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Abstract A relationship between the discrete F-transform and aggregation functions
is analyzed. We show that the discrete F-transform (direct or inverse) can be asso-
ciated with a set of linear aggregation functions that respect a fuzzy partition of a
universe. On the other side, we discover conditions that should be added to a set of
linear aggregation functions in order to obtain the discrete F-transform. Last but not
least, the relationship between two analyzed notions is based on a new (generalized)
definition of a fuzzy partition without the Ruspini condition.

1 Introduction

In the last ten years, the theory of F-transforms has been intensively developed in
many directions and especially in connection with image processing. The following
topics have been newly elaborated on the F-transform platform: image compression
and reconstruction [1, 2, 3], image reduction and sharpening [4], edge detection
[5, 6], etc. On the other side, similar applications can be produced with the help of
aggregation functions, see e.g., [7, 8]. The goal of this contribution is to discover a
relationship between both notions.

Irina Perfilieva
Centre of Excellence IT4Innovations,
division of the University of Ostrava
Institute for Research and Applications of Fuzzy Modelling,
30. dubna 22, 701 03 Ostrava 1, Czech Republic
e-mail: Irina.Perfilieva@osu.cz

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University, El Paso, TX 79968, USA
e-mail: vladik@utep.edu

1



2 Irina Perfilieva and Vladik Kreinovich

To comment the goal, we notice that it is not difficult to show that the discrete
F-transform (direct or inverse) can be associated with a set of linear aggregation
functions. However, the opposite characterization is not so obvious. In this contri-
bution, we found conditions that should be added to a set of linear aggregation func-
tions of the same number of variables in order to obtain the discrete F-transform.
Last but not least, the proposed relationship between two notions is based on a new
(generalized) definition of a fuzzy partition without the Ruspini condition.

We believe that this investigation contributes to a mutual success of both theories.

2 F-transform on a Generalized Fuzzy Partition

The F-transform technique was introduced in [9]. Below we remind its main prin-
ciples for the so called discrete functions. The latter means that an original function
f is known (may be computed) on a finite set P = {p1, . . . , pl} ⊆ [a,b]. The interval
[a,b] will be considered as a universe of discourse that is partitioned into n≥ 3 fuzzy
sets A1, . . . ,An. We identify fuzzy sets A1, . . . ,An with their membership functions
that map [a,b] onto [0,1] and call them basic functions.

2.1 Generalized Fuzzy Partition

The following is a new definition of a generalized fuzzy partition which differs from
that in [9] by using a smaller number of axioms.

Definition 1. Let [a,b] be an interval on the real line R, n > 2, and let x1, . . . ,xn
be nodes such that a ≤ x1 < .. . < xn ≤ b. Let [a,b] be covered by the intervals
[xk−h′k,xk+h′′k ]⊆ [a,b], k = 1, . . . ,n, such that their left and right margins h′k,h

′′
k ≥ 0

fulfill h′k +h′′k > 0.
We say that fuzzy sets A1, . . . ,An : [a,b] → [0,1] constitute a generalized fuzzy

partition of [a,b] (with nodes x1, . . . ,xn and margins h′k,h
′′
k , k = 1, . . . ,n), if for every

k = 1, . . . ,n, the following three conditions are fulfilled:

1. (locality) — Ak(x)> 0 if x ∈ (xk −h′k,xk +h′′k ), and Ak(x) = 0 if x ∈ [a,b]\(xk −
h′k,xk +h′′k );

2. (continuity) — Ak is continuous on [xk −h′k,xk +h′′k ];
3. (covering) — for x ∈ [a,b], ∑n

k=1 Ak(x)> 0.

We say that fuzzy sets I1, . . . , In : [a,b] → {0,1} constitute a (0-1)-generalized
partition of [a,b] with nodes and margins as above, if for every k = 1, . . . ,n, Ik fulfills
(locality) as above, (continuity) on (xk −h′k,xk +h′′k ) and (covering) as above.

If nodes and margins are the same for generalized fuzzy and (0-1)-partitions
A1, . . . ,An and I1, . . . , In, respectively, then we say that the latter is a “mask” of the
former.
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It is worth to remark that given nodes x1, . . . ,xn and margins h′k,h
′′
k , k = 1, . . . ,n,

within [a,b], a (0-1)-generalized partition I1, . . . , In of [a,b] is uniquely determined.
We say that a generalized fuzzy partition A1, . . . ,An of [a,b] with nodes x1, . . . ,xn

and margins h′k,h
′′
k , k = 1, . . . ,n, is centered at nodes if basic functions are bell-

shaped, i.e. for each k = 1, . . . ,n, Ak is monotonically increasing on [xk −h′k,xk] and
monotonically decreasing on [xk,xk +h′′k ].

Further on, the word “generalized” in characterization of fuzzy partitions will be
omitted and left only when this fact is essential.

2.2 Discrete F-transform

We assume that a discrete function f : P→ [0,1]1 on a finite domain P= {p1, . . . , pl},
P ⊆ [a,b], is given and that P is sufficiently dense with respect to a fixed partition
A1, . . . ,An, of [a,b], i.e.,

(∀k)(∃ j)Ak(p j)> 0.

Then, the (discrete) F-transform of f and its inverse are defined as follows.

Definition 2. Let A1, . . . ,An, for n > 2, be basic functions that form a generalized
fuzzy partition of [a,b], and let function f be defined on the set P = {p1, . . . , pl} ⊆
[a,b], which is sufficiently dense with respect to the partition. We assume that n ≤ l.
The n-tuple of real numbers Fn[ f ] = (F1, . . . ,Fn) is the discrete F-transform of f
with respect to A1, . . . ,An if

Fk =
∑l

j=1 f (p j)Ak(p j)

∑l
j=1 Ak(p j)

, k = 1, . . . ,n. (1)

The inverse F-transform f̂ of f is a function that is defined on the same set P as
above and represented by the following inversion formula:

f̂ (p j) =
∑n

k=1 FkAk(p j)

∑n
k=1 Ak(p j)

, j = 1, . . . , l. (2)

Assume that the elements of P are numbered in accordance with their order, i.e.,
p1 < · · ·< pl . Denote Pk = {p j|Ak(p j)> 0}, k = 1, . . . ,n. Because P is sufficiently
dense with respect to A1, . . . ,An, each set Pk, k = 1, . . . ,n is not empty. Moreover,
from the property locality it follows that for all k = 1, . . . ,n, there exist integers k1,k2
such that 1 ≤ k1 ≤ k2 ≤ l and Pk = {p j | k1 ≤ j ≤ k2}. We say that Pk is covered by
Ak or Ak covers Pk.

Let us identify the function f on P with the l-dimensional vector ( f1, . . . , fl) ∈
[0,1]l of its values such that f j = f (p j), j = 1, . . . , l. Because A1, . . . ,An is a fixed
partition of [a,b] and f is an arbitrary function on P, the F-transform Fn[ f ] of f can

1 The restriction of the range of f to [0,1] is not principal and was assigned due to further corre-
spondence with aggregation functions.
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be considered as a result of a linear map Fn[ f ] : [0,1]l → [0,1]n between linear vector
spaces [0,1]l and [0,1]n. We split this map into n separate maps Fk : [0,1]l → [0,1]
where Fk( f1, . . . , fl) = Fk, k = 1, . . . ,n, and consider each map Fk as a real function
of l arguments. In the sequel, we will be keeping at this viewpoint.

Let us list basic properties of the map Fk : [0,1]l → [0,1], k = 1, . . .n:

P1. (linearity) - for all x,y ∈ [0,1]l and α,β ∈ [0,1] such that αx+ βy ∈ [0,1]l ,
Fk(αx+βy) = αFk(x)+βFk(y);

P2. (idempotency) - for all c ∈ [0,1], Fk(c, . . . ,c) = c;
P3. (non-decreasing) - if x,y ∈ [0,1]l and x ≤ y, then Fk(x)≤ Fk(y);
P4. (redundancy) - if basic function Ak covers the set Pk = {p j|k1 ≤ j ≤ k2}, then

only those arguments x j among x1, . . . ,xl , whose indices are within the in-
terval k1 ≤ j ≤ k2, are essential, i.e. for all x1, . . . ,xl ∈ [0,1], Fk(x1, . . . ,xl) =
Fk(0, . . . ,xk1 , . . . ,xk2 , . . . ,0).

It easily follows from properties P1 and P3 that the map Fk, k = 1, . . .n, is
monotonously non-decreasing. This fact together with the property P2 proves that
the map Fk is an additive and idempotent aggregation function2 (see [10]). More-
over, from property P4 we deduce that the following derived function F ′

k : [0,1]lk →
[0,1] where lk = (k2 − k1) and F ′

k(xk1 , . . . ,xk2) = Fk(0, . . . ,xk1 , . . . ,xk2 , . . . ,0) is an
aggregation function as well.

In the following section, we will analyze the inverse problem, i.e., under which
conditions n aggregation functions determine the F-transform.

3 Discrete F-transform and Aggregation Functions

The goal of this section is to find conditions that characterize aggregation functions
as the F-transform components.

3.1 Aggregation functions and generic fuzzy partition

In this section, we will see that two kinds of properties: functional (additivity, etc.)
and spacial (correspondence with a certain partition), should be demanded from a set
of aggregation functions if we want them to represent the F-transform components.

Theorem 1. Let I1, . . . , In, n> 2, be a (0-1)-generalized partition of [a,b] with nodes
x1, . . . ,xn and margins h′k,h

′′
k , k = 1, . . . ,n, and let finite set P = {p1, . . . , pl ⊆ [a,b]}

where l ≥ n be sufficiently dense with respect to it. Then for any additive, non-
decreasing, idempotent aggregation functions F1, . . . ,Fn : [0,1]l → [0,1], that fulfill
the property P4 (with respect to I1, . . . , In) there exists a fuzzy partition A1, . . . ,An of

2 An aggregation function of l variables in [0,1] is a function which is non-decreasing in each
argument and idempotent at boundaries (0, . . . ,0) and (1, . . . ,1).
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[a,b] with the mask I1, . . . , In, such that for each k = 1, . . . ,n, the k-th F-transform
component Fk of a discrete function f : P → [0,1], identified with ( f1, . . . , fl), is
equal to the value of the corresponding aggregation function Fk at point ( f1, . . . , fl).

Proof. Let us fix k, 1 ≤ k ≤ n, and prove the assertion for the aggregation function
Fk : [0,1]l → [0,1]. By the assumption, Fk fulfills the properties in the formulation.
From the first three, namely additivity, non-decreasing and idempotency, it follows
(see, e.g , Proposition 4.21 from [10]) that there exist “weights” wk1, . . . ,wkl ∈ [0,1]
such that ∑l

j=1 wk j = 1 and

Fk( f1, . . . , fl) =
l

∑
j=1

wk j f j, where ( f1, . . . , fl) ∈ [0,1]l . (3)

Let Pk = {p j | k1 ≤ j ≤ k2} be covered by Ik. By the assumption, Pk ̸= /0. By the prop-
erty P4, for all f1, . . . , fl ∈ R, Fk( f1, . . . , fl) = Fk(0, . . . , fk1 , . . . , fk2 , . . . ,0). There-
fore,

Fk( f1, . . . , fl) =
l

∑
j=1

wk j f j =
k2

∑
j=k1

wk j f j.

In the above given equality, ( f1, . . . , fl) is an arbitrary vector in [0,1]l , and this fact
implies that coefficients wk j = 0, if j ∈ {1, . . . , l} \ {k1, . . . ,k2}. Let us define the
basic function Ak on P as

Ak(p j) =

{
wk j, if k1 ≤ j ≤ k2,

0, otherwise,
(4)

and prove that the k-th F-transform component Fk of f : P → [0,1] with respect to
Ak in (4) is equal to the aggregation Fk( f1, . . . , fl) where f j = f (p j), j = 1, . . . , l.
Indeed by (1),

Fk =
∑l

j=1 f (p j)Ak(p j)

∑l
j=1 Ak(p j)

=
∑l

j=1 f jwk j

∑l
j=1 wk j

= Fk( f1, . . . , fl).

To complete the proof it is sufficient to show that Ak can be continuously extended
to the whole interval [a,b] with the mask Ik.

By the locality of a generalized fuzzy partition, Ik(x)> 0 if and only if x ∈ (xk −
h′k,xk + h′′k ). By (4), Ak(p j) > 0 if and only if p j ∈ Pk. Because Pk is covered by
Ik, Pk ⊂ (xk − h′k,xk + h′′k ). Therefore, on the first step we construct a continuous
extension of Ak to [xk − h′k,xk + h′′k ]. It can be obtained if we continuously connect
the following points on the real plane: (xk−h′k,0), (pk1 ,wk,k1), . . . , (pk2 ,wk,k2), (xk+
h′′k ,0). On the second step we put Ak(x) = 0 for all x∈ [a,b]\ [xk−h′k,xk+h′′k ], which
is a continuous extension of Ak to [a,b]\ [xk −h′k,xk +h′′k ]. It is easy to see that thus
extended Ak fulfills all requirements from Definition 1.

In the following corollary, we compose a matrix W so that the vector of F-transform
components of f is the product of W by the vector of f .
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Corollary 1. Let the assumptions of Theorem 1 be fulfilled. Then for any additive,
non-decreasing, idempotent aggregation functions F1, . . . ,Fn : [0,1]l → [0,1], that
fulfill the property P4, there exists a n× l matrix W such that the F-transform Fn[ f ] =
(F1, . . . ,Fn) of any discrete function f : P → [0,1] such that f (p j) = f j, j = 1, . . . , l,
can be computed by the product W f where f = ( f1, . . . , fl), i.e.

Fn[ f ] =W f. (5)

Proof. Under the denotation of Theorem 1 and its proof, elements wk j of the matrix
W are weights that determine aggregation functions in accordance with (3).

We say that W is an aggregation matrix that corresponds to the F-transform.

3.2 Aggregation functions and centered fuzzy partition

This section is focused on fuzzy partitions that are centered at nodes. Our goal is
to analyze under which conditions aggregating functions represent the F-transform
with respect to this type of partition.

Let us consider aggregation functions of l variables, each one runs over [0,1].
We say that the point y ∈ [0,1]l is a result of a point-spread noise applied to a point
x ∈ [0,1]l if both points differ exactly in one coordinate.

Definition 3. Let F : [0,1]l → [0,1] be an aggregation function, 1 ≤ s ≤ l and 0q ∈
[0,1]l be a point whose coordinates are 0s, except for the q-th one which is equal to
1. We say that aggregation F works as a “noise damper” centered at s, if it fulfills
the following condition:

if (s ≤ q2 < q1 ≤ l) or (1 ≤ q1 < q2 ≤ s) then F(0q1)≤ F(0q2). (6)

Let us explain the above given notions. The value “1” at the q-coordinate in 0q
represents a noise. The “noise damper” centered at s property of F means that the
farther is the position of noise “1” from the s-th coordinate, the less is the value of
aggregation performed by F .

The following theorem shows that aggregating functions that fulfill conditions
of Theorem 1 and work as noise dampers centered at certain nodes represent the
F-transform components with respect to a fuzzy partition that is centered at these
nodes.

Theorem 2. Let I1, . . . , In, n > 2, be a (0− 1)-generalized partition of [a,b] with
nodes x1, . . . ,xn and margins h′k,h

′′
k , k = 1, . . . ,n, and let finite set P = {p1, . . . , pl ⊆

[a,b]} where l ≥ n be sufficiently dense with respect to it. Assume that x1, . . . ,xn ∈ P,
i.e. for all 1 ≤ k ≤ n, there exists 1 ≤ jk ≤ l such that xk = p jk . Let F1, . . . ,Fn :
[0,1]l → [0,1] be additive, non-decreasing, idempotent aggregation functions that
fulfill the property P4 (with respect to I1, . . . , In) and work as noise dampers centered
at respective positions j1, . . . , jn. Then there exists a fuzzy partition A1, . . . ,An of
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[a,b] with the mask I1, . . . , In, such that it is centered at nodes x1, . . . ,xn, and for
each k = 1, . . . ,n, the k-th F-transform component Fk of any discrete function f :
P → [0,1] is equal to Fk( f1, . . . , fl) where f j = f (p j), j = 1, . . . , l.

Proof. Assume that assumptions above are fulfilled. Let us fix k, 1 ≤ k ≤ n, and
prove the claim for the aggregation function Fk : [0,1]l → [0,1]. By Theorem 1,
there exist coefficients w1, . . . ,wl ∈ [0,1] such that ∑l

j=1 w j = 1 and

Fk( f1, . . . , fl) =
l

∑
j=1

w j f j, where ( f1, . . . , fl) ∈ [0,1]l . (7)

Let Pk = {p j | k1 ≤ j ≤ k2} be covered by Ik. By the assumption, xk ∈ Pk so that xk =
p jk for some k1 ≤ jk ≤ k2. Let us prove that the sequence of coefficients w1, . . . ,wl
non-strictly increases for i ≤ jk and non-strictly decreases for i ≥ jk, i.e.,

w1 ≤ . . .≤ w jk ≥ w jk+1 ≥ . . .≥ wl . (8)

By (6), the aggregation function Fk works as a “noise damper” centered at jk. Let
1 ≤ q ≤ l, and 0q be the l-tuple whose elements are 0s, except for the q-th one which
is equal to 1. By (7), Fk(0̄q) = wq. Therefore, by (6),

if (k ≤ q2 < q1 ≤ l) or (1 ≤ q1 < q2 ≤ l) then wq1 ≤ wq2 .

This proves (8). The rest of the proof coincides with the proof of Theorem 1.

4 Inverse F-transform and Aggregation Functions

If we compare expressions (1) and (2) for the direct and inverse F-transform, then we
see that they have similar structures. Therefore, the inverse F-transform is expected
to be represented by aggregation functions too. The aim of this section is to find
a relationship between a set of aggregation functions which determine the direct
F-transform and another set of aggregation functions which determine the inverse
F-transform.

Assume that the direct F-transform of a discrete function f : P → [0,1], where
the set P = {p1, . . . , pl} ⊆ [a,b] is sufficiently dense with respect to a certain fuzzy
partition A1, . . . ,An of [a,b], is determined by a corresponding set of aggregation
functions F1, . . . ,Fn : [0,1]l → [0,1] such that for every ( f1, . . . , fl) ∈ [0,1]l ,

Fk( f1, . . . , fl) =
∑l

j=1 f jAk(p j)

∑l
j=1 Ak(p j)

, k = 1, . . . ,n. (9)

By this we mean that the k-th F-transform component Fk of the function f is equal
to Fk( f1, . . . , fl), provided that f j = f (p j), j = 1, . . . , l.
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The inverse F-transform f̂ of f with respect to the same partition A1, . . . ,An is
a function on P that is determined by another set of functions f̂ j : [0,1]n → [0,1]
such that f̂ (p j) = f̂ j(F1, . . . ,Fn), j = 1, . . . , l, where F1, . . . ,Fn are the F-transform
components of f and

f̂ j(F1, . . . ,Fn) =
∑n

k=1 FkAk(p j)

∑n
k=1 Ak(p j)

, j = 1, . . . , l. (10)

The following reasoning (similar to that in Subsection 2.2) aims at proving that
the functions f̂ j, j = 1, . . . , l, are aggregations. Indeed, the inverse F-transform (10)
can be considered as a result of a linear map f̂ : [0,1]n → [0,1]l between linear vector
spaces [0,1]n and [0,1]l . We split this map into l separate maps f̂ j : [0,1]n → [0,1]
so that each one is a real function of n arguments.

The basic properties of f̂ j : [0,1]n → [0,1], j = 1, . . . l are the same as they are for
the maps Fk : [0,1]l → [0,1], k = 1, . . .n: linearity, idempotency, non-decreasing and
redundancy. The latter differs from the above formulated P4 in interchanging j and
k. Let us give the precise formulation.

P5. (redundancy) - if a point p j, j = 1, . . . , l, is covered by several basic functions
Ak, i.e. Ak(p j) > 0, where j1 ≤ k ≤ j2, then only those arguments xk among
x1, . . . ,xn, whose indices are within the interval j1 ≤ k ≤ j2, are essential, i.e.
for all x1, . . . ,xn ∈ [0,1], f̂ j(x1, . . . ,xn) = f̂ j(0, . . . ,x j1 , . . . ,x j2 , . . . ,0).

Therefore, the maps f̂ j : [0,1]n → [0,1], j = 1, . . . , l are linear aggregation func-
tions on [0,1]n that fulfill the property P5. Conversely, similarly to Theorem 1, any l
additive, non-decreasing, idempotent aggregation functions f̂ j on [0,1]n that ful-
fill the property P5 can be combined into one function f̂ : P → [0,1] such that
f̂ (p j) = f̂ j(F1, . . . ,Fn), j = 1, . . . , l.

Our goal is to find conditions on aggregation functions F1, . . . ,Fn : [0,1]l → [0,1]
and aggregation functions f̂ j : [0,1]n → [0,1], j = 1, . . . , l, such that they determine
the direct and inverse F-transforms with respect to the same partition A1, . . . ,An. The
following theorem gives the solution.

Theorem 3. Let I1, . . . , In, n> 2, be a (0-1)-generalized partition of [a,b] with nodes
x1, . . . ,xn and margins h′k,h

′′
k , k = 1, . . . ,n, and let finite set P = {p1, . . . , pl ⊆ [a,b]}

where l ≥ n be sufficiently dense with respect to it. Then for any additive, non-
decreasing, idempotent aggregation functions F1, . . . ,Fn : [0,1]l → [0,1], that fulfill
the property P4 there exist additive, non-decreasing, idempotent aggregation func-
tions f̂1, . . . , f̂l : [0,1]n → [0,1], that fulfill the property P5, both with respect to
I1, . . . , In, and a fuzzy partition A1, . . . ,An of [a,b] with the mask I1, . . . , In such that
for any discrete function f : P → [0,1] such that f (p j) = f j, j = 1, . . . , l,

(i) the F-transform component Fk, k = 1, . . . ,n, of f is the value of the correspond-
ing aggregation function Fk at point ( f1, . . . , fl),

(ii) the inverse F-transform f̂ (p j), j = 1, . . . , l, is equal to the corresponding ag-
gregation function f̂ j at point (F1, . . . ,Fn).
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In Corollary 1, the aggregation matrix W that corresponds to the F-transform was
introduced. A similar result will be established for the inverse F-transform.

Corollary 2. Let the assumptions of Theorem 1 be fulfilled and W = (wk j) be a n× l
matrix that corresponds to the F-transform so that for a function f , (5) holds. Then
the related inverse F-transform f̂ of f is characterized by the l×n matrix W̃ = (w̃ jk)
so that

f̂ = W̃Fn[ f ]

where
w̃ jk =

wk j

∑n
k=1 wk j

, j = 1, . . . , l, k = 1, . . . ,n.

Conclusion

In this contribution, we focused on a relationship between the F-transform and ag-
gregation functions. We showed that the F-transform components can be obtained
by linear aggregation functions that respect a fuzzy partition of a universe. On the
other side, we discovered conditions that should be added to a set of linear aggrega-
tion functions in order to obtain the F-transform components. Similarly, the inverse
F-transform can be associated with another set of linear aggregation functions that
respect a fuzzy partition of a co-universe. Two sets of linear aggregation functions
that are associated with the direct and inverse F-transforms are connected via the so
called aggregation matrix. The relationship between two analyzed notions is based
on a new (generalized) definition of a fuzzy partition without the Ruspini condition.
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