matrix is the unit matrix. The
proposition is proven.
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