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Abstract

In this paper, we focus on application of fuzzy transform (F-transform) to anal-
ysis of time series under the assumption that the latter can be additively de-
composed into trend-cycle, seasonal component and noise. We prove that when
setting properly width of the basic functions, the inverse F-transform of the time
series closely approximates its trend-cycle. This means that the F-transform al-
most completely removes the seasonal component and noise. The obtained the-
oretical results are demonstrated on two artificial time series whose trend cycle
is precisely known and on three real time series. At the same time, comparison
with three classical methods, namely STL-method, SSA-method and low pass
Butterworth filter is also provided.
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1. Introduction

This paper is devoted to analysis of time series using fuzzy transform (in
short, F-transform). The theory and methods of the latter were introduced
in [19] and further elaborated in [20, 21]. Application of the F-transform to
analysis and forecasting of time series was first published in [18] and then further
elaborated in [16, 17].

From the very beginning it was clear that the F-transform is a promising
technique that can be effectively applied to extraction of the trend(-cycle). Clear
mathematical proof, however, was not provided. In this paper, we fill this
gap and give the missing mathematical justification. In accordance with the
standard approach, we assume that a time series can be additively decomposed
into a trend-cycle TC, a seasonal component S and a random noise R (cf., for
example, [2]).

The motivation for our analysis comes from the following general charac-
terization of a trend-cycle of a time series taken from the OECD Glossary of
Statistical Terms:

The trend-cycle of a time series is the component that represents
variations of low frequency in a time series, the high frequency fluc-
tuations having been filtered out. This component can be viewed as
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those variations with a period longer than a chosen threshold (usually
1 year is considered as the minimum length of the business cycle).

This characterization provides the basic idea without formal explication of the
used terms. A more detailed inspection of it reveals the assumption that the time
series can be decomposed as outlined above. The trend-cycle can be represented
by a sufficiently smooth function without clear periodicity or it can be periodic
but with periodicity significantly longer than any of the periodicities forming the
seasonal component S. Therefore, we will assume that the seasonal component
S is a mixture of periodic functions, while the trend-cycle TC can be arbitrary.
In this paper, we will show that using the F-transform, we can filter out the
seasonal component S and significantly reduce the noise R. What remains is
the trend-cycle.

Standard statistical methods used in the analysis of time series assume that
the trend-cycle is formed by some, usually simple, function (quite often a linear
one) that is usually extracted using regression analysis (cf. [13]). We argue
that this approach is dubious since one can hardly suppose that the trend-cycle
TC takes a simple course on the whole domain. As will be seen later, the F-
transform makes it possible to consider the trend-cycle TC to be a function of
arbitrary shape and thus, to extract TC in its true form, whatever it is. At the
same time, it provides also analytic expression for TC. Let us remark that our
technique, in some sense, can be ranked among non-parametric techniques that
are usually used in time series analysis if an explicitly given shape of components
cannot be assumed (see, [6, 7, 14]). A survey of techniques including filter theory
used in time series analysis can be found in [26].

Other classical methods providing decomposition of time series are STL and
SSA-methods (see [4, 8, 11]). It can be demonstrated (see below) that es-
timation of TC using both of them is comparable with that obtained using
the F-transform. The arguments in favor of the F-transform, however, are its
transparentness, simplicity and significantly less computational complexity in
comparison with the STL and SSA methods. Namely, the computational com-
plexity of the F-transform is linear (see [22]), while the SSA-methods requires
computation of eigenvalues and eigenvectors of lag-covariance matrix that is
very expensive especially when long time series are analyzed. Thus, the compu-
tational complexity of the regression models is at least square and computation
of eigenvalues has cubic complexity.

The problem solved in this paper is similar to signal filtering, where we
also face the task to remove high frequencies present as noise in a signal. Our
approach, however, differs from the classical signal filtering theory, where it is
assumed that the function is formed of (infinite) number of sinusoidal functions
and filtering is based on removing functions with high frequencies (cf. [24]).
Last but not least, the F-transform is computationally simple and so, very fast
algorithms were developed. Note that results of this paper extend the results
from [15, 23].

The structure of this paper is the following. In Section 2, we briefly overview
the main notions of the F-transform theory with the focus to the properties
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needed further. The main part of the paper is Section 3, where we prove that
under specific conditions, the F-transform filters out seasonal component con-
sisting of high frequencies and reduces the random noise so that only the trend-
cycle TC remains. In Section 4, we demonstrate theoretical results obtained in
this paper on two artificial times series whose structure is thus precisely known
and on three real time series. At the same time, we compare F-transform with
the above mentioned STL and SSA-methods, as well as low pass Butterworth
filter.

2. Preliminaries

In this section, we will briefly review the main principles of the F-transform.
Detailed explanation of the general theory can be found in [19, 20, 21].

Let U be an arbitrary (nonempty) set called a universe. By a fuzzy set in
the universe U we will understand a function A : U −→ [0, 1]. By F (U) we
denote the set of all fuzzy sets on U .

The F-transform is essentially a linear mapping that assigns a finite vector
of specially computed components to a given function f (continuous or dis-
crete). We will work with the integral form of the F-transform that maps the
set C([a, b]) of real continuous functions to the set Rn. The inverse F-transform
is again a linear mapping from Rn to C([a, b]) such that being applied to the
direct F-transform of f , it gives a function that approximates the original func-
tion f . This seeming disadvantage can be turned out into great advantage since
by proper setting of the parameters we can obtain a function with the desired
properties.

There are F-transforms of zero and higher degree. In the first case, the target
space is the vector space Rn and the transformation C([a, b]) −→ Rn is specified
by a fuzzy partition of the interval [a, b]. The higher degree F-transform maps
a function from C([a, b]) to a finite vector of polynomial components. In this
paper, we will consider only the first-degree F-transform where the components
are linear polynomials.

2.1. F0-transform

Let us consider a function f ∈ C([a, b]). To apply the F-transform, we must
first specify a fuzzy partition of [a, b].

Definition 1
Let n ∈ N, n ≥ 2, be given and c0 < . . . < cn be fixed nodes within [a, b], such
that c0 = a, cn = b. We say that fuzzy sets A0, . . . , An ∈ F ([a, b]) form a fuzzy
partition of [a, b] if they satisfy the following conditions for k = 0, . . . , n:

1. Ak(ck) = 1;

2. Ak(x) = 0 for x /∈ (ck−1, ck+1), k = 0, . . . , n where we formally put c−1 = a
and cn+1 = b;

3. Ak is continuous;
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4. Ak strictly increases on [ck−1, ck] and strictly decreases on [ck, ck+1];

5. for all x ∈ [a, b],
n∑
k=0

Ak(x) = 1. (1)

The fuzzy sets A0, . . . , An are in the theory of F-transform called basic functions.
The most common is uniform fuzzy partition.

Definition 2
Let A0, . . . , An be a fuzzy partition of [a, b]. We say that it is uniform if the
following is satisfied:

(i) The nodes c0 = a, . . . , cn = b are h-equidistant, i.e. ck = a + kh, k =
0, . . . , n where h = b−a

n .

(ii) The basic functions are symmetric, i.e. Ak(ck − x) = Ak(ck + x) for all
x ∈ [0, h] and k = 1, . . . , n− 1.

(iii) The following holds for all k = 1, . . . , n− 1 and x ∈ [xk, xk+1]:

Ak(x) = Ak−1(x− h),

Ak+1(x) = Ak(x− h).

Let us remark that shapes of the basic functions are not predetermined and
can be chosen on the basis of additional requirements. In the following text, we
will always assume that the considered fuzzy partition is uniform. By width of
a fuzzy set Ak we understand the width of its support. In case of the uniform
fuzzy partition, the width of each Ak is 2h (except for A0 and An where it is h).

In this paper, we will work with triangular fuzzy sets defined by:

Ak(t) =


t−ck−1

h , t ∈ [ck−1, ck],

ck+1−t
h , t ∈ [ck, ck+1]

(2)

for all k = 0, . . . , n (for A0 and An, we consider in (2) only the interval
[c0, c1] and [cn−1, cn], respectively). Note also that

∫ ck+1

ck−1
Ak(x)dx = h and∫ ck+1

ck
Ak(x)dx = h

2 .
It should be noted that the fuzzy transform can also be defined with respect

to a more general fuzzy partition, in which some of the conditions of Definition 1
are relaxed, for example condition 5. The details can be found in [12].

Definition 3
Let a fuzzy partition of [a, b] be given by basic functions A0, . . . , An, n ≥ 2,
and let f : [a, b] −→ R be from C([a, b]). The (n + 1)-tuple of real numbers
F[f ] = (F0[f ], . . . , Fn[f ]) given by

Fk[f ] =

∫ b
a
f(x)Ak(x)dx∫ b
a
Ak(x)dx

, k = 0, . . . , n, (3)
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is called the direct fuzzy transform (F-transform) of f with respect to the given
fuzzy partition. The numbers F0[f ], . . . , Fn[f ] are called components of the F-
transform of f .

In case that the partition is h-uniform, computation of the components can be
simplified as follows:

F0[f ] =
2

h

∫ c1

c0

f(x)A1(x)dx and Fn[f ] =
2

h

∫ cn

cn−1
f(x)An(x)dx, (4)

Fk[f ] =
1

h

∫ ck+1

ck−1

f(x)Ak(x)dx, k = 1, . . . , n− 1. (5)

It should be noted that the components of the F0-transform are weighted
mean values of the original function, where the weights are determined by the
basic functions; see, e.g., [19].

In practice, the function f is often given not analytically but in the form of
a table that contains results of some measurements. In this case, Definition 3
must be modified in such a way that the definite integrals in (3) are replaced
by finite summations. In this case, we speak about discrete F-transform.

The F-transform of f with respect to the fuzzy partition A0, . . . , An will be
denoted by F[f ] = (F0[f ], . . . , Fn[f ]). If the function f is clear from the context
then the “[f ]” in Fi[f ] can be omitted.

As can be seen from (4), the boundary components F0[f ] and Fn[f ] are com-
puted using only ss of the basic functions. Therefore, we will often consider the
F-transform only as the vector of inner components F[f ] = [F1[f ], . . . , Fn−1[f ]].

Important property of the F-transform is its linearity; namely, if h = αf +
βg ∈ C[a, b] then

F[h] = α[f ] + γF[g].

The original function f can be approximately reconstructed from F[f ] using
the following inversion formula.

Definition 4
Let F[f ] be the direct F-transform of f with respect to the fuzzy partition

A0, . . . , An ∈ F ([a, b]). Then the function f̂ given on [a, b] by

f̂(x) =

n∑
k=0

Fk[f ] ·Ak(x), (6)

is called the inverse F-transform1 of f .

The inverse F-transform f̂ is a continuous function on [a, b]. Moreover, the
linearity property holds for it too, i.e., if h = αf + βg ∈ C[a, b] then

ĥ = αf̂ + γ ĝ

1We will use the term “inverse F-transform” in two meanings: (a) as the procedure for
obtaining the estimation of f and (b), as the resulting function (6) approximating f .
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provided that the fuzzy partition is fixed. For various properties of the F-
transform and detailed proofs — see [19].

In our analysis below we will also consider the case when f : [a, b] −→ C
being a complex-valued function of a real variable. In this case, we will write
the direct F-transform of f as

F[f ] = F[Re(f)] + iF[Im(f)].

Hence, the inverse F-transform of f becomes

f̂ = Re(f̂) + i Im(f̂),

or in more detail

f̂(x) =

n∑
k=0

Fk[Re(f)] ·Ak(x) + i

n∑
k=0

Fk[Im(f)] ·Ak(x).

2.2. Fm-transform

The F-transform can be further generalized. Namely, we can introduce
higher-degree F-transform (Fm-transform, m ≥ 0). Its components are poly-
nomials of degree m. Thus, the original F -transform described above coin-
cides with the F 0-transform (zero-degree F-transform). Below, we will overview
the main points of the Fm-transform. Detailed definitions, theorems and their
proofs can be found in [21] where the Fm-transform was introduced.

Let us fix an interval [a, b] of reals. The fuzzy partition will be taken over
“full” fuzzy sets, i.e. we will consider only A1, . . . , An−1 ∈ F ([a, b]), n ≥ 2.
Let k be a fixed integer from {1, . . . , n − 1}, and L2(Ak) be a Hilbert space of
square-integrable functions f : [xk−1, xk+1] −→ R with the scalar product

〈f, g〉k =

∫ xk+1

xk−1
f(x)g(x)Ak(x)dx∫ xk+1

xk−1
Ak(x)dx

.

By L2(A1, . . . , An−1) we denote a set of functions f : [a, b] −→ R such that
f |[ck−1,ck+1] ∈ L2(Ak) for all k = 1, . . . , n− 1.

Definition 5
Let f : [a, b] −→ R be a function from L2(A1, . . . , An−1) and m ≥ 0 be a fixed
integer. We say that the n-tuple of polynomials Fm[f ] = (Fm1 [f ], . . . , Fmn−1[f ])
is an Fm-transform of f with respect to the fuzzy partition A0, . . . , An if

Fmk [f ] = β0
kP

0
k + β1

kP
1
k + · · ·+ βmk P

m
k ,

where

βik =

∫ b
a
f(x)P ik(x)Ak(x)dx∫ b

a
P ik(x)P ik(x)Ak(x)dx

, i = 0, . . . ,m

and P ik are orthogonal polynomials of i-th order. The polynomial Fmk [f ] is called
k-th Fm-transform component of f .
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Each component approximates f in a certain area. Thus, the quality of
approximation increases with the increase of the degree of the polynomials.
The following can be proved:

(a) Each Fm-transform component Fmk [f ], k = 0, . . . , n, minimizes the func-
tional

Φk(g) =

∫ b

a

(f(x)− g(x))2Ak(x)dx, (7)

defined on elements g ∈ Lm2 (Ak).

(b) If f is a polynomial of degree l ≤ m then each Fm-transform compo-
nent Fmk [f ], k = 1, . . . , n − 1 restricted to [ck−1, ck+1] coincides with f
on [ck−1, ck+1].

(c) Each Fm-transform component Fmk [f ], k = 1, . . . , n− 1, satisfies the follow-
ing recurrent equation:

Fmk [f ] = Fm−1k [f ] + βmk P
m
k , m = 1, 2, . . . . (8)

(d) The Fm-transform of f is linear, i.e.

Fm[αf + γg] = αFm[f ] + γFm[g],

holds for all f, g ∈ L2(A1, . . . , An−1), and for all α, β ∈ R, where the equality
is considered over the respective vectors of components.

The following theorem characterizes the F1-transform of f with respect to a
h-uniform fuzzy partition A0, . . . , An. Its proof can be found in [21].

Theorem 1
The vector of linear functions

F1[f ] = (β0
1 + β1

1(x− c0), . . . , β0
n−1 + β1

n−1(x− cn−1)) (9)

is the F 1-transform of f with respect to the h-uniform fuzzy partition A1, . . .,
An−1, where

β0
k =

∫ ck+1

ck−1
f(x)Ak(x)dx

h
, (10)

β1
k =

∫ ck+1

ck−1
f(x)(x− ck)Ak(x)dx∫ ck+1

ck−1
(x− ck)2Ak(x)dx

, (11)

for every k = 1, . . . , n− 1.

Note that β0
k = F 0

k [f ] where F 0
k [f ] is the component (5) (we added the su-

perscript 0 to emphasize that Definition 3, in fact, introduces zero degree F-
transform).
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Corollary 1
If the partition A0, . . . , An is uniform and the basic functions Ak have triangular
shape then (11) becomes

β1
k =

12
∫ ck+1

ck−1
f(x)(x− ck)Ak(x)dx

h3
(12)

Similarly to the original F-transform, the inverse Fm-transform of a function
f is defined as a linear combination of basic functions with “coefficients” given
by the Fm-transform components.

Definition 6
Let f : [a, b] −→ R be a given function, m ≥ 0 and Fm[f ] = (Fm1 [f ], . . . , Fmn−1[f ])
be the Fm-transform of f with respect to the fuzzy partition A1, . . . , An−1. Then
the function f̂m : [a, b] −→ R defined by

f̂m(x) =

n−1∑
k=1

Fmk [f ](x)Ak(x) (13)

is called inverse Fm-transform of f with respect to Fm[f ] and A0, . . . , An.

The following recurrent formula can be applied:

f̂m(x) = f̂m−1(x) +

n−1∑
k=1

βmk P
m
k (x)Ak(x) (14)

where x ∈ [a, b], m ≥ 1.
Nice approximation properties of the Fm-transform can be proved. Similar

to the case of the basic (zero degree) F-transform, the following can be proved:
if n → ∞, where n is the number of basic functions A1, . . . , An−1, then the
obtained sequence of inverse Fm-transforms f̂m(n) of f , where m ≥ 1, uniformly

converges to f (see [21] for the details).
The following lemmas will be useful later.

Lemma 1
Let F 0

0 [f ], . . . , F 0
n [f ] be components of the F0-transform w.r.t an h-uniform fuzzy

partition A0, . . . , An ∈ F ([a, b]). Let f̂o be the inverse F-transform of f . Then

(a)
∫ b
a
f(x)dx = h

(∑n−1
k=1 F

0
k [f ] + 1

2 (F 0
0 [f ] + F 0

n [f ])
)

.

(b)
∫ b
a
f̂0(x) dx =

∫ b
a
f(x) dx.

proof: (a) was proved in [20] and (b) in [25].
�
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Lemma 2 ([19])
Let f : [a, b] −→ R be a continuous function and f̂ its inverse F-transform (both
zero or first degree). Then

max
x∈[a,b]

|f(x)− f̂(x)| ≤ 2ω(h, f) (15)

where
ω(h, f) = max

|x−y|<h
x,y∈[a,b]

|f(x)− f(y)|

is the modulus of continuity of f .

Let us remark that for the first degree F-transform, this lemma follows from
[21, Lemma 2]. Note also that if the function f is smooth “without abrupt
changes in its course” then ω(h, f) is small.

3. Analysis of time series using F-transform

In this section, we assume that time series can be additively decomposed
into trend cycle, seasonal component, and noise. Our main goal is to prove that
the F-transform enables us to extract the trend-cycle. The basic idea is to show
that there exists a fuzzy partition using which we either completely remove or
significantly reduce subcomponents forming the seasonal component and also
significantly reduce the noise.

3.1. Decomposition of time series

Let us consider a complex-valued stochastic process (see [1, 9])

X : [a, b]× Ω −→ C (16)

where [a, b] ⊂ R is an interval of reals and 〈Ω,A , P 〉 is a probabilistic space.
For simplicity, we will usually suppose that a = 0.

By a time series we understand a stochastic process where [a, b] is replaced
by a finite set of integers Q = {a, . . . , b = p} ⊂ N. Since all the results below
derived for a stochastic process (16) can be also applied to time series, in our
analysis below we will always consider (16) (unless stated otherwise).

It is clear from (16) that for each t ∈ [a, b] the function X(t, ω) of ω (ω ∈ Ω),
is a random variable. Our basic assumption is that X(t, ω) can be decomposed
into three components, namely

X(t, ω) = TC(t) + S(t) +R(t, ω), t ∈ [a, b], ω ∈ Ω, (17)

where TC is a trend-cycle and S is a seasonal component and R is a noise. Both
TC and S are usual (i.e. non-random) functions of a real variable.

Furthermore, the seasonal component S(t) is assumed to be a sum of complex-
valued periodic functions

S(t) =

r∑
j=1

Pj e
i(λjt+ϕj) (18)
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for some finite r where λj are frequencies, ϕj phase shifts and Pj are amplitudes.
Thus, (17) becomes

X(t, ω) = TC(t) +

r∑
j=1

Pj e
i(λjt+ϕj) +R(t, ω), t ∈ [a, b]. (19)

To be terminologically consistent, we will refer to the functions Pj e
i(λjt+ϕj) as

to subcomponents of S.
The random noise R(t, ω) is assumed to be a real stationary stochastic pro-

cess with zero mean and finite variance:

E(R) = µ = 0 and D(R) = σ > 0. (20)

In this paper, we consider the noise to be represented as the simplest possible
type of a stationary stochastic process (see, e.g.,[27, Example 1]), namely, as
the process of the type

R(t, ω) = ξ(ω)eiλt+ϕ (21)

where ξ is a random variable with zero mean value and λ is a real number.
It is known (see, e.g., [27]) that, under reasonable conditions, every stationary
random process with zero mean can be represented as a linear combination of
processes of type (21).

If we fix ω ∈ Ω then we obtain one realization of the stochastic process (16)
so that all the components in (17) become ordinary functions. Therefore, in our
further analysis, we will be write simply X(t) = TC(t)+S(t)+R(t) and assume
that these are continuous functions.

If we apply F-transform to X(t), the components of F[X] become

F[X] = F[TC] +

r∑
j=1

PjF[ei(λjt+ϕj)] + F[R] (22)

by the linearity of F-transform. In the following two subsections we will show
that there is a fuzzy partition such that the F-transform of the seasonal compo-
nent

∑r
j=1 PjF[ei(λjt+ϕj)] is either zero or very close to it and the F-transform

of the noise F[R] is also very small. This enables us to obtain a good estimation
of the trend-cycle TC.

3.2. Removing seasonal component

3.2.1. Basic idea

Let us consider one subcomponent Pei(λt+ϕ) of S with the periodicity T and
frequency λ where λ = 2π

T (because of the latter equality, we will, in case of
need, speak freely either about λ or about T ). Furthermore, let us construct a h-
uniform fuzzy partition A0, . . . , An consisting of triangular fuzzy sets Ak of the
width 2h over equidistant nodes c0, . . . , cn where ck+1 = ck+h, k = 0, . . . , n−1
with the distance h = b−a

n .
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For simplicity we will assume that a = 0 and define the nodes c0, . . . , cn as
follows:

{c0 = 0, c1 = d T, . . . , ck−1 = (k − 1)d T, ck = k d T, ck+1 = (k + 1)d T,

. . . , cn = ndT = b}, n ≥ 2. (23)

One can immediately see that the distance h between the nodes is related to
the periodicity T by the simple equality

h = d T (24)

where d > 0 is a suitable real number. Clearly, h = 2πd
λ , i.e. λ = 2πd

h . This
means that for a fixed h, higher d corresponds to a higher frequency λ. We
will argue below that higher frequencies are filtered out after applying the F-
transform with respect to the fuzzy partition defined over the nodes (23).

3.2.2. Removing seasonal component using F0-transform

In the following technical lemma we will compute components of the F-
transform of Pei(λt+ϕ) with respect to the fuzzy partition over the nodes (23).

Lemma 3
Let Pei(λt+ϕ) be a function with the frequency λ and phase shift ϕ. Let us fix

h and choose d ∈ R so that h = dTwhere T = 2π
λ . Finally, let (23) be a set

of (n + 1) h-equidistant nodes and A0, . . . , An be a fuzzy partition over (23)
such that each Ak is the triangular fuzzy set (2) having the width 2h. Then the
components of the F-transform of Pei(λt+ϕ) are the following:

Fk[Pei(λt+ϕ)] = − Peiϕ

4d2π2
ei2(k−1)dπ(ei2dπ − 1)2, (25)

F0[Pei(λt+ϕ)] =
Peiϕ

2d2π2

(
1− ei2dπ + i2dπ

)
, (26)

Fn[Pei(λt+ϕ)] =
Peiϕ

2d2π2

(
−ei2(n−1)dπ + ei2ndπ(1− i2dπ)

)
. (27)

proof: First, note that xk = 2πkd
λ . Then we proceed by straightforward

computation: using (2) and (5), we obtain k-th component of the F-transform
of Pei(λt+ϕ) as follows:

Fk[Pei(λt+ϕ)] =
Pλ(k + 1)

2πd

∫ 2π(k+1)d
λ

2πkd
λ

ei(λt+ϕ)dt

− Pλ(k − 1)

2πd

∫ 2πkd
λ

2π(k−1)d
λ

ei(λt+ϕ)dt+

+
Pλ2

4π2d2

(∫ 2πkd
λ

2π(k−1)d
λ

tei(λt+ϕ)dt−
∫ 2πk+1d

λ

P2πkd
λ

tei(λt+ϕ)dt

)
(28)
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where k ∈ {1, . . . , n − 1}. After integration we obtain formula (25) from (28).
For k = 1 and k = n, we use formulas (4), which give (26) and (27).

�

As for the boundary components F0, Fn, recall that they are computed using
only halves of the corresponding basic functions A0 and An. Consequently, the
inverse F-transform approximates the original function in the intervals [c0, c1]
and [cn−1, cn] with less precision.

Below, we will denote by [d] the maximal integer part of d ∈ R.

Corollary 2
Let the conditions of Lemma 3 be satisfied and d = h

T . Then for all k =
1, . . . , n− 1:

(a) ∣∣∣Fk[Pei(λt+ϕ)]
∣∣∣ =

P sin2(dπ)

d2π2
. (29)

(b) Let d′ := d− [d]. Then∣∣∣Fk[Pei(λt+ϕ)]
∣∣∣ =

P sin2(d′π)

d2π2
. (30)

proof: This follows from (25) by expanding to trigonometric form and real-
izing that |eiϕ| = 1 and ei2kπ = 1 for any k ∈ N. �

Corollary 3
Let the conditions of Lemma 3 and Corollary 2 be satisfied. Then the following
holds for any k = 1, . . . , n− 1:

(a)
∣∣Fk[Pei(λt+ϕ)]

∣∣ does not depend on the phase shift ϕ.

(b)
∣∣Fk[Pei(λt+ϕ)]

∣∣ =
∣∣∣Fk[Pei(

2πd
h t+ϕ)]

∣∣∣ = 0 whenever d ∈ N.

(c) limd→∞ |Fk[Pei(
2πd
h t+ϕ)]| = 0,

lim
d′→0

∣∣∣Fk[Pei(
2π([d]+d′)

h t+ϕ)]
∣∣∣ = 0 and lim

d′→1

∣∣∣Fk[Pei(
2π([d]+d′)

h t+ϕ)]
∣∣∣ = 0.

proof: Immediately from Corollary 2. �

We conclude from Corollary 3 that if h is fixed and the frequency λ is increas-
ing then, under the conditions of Lemma 3, the absolute values of F-transform
components of Pei(λt+ϕ) are either equal to zero for d ∈ N, or they converge to
zero otherwise. A graph depicting behavior of |Fk[Pei(

2πd
h t+ϕ)]| with respect to

d is in Figure 1.
It is, of course, not surprising that similar results also hold if we confine

only to real valued seasonal subcomponent. For comparison, we present lemma
characterizing the inverse F-transform of sin(λt + ϕ). In correspondence with

Definition 4 we will denote inverse F-transform of sin by ŝin.

13
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Figure 1: Graph of |Fk[Pei(
2πd
h
t+ϕ)]| for k ∈ {1, . . . , n − 1} considered as a function of d

(d ∈ [0, 10]) where P = 1. One can see that absolute values of each k-th component of the
F-transform practically vanish for d ≥ 2.

Lemma 4
Let sin(λt+ϕ) be a function with the frequency λ and phase shift ϕ. Let us fix

h and choose d ∈ R so that h = dT where T = 2π
λ . Finally, let (23) be a set of

(n+ 1) h-equidistant nodes and A0, . . . , An be a fuzzy partition over (23) such
that each Ak is the triangular fuzzy set (2) having the width 2h. If d ∈ N then

ŝin( 2πd
h t + ϕ) = 0. Otherwise, let d′ = d − [d]. Then the following inequality

holds for the inverse F-transform of sin(λt+ ϕ):

|Fk[sin(λt+ ϕ)]| ≤ 1

d2π2
sinϕ, (31)

as well as

|ŝin(λt+ ϕ)| ≤
∣∣∣∣ 1

d2π2
sinϕ

∣∣∣∣ , t ∈ [c1, cn−1] (32)

and limd′→0 |ŝin( 2π([d]+d′)
h t+ϕ)| = 0 as well as limd′→1 |ŝin( 2π([d]+d′)

h t+ϕ)| = 0.

proof: After some computation, we obtain using (2) and (5):

Fk[sin(λt+ ϕ)] =
1

4d2π2
(2 sin(2kd′π) cosϕ+ 2 cos(2kd′π) sinϕ)(1− cos 2d′π)

(33)
where d′ ∈ [0, 1]. If d ∈ N, i.e. d′ = 0, then (33) is equal to 0. Otherwise

lim
d′→0

Fk[sin(λt+ ϕ)] = 0 and lim
d′→1

Fk[sin(λt+ ϕ)] = 0.

For d′ = 0.5 we obtain

Fk[sin(λt+ ϕ)] = ± 1

d2π2
sinϕ (34)

14



where the sign depends on k, i.e. (34) is positive for k even and negative for k
odd. Hence, (31) holds true.

Let t ∈ [ck−1, ck], k ∈ {1, . . . , n− 1}. Then

|ŝin(λt+ ϕ)| = |Ak−1(t)Fk−1[sin(λt+ ϕ)] +Ak(t)Fk[sin(λt+ ϕ)]| ≤

≤ (Ak−1(t) +Ak(t))︸ ︷︷ ︸
=1

∣∣∣∣ 1

d2π2
sinϕ

∣∣∣∣ . (35)

Since the right-hand side does not depend on k, we obtain (32).
�

3.2.3. Removing seasonal component using F1-transform

In [16], we suggested that the F1-transform may improve estimation of the
trend-cycle. Therefore, with respect to the above results we must ask whether
the F1-transform removes seasonal periodic components as well. The answer is
positive as follows from the sequence of lemmas below.

Recall that we consider nodes of the h-uniform fuzzy partition in the form
ck = 2πkd

λ , k = 0, . . . , n. Furthermore, unlike the basic (i.e. F0-) F-transform,
components of the F1-transform are linear functions

F 1
k [Pei(λt+ϕ)](t) = F 0

k [Pei(λt+ϕ)] + β1
k

(
t− 2πkd

λ

)
(36)

where the coefficients β1
k are computed using formula (11). The variable t ∈

(−∞,∞). However, since in (13) we multiply each k-th component by Ak(t)
which equals zero for all t 6∈ (ck−1, ck+1), it makes sense to consider the k-th
component only for t ∈ [ck−1, ck+1].

Lemma 5
Let Pei(λt+ϕ) be a function with the frequency λ and phase shift ϕ. Let us fix

h and choose d ∈ R so that h = dT where T = 2π
λ . Finally, let (23) be a set of

(n+ 1) h-equidistant nodes and A0, . . . , An be a fuzzy partition over (23) such
that each Ak is the triangular fuzzy set (2) having the width 2h. Then for each
k = 1, . . . , n− 1 and t ∈ [ck−1, ck+1] we obtain:

(a)

F 1
k [Pei(λt+ϕ)](t) =

=
Peiϕ

d4π4
sin dπ · (i3dπ(2dkπ − λt) cos dπ + (dπ(dπ − i6k) + i3λt) sin dπ) .

(37)

(b) ∣∣∣F 1
k [Pei(λt+ϕ)](t)

∣∣∣ =

=
P sin2 dπ

d4π4
·
√
d4π4 sin2 dπ + 9(λt− 2dkπ)2(sin dπ − dπ cos dπ)2. (38)
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(c) Expression (38) can be slightly simplified by putting d = [d] + d′:∣∣∣F 1
k [Pei(λt+ϕ)](t)

∣∣∣ =

=
P sin2 d′π

d4π4
·
√
d4π4 sin2 d′π + 9(λt− 2dkπ)2(sin d′π − dπ cos d′π)2.

(39)

proof: The proof is similar to the proof of Lemma 3, by straightforward
computation using (11). �

Similar to the case of F0-transform, we obtain the following:

Corollary 4
Let the conditions of Lemma 5 be satisfied. Then the following holds for any
k = 1, . . . , n− 1 and t ∈ [ck−1, ck+1]:

(a) If d ∈ N then F 1
k [Pei(

2πd
h t+ϕ)](t) = 0.

(b)
∣∣F 1
k [Pei(λt+ϕ)](t)

∣∣ does not depend on the phase shift ϕ.

(c) limd→∞

∣∣∣F 1
k [Pei(

2πd
h t+ϕ)](t)

∣∣∣ = 0 and

lim
d′→0

∣∣∣F 1
k [Pei(

2π([d]+d′)
h t+ϕ)](t)

∣∣∣ = 0 and lim
d′→1

∣∣∣F 1
k [Pei(

2π([d]+d′)
h t+ϕ)](t)

∣∣∣ = 0.

proof: Immediately from Lemma 5 by straightforward computation. �

Let us also investigate the behavior of F 1
k [Pei(λt+ϕ)] on an interval [ck−1, ck+1] =[

2π(k−1)d
λ , 2π(k+1)d

λ

]
. It is convenient to transform t in (36) into an auxiliary

variable t′ ∈ [−1, 1] by setting t = ck + h t′ = 2πd
λ t′. Then (36) can be written,

for the given k, as the function

F 1
k [Pei(λt+ϕ)](t′) = F 0

k [Pei(λt+ϕ)] + β1
k

2πd

λ
t′, t′ ∈ [−1, 1]. (40)

Lemma 6
Let the conditions of Lemma 5 be satisfied, Then for each k = 1, . . . , n− 1 and
t′ ∈ [−1, 1] we have:

(a)

F 1
k [Pei(λt+ϕ)](t′) =

Peiϕ

d3π3
sin dπ ((dπ + i6t′) sin dπ − i6dπt′ cos dπ). (41)

(b) ∣∣∣F 1
k [Pei(λt+ϕ)](t′)

∣∣∣ =

∣∣∣∣Pd sin(d′π)

d4π3

∣∣∣∣ ·
·
√
d2π2 sin2 d′π + 6(t′ sin d′π − dπt′ cos d′π)2. (42)

16



2

4

6

8

10 -1.0

-0.5

0.0

0.5

1.0

0.0

0.1

0.2

Figure 2: Graph of |F 1
k [Pei(λt+ϕ)]| where k ∈ {1, . . . , n − 1} and P = 1 as a function of d

(d ∈ [0, 10]) and t′ (t′ ∈ [−1, 1]). One can see that absolute values of each k-th component of
the F1-transform also practically vanish for d ≥ 2.

proof: This follows from (40) by straightforward computation similar to the
proof of Lemma 5. �

A graph depicting behavior of the absolute value of F 1
k with respect to d is

in Fig. 2. A graph depicting behavior of the absolute value of F 1
k for t′ ∈ [−1, 1]

with respect to the remainder d′ = d − [d] is in Figure 3. One can see that∣∣F 1
k [Pei(λt+ϕ)](t′)

∣∣ is a very small number for all t′ ∈ [−1, 1].

3.3. Reducing noise

In this subsection, we will discuss how the F-transform can eliminate the
random noise R(t, ω). We will prove that the use of F-transform drastically de-
creases the noise of the type (21). As stated above, under reasonable conditions,
every stationary random process with zero mean can be represented as a linear
combination of processes of type (21) (see, e.g., [27]). Because of the linearity
of F-transform, we can therefore conclude that, in the general case, the use of
F-transform drastically decreases each subcomponent (21) of the random noise.

Theorem 2
Let R(t, ω) be a random noise satisfying (20), A0, . . . , An be a uniform fuzzy
partition over [a, b] and F0[R] be a direct F0-transform of R. Then

(a) E(F 0
k [R]) = µ for all k = 1, . . . , n− 1,

(b) E(R̂0(t)) = µ for all t ∈ [c1, cn−1].
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Figure 3: Graph of the detail of |F 1
k [Pei(λt+ϕ)]| where P = 1 and [d] = 2 as a function of t′

(t′ ∈ [−1, 1]) and the remainder values d′ (d′ ∈ [0, 1]).

proof: (c) Using (5) and the assumption (20) we have

E(F 0
k [R]) =

1

h
E

(∫ ck+1

ck−1

Ak(t)R(t)dt

)
=

1

h

∫ ck+1

ck−1

Ak(t)E(R(t))dt =

=
1

h
µ

∫ ck+1

ck−1

Ak(t)dt = µ.

(d) Using (b), we obtain E(R̂0(t)) =
∑n
k=0Ak(t)E(R(t)) = µ

∑n
k=0Ak(t) =

µ for all t ∈ [c1, cn−1]. �

Let us now consider one realization R(t) for a fixed ω. First, we assume
that the noise R(t) has the form (21). Then for each t ∈ [a, b], there exist one
realization of ξ(t). Put ξ̄ = sup{ξ(t) | t ∈ [a, b]} and ξ = inf{ξ(t) | t ∈ [a, b]}.
Finally, we put

ξ̃ =

{
ξ̄ if ξ̄ ≥ 0,

ξ if ξ̄ < 0.
(43)

Theorem 3
Let R(t) be a noise represented by formula (21), A0, . . . , An be an h-uniform
fuzzy partition over [a, b] fulfilling conditions of Lemma 3, F0[R] be a direct and
R̂0 an inverse F0-transform of R. Then for each k = 1, . . . , n− 1

|F 0
k [R]| ≤ |ξ̃| sin

2(dπ)

d2π2
, (44)

as well as

|R̂0| ≤ |ξ̃| sin
2(dπ)

d2π2
, t ∈ [c1, cn−1] (45)
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where d is related to h via (24).

proof: By the linearity of the F-transform we have either

F 0
k [R(t)] ≤ ξ̄ · Fk[eiλt+ϕ]

if ξ̄ ≥ 0 or
F 0
k [R(t)] ≥ ξ · Fk[eiλt+ϕ]

if ξ̄ < 0. Hence,

|F 0
k [R(t)]| ≤ |ξ̃| · |F 0

k [eiλt+ϕ]| ≤ |ξ̃| sin
2(dπ)

d2π2
(46)

by (29).
Inequality (45) is obtained as follows:

|R̂0(t)| =
∣∣∣Ak−1(t) ξ̃ F 0

k−1[eiλt+ϕ] +Ak(t) ξ̃ F 0
k [eiλt+ϕ]

∣∣∣ ≤
≤ (Ak−1(t) +Ak(t))︸ ︷︷ ︸

=1

|ξ̃| sin2(dπ)

d2π2
.

�

Theorem 4
Let R(t) be a noise represented by formula (21), A0, . . . , An be an h-uniform
fuzzy partition over [a, b] fulfilling conditions of Lemma 5. Let d be related to h
via (24), F1[R] be a direct and R̂1 an inverse F1-transform of R. Then for each
k = 1, . . . , n− 1 and t ∈ [c1, cn−1]

|F 1
k [R](t)| ≤|ξ̃| sin

2 dπ

d4π4
· (47)

·
√
d4π4 sin2 dπ + 9(λt− 2dkπ)2(sin dπ − dπ cos dπ)2, (48)

as well as

|R̂1| ≤ |ξ̃| · η(t), t ∈ [c1, cn−1] (49)

where

η(t) =
sin2(dπ)

d4π4
·max

{√
d4π4 sin2 dπ + 9(λt− 2dkπ)2(sin dπ − dπ cos dπ)2

∣∣∣∣
k = 1, . . . , n− 1

}
. (50)

proof: This follows from Lemma 5 analogously as in Theorem 3. �
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3.4. Estimation of the trend-cycle using F-transform

In this subsection we will show that on the basis of the results in the previ-
ous two sections, we can apply the F-transform (both zero and first-degree) to
estimation of the trend-cycle. The following is assumed:

(i) The stochastic process X can be decomposed as in (19) where the seasonal
component S consists of periodic functions having periodicities Tj , j ∈
{1, . . . , r} (see (18)). We take a fixed ω and consider one realization of
X(t).

(ii) Put T̄ = max{Tj | j = 1, . . . , r}, choose a number d̄ ∈ N and set the
distance h in (23) between the nodes to

h = d̄ T̄ (51)

so that n ≥ 2. Then, form the corresponding triangular fuzzy partition
A0, . . . , An.

(iii) The trend-cycle TC is a function with no clear periodicity or its periodicity
is much longer than h̄. Moreover, the modulus of continuity ω(h,TC) is
small.

Note that (iii) requires that TC is smooth with small changes in its course.
The following theorem provides estimation of the inverse F-transform Ŝ of

the seasonal component S.

Theorem 5
Let S(t) be the seasonal component (18) whose members have periodicities
Tj , j = 1, . . . , r. Furthermore, let an h-uniform fuzzy partition A0, . . . , An be
formed over the equidistant set of nodes (23) with the distance h = d̄ T̄ where
T̄ is the longest periodicity among all Tj , j ∈ {1, . . . , r}.

(a) Let dj = h
Tj
∈ N for all j = 1, . . . , r. Then Ŝ0(t) = 0 as well as Ŝ1(t) = 0

for all t ∈ [c1, cn−1].

(b) Let I ⊂ {1, . . . , r} be a set of subscripts for which d′j = dj − [dj ] ∈ (0, 1),
j ∈ I. Then the following holds for all t ∈ [c1, cn−1]:

(ba)

|Ŝ0(t)| ≤
∑
j∈I

∣∣∣∣∣Pj sin2(d′jπ)

d2jπ
2

∣∣∣∣∣ , (52)

(bb)

|Ŝ1(t)| ≤
∑
j∈I

Pj · ηj(t) (53)

where
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ηj(t) = max

{
sin2 d′jπ

d4jπ
4
·

·
√
d4jπ

4 sin2 d′jπ + 9(λt− 2djkπ)2(sin d′jπ − djπ cos d′jπ)2
∣∣∣∣ k = 1, . . . , n− 1

}
.

proof: (a) Follows immediately from Corollaries 3(b) and 4(b).
(ba) Using Corollary 3(b) we, similarly to (35), obtain for all t ∈ [ck−1, ck]

and k = 2, . . . , n− 1

|Ŝ0(t)| =

∣∣∣∣∣
n∑
k=0

Ak(t)F 0
k [S]

∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
k=0

Ak(t)
∑
j∈I

F 0
k [Pje

i(λjt+ϕj)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈I

n∑
k=0

Ak(t)Fk[Pje
i(λjt+ϕj)]

∣∣∣∣∣∣ ≤
∑
j∈I

n∑
k=0

Ak(t) |F 0
k [Pje

i(λjt+ϕj)]| ≤

≤
∑
j∈I
|Ak−1(t)F 0

k−1[Pje
i(λjt+ϕj)] +Ak(t)F 0

k [Pje
i(λjt+ϕj)]| ≤

≤
∑
j∈I

(Ak−1(t) +Ak(t))︸ ︷︷ ︸
=1

∣∣∣∣∣Pj sin2(d′jπ)

d2jπ
2

∣∣∣∣∣
from which (52) follows.

(bb) is proved in a similar way using Lemma 5(c). �

It follows from Corrolaries 3 and 4 that the right hand sides of (52) and (53)
are very small numbers (many summands are even equal to zero). Let us now
denote

D0 =
∑
j∈I

∣∣∣∣∣Pj sin2(d′jπ)

d2jπ
2

∣∣∣∣∣+
|ξ̃| sin2(dπ)

d2π2
, (54)

D1 =
∑
j∈I

∑
j∈I

ηj(t) + |ξ̃| · η(t) (55)

where dj = h
Tj

and I ⊂ {1, . . . , r} is the set of all subscripts, for which d′j =

dj− [dj ] ∈ (0, 1), ξ̃ is determined in (43) and η(t) is given by (50). The following
theorem provides estimation of the error when extracting the trend cycle TC
from the time series X(t) using the F-transform.

Theorem 6
Let X(t) be realization of the stochastic process in (17) considered over the
interval [0, b]. If we construct a fuzzy partition over the set of equidistant nodes
(23) with the distance (51) then the corresponding inverse F-transform of X(t)
gives the following estimator X̂m of the trend-cycle with the error:

|X̂m(t)− TC(t)| ≤ 2ω(h,TC) +Dm, t ∈ [c1, cn−1], (56)
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where Dm, m ∈ {0, 1}, is the error (54) or (55), respectively depending on the
degree of the applied F-transform.

proof: The theorem is a consequence of Lemma 2 and Theorems 5, 3, and
4. �

Recall that, by the assumption, the modulus of continuity ω(h,TC) is also
a small number. Taking into account Theorem 5, we conclude from Theorem 6
that the F-transform enables us to extract the trend-cycle TC from the time
series X(t) with high accuracy.

It follows from the method described in Subsections 3.2.2 and 3.2.3 that, as a
byproduct, we can also extract subcomponents forming the seasonal component.
This will be demonstrated in the following section.

4. Experimental verification

In this section we will demonstrate how the above described F-transform
trend estimation method works on data2. We will also compare it with three
classical methods for analysis of time series.

4.1. Three selected classical methods

To compare F-transform with other classical methods that are frequently
used in the analysis of time series, we chose the following three non-parametric
ones: STL-method, Butterworth low-pass filter and Singular Spectrum Analysis.
Let briefly outline the main ideas of these methods.

STL-method (Season-Trend-Loess regression) is a filtering procedure for de-
composing a time series into three components (17). The procedure consists
of a sequence of applications of the loess regression method (locally weighted
regression — see [5]). First, the trend is estimated using the loess regression.
Then a sequence of subseries forming the seasonal component is separated and
detrended. All these steps are realized in the, so called, inner loops. Finally,
the outer loop is run resulting in the estimation of noise. The Loess regression
is applied several times during the procedure. Recall that this is a classical
regression limited to a narrow window represented by a special weight function.
Note that this function has similar properties as the basic function of the fuzzy
transform (cf. Definition 1) and so, it be taken as a fuzzy set shifted along
the data. The STL-method is quite complicated and has a high computational
complexity. Detailed description of the method including some examples can
be found in [4].

The Butterworth filter (see [3, 10, 26]) is a name for a wider class of filters
that can be used as a low-pass, high-pass and band-pass ones. The main idea
of the low-pass filter is to remove components of the time series that have

2The reader can verify our results as well as analysis and forecasting of time series using
our experimental software LFL Forecaster whose β-version is available on our WEB page
http://irafm.osu.cz under Research/Software.
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frequencies above a given cutoff frequency λc. Recall that response function of
the filter (as a function of frequency) is determined as a fraction of the amplitude
of the output series at frequency λ divided by the amplitude of the input series at
the same frequency. The low-pass Butterworth filter has the response function

G(λ)2 =
1

1 + ( λλc )2n
(57)

where the parameter n influences sharpness of the cutoff. Thus, for frequencies
lower than λc is (57) close to 1 and for higher is close to 0.

The main idea of the Singular Spectrum Analysis (SSA) technique (see [8,
11]) is also to decompose the original time series into the components (17). The
SSA technique consists of two complementary stages: At the first stage, the time
series is decomposed into so-called elementary matrices using a singular value
decomposition of the trajectory matrix constructed upon the time series. At
the second stage, the original time series is reconstructed as a sum of diagonal
averaged matrices that are derived by summing the elementary matrices splitted
into several groups. Neither a parametric model nor stationarity are assumed
for the time series.

Using the F-transform and the above mentioned classical methods we ran
tests on two kinds of data: (1) two artificially formed time series whose structure
is exactly known, and (2) three real time series taken from Internet (Time Series
Data Library): (a) monthly Canadian unemployment figures in the years 1956–
1975 (thousands), (b) monthly Number of slaughtered pigs in Victoria in the
years 1980–1995, (c) monthly Accidental deaths in the USA in the years 1973-
1978.3.

4.2. Artificial time series

Comparison of the methods on artificially formed time series is the most
convincing way how to justify strength of the methods (of course, besides precise
mathematical proofs, if available) because we know exactly structure of the
time series and so, we can see how the given method estimated the real known
component. Therefore, we formed two artificial time series on the set of integers
t ∈ {0, . . . , 100} as follows:

1. Time series AS1 is formed as follows:

X(t) = 20 sin 0.063t+ 5 sin(0.63t+ 1.5) + 5 sin(1.26t+ 0.35)

+ 15 sin(2.7t+ 1.12) + 7 cos(0.41t+ 0.79) +R(t) (58)

where the trend-cycle is modeled by the first sin function TC(t) = 20 sin 0.063t
that has periodicity 100. The other four sine members form the seasonal
component S(t). Their periodicities are T1 = 10, T2 = 5, T3 = 2.3, T4 =
15.4, respectively. The R(t) is a random noise with average µ̄ = −0.24.

3This time series is considered also in [11].
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2. Time series AS2 differs from AS1 only in the trend-cycle:

X(t) = TC(t) + 5 sin(0.63t+ 1.5) + 5 sin(1.26t+ 0.35)

+ 15 sin(2.7t+ 1.12) + 7 cos(0.41t+ 0.79) +R(t) (59)

where the trend-cycle TC(t) is given by artificial data without clear peri-
odicity. Its modulus of continuity is ω(30,TC) = 3.22.

Figure 4: Demonstration of the trend-cycle estimation of the artificial time series AS1. The
original trend cycle, given by sine function with periodicity 100, is depicted by red line. The
estimated trend-cycle using various methods is depicted as follows: F0-transform — green line;
STL-method — blue line; Butterworth filter — light blue line; and SSA-method — yellow
line.

In accordance with the theoretical results above, we estimated the trend-
cycle of these time series using F-transform as follows: we set T̄ = T4 and
d = 1, i.e. the distance (51) between nodes is h = 15 (the time axis is discrete
and so, fractions are neglected). Consequently, width of the basic functions is
2h = 30 . Since all d1, . . . , d4 are close to natural numbers, the error D0 in (54)
is very close to 0. Let us remark that periodogram applied to both artificial
time series reliably detected all the real periodicities.

Artificial time series AS1. Results of trend-cycle estimation are depicted in
Figures 4 and 5. The known real trend-cycle is depicted in both figures by
red line. Figure 4 contains estimation of the trend-cycle using F0-transform,
STL-method, SSA-method, and Butterworth low-pass filter. Figure 5 contains
comparison of the trend estimation using both F0- and F1-transforms. As ex-
pected, the F1-transform is smoother and more precise.

Numerical comparison of all tested methods with respect to the real trend-
cycle of the series AS1 using RMSE (Root Mean Square Error) measure is the
following:

Method F0-transform F1-transform STL SSA Butterworth
RMSE 3.13 1.82 1.90 2.52 12.03
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Figure 5: Comparison of the known trend-cycle (red line) of the artificial time series AS1 with
its estimation using both F0- (green line) and F1-transform (violet line).

It can be seen from the figures and this table that the results of the F-transform,
STL and SSA methods are comparable. The F0-transform is slightly worse than
the other two classical methods because its inverse F-transform is partially lin-
ear; the F1 transform approximates the real trend-cycle with the best precision.

As can be seen, the F0-transform is able to remove the whole seasonal com-
ponent including noise almost completely. The maximal difference between the
inverse F-transform and the real trend-cycle is

max
t∈{0,100}

|TC(t)− X̂0(t)| = 3.32.

We may thus conclude that the trend-cycle was estimated with the error corre-
sponding to (56) (cf. also (15)). Note that the Butterworth filter does not give
convincing results though its cutoff frequency crresponds to (58).

Figure 6: Demonstration of the trend-cycle estimation of the artificial time series AS2 whose
trend-cycle is a function without clear periodicity. The original known trend cycle is depicted
by red line. The estimated trend-cycle using various methods is depicted as follows: F0-
transform — green line; STL-method — blue line; Butterworth filter — light blue line; SSA-
method — yellow line.
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Artificial time series AS2. Results of comparison of the trend-cycle estimation
of the artificial time series AS2 using all four methods are depicted in Figure 6.
Numerical comparison with respect to the real trend-cycle using RMSE measure
is the following:

Method F0-transform F1-transform STL SSA Butterworth
RMSE 2.08 1.79 1.95 1.88 6.07

One can see that the results are similar to those of AS1.

Figure 7: The seasonal component (including noise) of the artificial time series AS2 and its
estimation using F0-transform, STL- and SSA-methods. The original component S(t) +R(t)
is red and its estimations are: F0 transform is green, STL-method is blue and SSA-method is
light brown.

We also compared estimation of the combined seasonal and noise component
S(t) + R(t) using all three methods. In case of the F0-transform, we obtained
it by “detrending” the original time-series. The other two methods provide the
components S(t) and R(t) separately. The results are in Figure 7. One can see
that estimation of the seasonal component using all three methods is quite good
— the difference between real S(t)+R(t) and its estimations is almost invisible.
The RMSE measure of STL is 1.95, that of F0-transform is 2.09 and that of
SSA is 1.88. So, the difference in RMSE among the methods is insignificant.

To demonstrate the power of the F-transform, we also estimated the second
sine subcomponent with the periodicity 15 that is contained in the component
S(t) + R(t) (cf. (59)). This was obtained from the estimation of S(t) + R(t)
by “detrending” the time series (cf. Figure 7) and setting the distance between
nodes to h = T̄ = 10.

4.3. Real time series

To see how the F-transform works on real time series, we chose three time
series introduced in Subsection 4.1. All of them seem to have a clear trend
cycle and also a clear seasonal component. However, the precise trend-cycle of
these time series is not known and, therefore, we cannot measure quality of the
results.

We compared F0-transform with all three classical methods considered above.
We used periodogram to detect the periodicities and according to its results, we

26



Figure 8: Estimation of the sine component with periodicity T = 15 from the seasonal compo-
nent S(t) (including noise) using the F0-transform. The S(t) +R(t) component is light green,
the original sine component is red and its estimation using F0-transform is blue.

set distance between the nodes of the F-transform as follows: Canadian unem-
ployment figures h = 34 (i.e., width of the basic functions is 68), Pigs h = 31
(width of the basic functions is 62) and Accidental deaths h = 12 (width of
the basic functions is 24). To be able to compare F-transform with the other
methods, we set their parameters in accordance with the width of the basic
functions. The results are in Figure 9.

One can see that analogously to the case of artificial time series, the F0-
transform, STL and SSA methods give similar estimation while the Butterworth
low pass filter is clearly worse.

5. Conclusion

This paper is devoted to theoretical analysis of the F-transform applied to
time series under the assumption that the latter can be additively decomposed
into three components: trend-cycle, seasonal component and random noise. We
proved several theorems which demonstrate that the seasonal component can
be eliminated by application of the F-transform. Moreover, if the random noise
is stationary with zero (or very small) mean value µ then it can be significantly
reduced. Therefore, our results lead to the conclusion that the F-transform
is a convenient tool using which the trend-cycle, as informally characterized
by OECD, can be extracted. Unlike classical parametric statistical approaches
where the trend-cycle is assumed in advance to be some specific simple function
(quite often linear), the F-transform does not use any predefined shape and still
provides exact formula for computation of the trend-cycle.

We compared the F-transform with three classical non-parametric meth-
ods, namely STL method, SSA method, and Butterworth low pass filter. The
comparison was realized on two artificial time series whose structure is exactly
known and also on three real time series. In all cases, the F-transform turned
out to be fully comparable with STL and SSA-methods.

As already emphasized, the big advantage of the F-transform is its transpar-
entness, relative simplicity and small computational complexity. The transpar-
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Figure 9: Estimation of the trend-cycle of 3 real time series: Canadian unemployment figures
(up), Monthly slaughtered pigs (middle) and Monthly accidental deaths (down). Estimations
of these methods are depicted as follows: F0-transform — green line; STL-method — orange
line; Butterworth filter — light blue line; SSA-method — yellow line.

entness and simplicity is given by the fact that the F-transform is determined
by a simple uniform fuzzy partition that can be easily specified and when mod-
ified, we immediately see the effect of our modification. Moreover, unlike both
STL and SSA methods, the F-transform provides also analytic formula for the
estimated trend-cycle (formulas (6) or (13)).

Further investigation will focus on analysis of the correspondence between
parameters of the F-transform and various statistical characteristics of the given
time series. On the basis of the demonstrated properties of the F-transform, we
will also try to find a method for forecasting of seasonal component. Finally,
we will study influence of the missing values of the time series on its resulting
inverse F-transform.
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