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Abstract

The existing quantum physics is deterministic in the sense that the
initial state of the system uniquely determines its future states and, thus,
probabilities of different future measurement results. Determinism is in-
consistent with the common sense idea of freedom of will, according to
which we can make decisions and thus, change the state of the world. It is
therefore desirable to incorporate non-determinism into quantum physics.
In this paper, we show that for non-deterministic versions of quantum
physics, we cannot require superposition principle – one of the main fun-
damental principles of modern quantum mechanics. Specifically, while we
can consider superpositions of states corresponding to the same version of
the future dynamics, it is not consistently possible to consider superposi-
tions of states corresponding to different versions of the future.

Why non-deterministic versions of quantum physics. In the usual
quantum physics, once we know the initial state ψ(t0), we can uniquely pre-
dict the state ψ(t) at any future moment of time t > t0 and thus, we can
uniquely predict the probabilities of different future measurement results.

This determinism seems to contradict the common sense idea of freedom
of will, that our behavior is not uniquely pre-determined, that we can make
different decisions and thus, change the future state of the world; see, e.g.,
[1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and references therein. A
natural way to take freedom of will into account is to replace the deterministic
physical models with non-deterministic versions of quantum physics, in which
for the same initial state ψ(t0) we may have several different possible states
ψ(t) ̸= ψ′(t) at a future moment of time t.
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How to describe non-deterministic versions of quantum physics: su-
perposition principle. How can we describe non-deterministic versions of
quantum physics? It is definitely necessary to make sure that this description
satisfies fundamental principles of quantum physics. One of such fundamental
principles is the superposition principle. There are many ways to formulate this
principle. To be able to apply it to non-deterministic situations, let us formu-
late this principle in such a way that would not depend on the deterministic
character of dynamics.

The traditional formulations of the superposition principle use the fact that
the states ψ of a quantum system are unit vectors in a complex-valued Hilbert
space. In the non-relativistic quantum mechanics, which studies systems with
a fixed number of particles, states are complex-valued functions ψ(x) for which∫
|ψ(x)|2 dx = 1. In relativistic quantum mechanics, the basis of the correspond-

ing Hilbert space include states corresponding to different number of particles;
in quantum field theory, states are even more complicated – since they describe
fields. In all these cases, we have a Hilbert space, i.e., a linear space in which
addition of elements (vectors) and multiplication of its elements by a complex
number are well defined, and there is a (bilinear) form ⟨x, y⟩ for which:

• ⟨a · x+ a′ · x′, y⟩ = a · ⟨x, y⟩+ a′ · ⟨x′, y⟩,

• ⟨x, a ·y+a′ ·y′⟩ = a · ⟨x, y⟩+a′ · ⟨x, y′⟩ (where z means complex conjugate),

• ⟨y, x⟩ = ⟨x, y⟩,

• ⟨x, x⟩ = 0, and

• ⟨x, x⟩ > 0 for x ̸= 0.

The bilinear norm defines a norm ∥x∥ def
=

√
⟨x, x⟩.

Definition 1. Let H be a Hilbert space. By a state, we mean a unit vector
in H.

In these terms, the superposition principle can be formulated as follows. Let
ψ(t0) and ψ

′(t0) be states for which the quantum physics predicts future states
ψ(t) and ψ′(t), and let a and a′ be complex numbers for which

ψ′′(t0)
def
= a · ψ(t0) + a′ · ψ′(t0)

is also a state. Then, if we start with the initial state ψ′′(t0), at the moment
t > t0, we get a state ψ′′(t) = a · ψ(t) + a′ · ψ′(t).

In physical terms, superposition principle means that if we start with a
superposition ψ′′(t0) = a ·ψ(t0) + a′ ·ψ′(t0) of the states ψ(t0) and ψ

′(t0), then
at every future moment of time t > t0, we still get a superposition ψ′′(t) =
a · ψ(t) + a′ · ψ′(t) of the corresponding states ψ(t0) and ψ

′(t0).
It is sufficient to restrict ourselves to the case when the states ψ(t0) and

ψ′(t0) are orthogonal to each other: ψ(t0) ⊥ ψ′(t0), i.e., ⟨ψ(t0), ψ′(t0)⟩ = 0. In
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this case, the requirement that a linear combination a ·ψ(t0) + a′ ·ψ′(t0) is also
a state – i.e., it is a unit vector – means that

|a|2 · ∥ψ(t0)∥2 + |a′|2 · ∥ψ′(t0)∥2 = |a|2 + |a′|2 = 1.

The above formulation assumes that the future state is uniquely determined
by the original state. To be able to apply this principle to possible non-
deterministic versions of quantum physics, we need to reformulate this principle
in such a way that it does not depend on whether the underlying theory is
deterministic or not.

In a non-deterministic theory, a state ψ0 at the moment t0 does not, in
general, uniquely determine the state ψ1 at the moment t > t0; for each ψ0, we
may have different states ψ1. A theory must then describe which pairs (ψ0, ψ1)
are possible are which are not. The only restriction is that for each initial state
ψ0, we must have at least one possible future state ψ1. Thus, we arrive at the
following definition:

Definition 2. Let t0 < t1 be two real numbers; these numbers will be called
moments of time.

• By dynamics D(t0 → t1) corresponding to these two moments of time, we
mean a set of pairs of states (ψ0, ψ1) such that for every state ψ0, there is
a state ψ1 for which (ψ0, ψ1) ∈ D(t0 → t1).

• When (ψ0, ψ1) ∈ D(t0 → t1), we say that it is possible to have a state ψ0

at moment t0 and a state ψ1 at moment t1, or, in short, that a transition
from ψ0 to ψ1 is possible. Alternatively, we will denote the possibility of
such a transition as ψ0 → ψ1.

In the traditional (deterministic) quantum physics, where the next state ψ1

is uniquely determined by the previous state ψ0 as ψ1 = Uψ0 for an appro-
priate operator U , the above-defined dynamics takes the form D(t0 → t1) =
{(ψ0, Uψ0)}, i.e., it coincides with the (graph of) the operator U .

Definition 3. We say that a dynamics D(t0 → t1) is deterministic if for every
state ψ0, there exists exactly one state ψ1 for which a transition from ψ0 to ψ1

is possible.

In the general (not necessarily deterministic) case, it is natural to formulate
the superposition principle as follows:

Definition 4. We say that a dynamics D(t0 → t1) satisfies the superposition
principle if it satisfies the following property: for every four states ψ0 ⊥ ψ′

0,
ψ1, and ψ

′
1 for which transitions from ψ0 to ψ1 and from ψ′

0 to ψ′
1 are possible,

and for every two complex numbers a and a′ for which |a|2 + |a′|2 = 1, the
combination ψ′′

1 = a · ψ1 + a′ · ψ′
1 is also a state, and a transition from ψ′′

0 =
a · ψ0 + a′ · ψ′

0 to ψ′′
1 is also possible.
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Comment. For the deterministic case, this formulation is equivalent to the
above-presented usual formulation of the superposition principle.

Main result. Here is our unexpected result:

Theorem. If a dynamics D(t0 → t1) satisfies the superposition principle, then
it is deterministic.

Proof. Let us assume that the dynamicsD(t0 → t1) satisfies the superposition
principle. We will prove that for any state ψ0, if there is a transition from ψ0

to ψ1 and a transition from ψ0 to φ1, then ψ1 = φ1.
To prove this, let us select any unit vector orthogonal to ψ0 and denote it

by ψ′
0. By definition of the dynamics, there exists at least one state for which a

transition from ψ′
0 to this state is possible; let us select one of these states and

denote it by ψ′
1.

By superposition principle, since the vectors ψ0 and ψ′
0 are orthogonal, and

since it is possible to have transitions ψ0 → ψ1 and ψ′
0 → ψ′

1, the transition

φ+
def
=

1√
2
· ψ0 +

1√
2
· ψ′

0 → 1√
2
· ψ1 +

1√
2
· ψ′

1 (1)

is also possible. Similarly, since it is possible to have transitions ψ0 → φ1 and
ψ′
0 → ψ′

1, the transition

φ−
def
=

1√
2
· ψ0 −

1√
2
· ψ′

0 → 1√
2
· φ1 −

1√
2
· ψ′

1 (2)

is also possible.
One can easily check that the vectors

φ+ =
1√
2
· ψ0 +

1√
2
· ψ′

0 and φ− =
1√
2
· ψ0 −

1√
2
· ψ′

0

are orthogonal, and that

1√
2
·φ++

1√
2
·φ− =

1√
2
·
(

1√
2
· ψ0 +

1√
2
· ψ′

0

)
+

1√
2
·
(

1√
2
· ψ0 −

1√
2
· ψ′

0

)
=

(
1

2
+

1

2

)
· ψ0 +

(
1

2
− 1

2

)
· ψ′

0 = ψ0.

Thus, from the possibility of the transitions (1) and (2), by using the superpo-
sition principle, we can conclude that

ψ0 → 1√
2
·
(

1√
2
· ψ1 +

1√
2
· ψ′

1

)
+

1√
2
·
(

1√
2
· φ1 −

1√
2
· ψ′

1

)
=

1

2
· ψ1 +

1

2
· φ1 +

1

2
· ψ′

1 −
1

2
· ψ′

1 =
1

2
· ψ1 +

1

2
· φ1.
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Thus, the combination

s
def
=

1

2
· ψ1 +

1

2
· φ1

should be a state, i.e., a unit vector in the Hilbert space. It is known that in a
Hilbert space (just like in a Euclidean space), for every two vectors x and y, we
have ∥x+y∥ ≤ ∥x∥+∥y∥, and the only possibility to have ∥x+y∥ = ∥x∥+∥y∥ is

when the vectors are collinear, i.e., when y = λ ·x for some λ > 0. For x =
1

2
·ψ1

and y =
1

2
· φ1, we have

∥x∥ =
1

2
· ∥ψ1∥ =

1

2
, ∥y∥ =

1

2
· ∥φ1∥ =

1

2
,

and thus, 1 = ∥s∥ = ∥x+y∥ = ∥x∥+∥y∥. So, we conclude that y = λ·x for some

λ > 0. For the norms, we thus have ∥y∥ = λ · ∥x∥ and, since ∥x∥ = ∥y∥ =
1

2
,

we conclude that λ = 1 and y = x. From y =
1

2
· φ1 =

1

2
· ψ1 = x, we conclude

that ψ1 = φ1. The statement is proven.

Discussion. In the traditional (deterministic) quantum physics, all the fu-
ture states correspond to a single version of the future. Superposition principle
enables us to consider superpositions of such states. The fact that numerous
experiments confirm the predictions of quantum physics support such superpo-
sitions.

When we go from the traditional (deterministic) quantum physics to a non-
deterministic version, we also add states corresponding to alternative versions of
the future. At first glance, it seems reasonable to extend the usual superposition
principle to such states, and to allow not only superpositions of states from
the same version of the future, but also superpositions of states from different
alternative futures. Our result shows that such an extension is not possible:
it is not possible to consider superpositions of states corresponding to different
alternative futures.
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