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Abstract—In the traditional fuzzy logic, as truth values, we
take all real numbers from the interval [0, 1]. In some situations,
this set is not fully adequate for describing expert uncertainty, so
a more general set is needed. From the mathematical viewpoint, a
natural extension of rea/ numbers is the set of complex numbers.
Complex-valued fuzzy sets have indeed been successfully used in
applications of fuzzy techniques. This practical success leaves us
with a puzzling question: why complex-valued degree of belief,
degrees which do not seem to have a direct intuitive meaning,
have been so successful? In this paper, we use latest results from
theory of computation to explain this puzzle. Namely, we show
that the possibility to extend to complex numbers is a necessary
condition for fuzzy-related computations to be feasible. This
computational result also explains why complex numbers are
so efficiently used beyond fuzzy, in physics, in control, etc.

I. FORMULATION OF THE PROBLEM

From the mathematical viewpoint, complex-valued fuzzy
sets are natural. In classical (2-valued) logic, every statement
is either true or false. In the computer, “true” is usually
represented as 1, and “false” as 0. As a result, in the 2-valued
logic, the set of possible truth values is a 2-element set {0, 1}.

The traditional 2-valued logic is well equipped to represent:

« situations when we are completely confident that a given
statement is true and

« situations when we are completely confident that a given
statement is false.

However, the traditional logic cannot adequately represent
intermediate situations, when we only have some degree of
confidence that a statement is true. To describe such interme-
diate situations, L. Zadeh invented fuzzy logic; see, e.g., [7],
[11], [13]. In the original version of fuzzy logic, the set of
possible truth values is an interval [0, 1]; this is still the most
widely used set of possible truth values.

Fuzzy logic has been successful in many applications.
However, in some applications, the [0, 1]-based fuzzy logic
is itself not fully adequate. For example, the [0, 1]-based logic
assumes that we can describe an expert’s intermediate degree
of confidence by an exact number from the interval [0, 1]. Real-
life experts often cannot meaningfully distinguish between
nearby numbers: it is difficult to meaningfully distinguish
between degree of confidence 0.78 and 0.79. So, a more
adequate description is needed.
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One of the main objectives of studying fuzzy knowl-
edge is to use the resulting models in computer-based sys-
tems. Because of this objective, researchers are looking for
well-developed models, models which use well-established
mathematical constructions. Thus, we are looking for well-
established mathematical constructions that generalize the set
of all real numbers from the interval [0, 1].

In mathematics, one of the natural generalizations of real
numbers are complex numbers. Not surprisingly, complex-
valued generalizations of fuzzy sets have been proposed and
used; see, e.g., [1], [2], [4], [10].

From the practical viewpoint, complex-valued fuzzy sets
are useful. In many practical situations, complex-valued fuzzy
sets turned out to be useful; see, e.g., [1], [2], [4], [10].

From the intuitive viewpoint, complex-valued fuzzy sets
remain a puzzle. The problem is that fuzzy sets are not just a
mathematical theory, it is an intuitively clear way to describe
how we humans deal with uncertainty.

o The original idea of describing possible expert’s degrees
of confidence, degrees ranging all the way from “abso-
lutely false” (0) to “absolutely true” (1) by numbers from
the interval [0, 1], is very natural.

o In contrast, the idea of using complex numbers is not
clear at all.

Why complex-valued fuzzy numbers are useful is thus still
largely a mystery.

What we do in this paper. In this paper, we use the latest
developments in theory of computation to show that the
seemingly mysterious appearance of complex-valued degree
of truth has a simple explanation — the need to make fuzzy
computations efficient.

II. OUR EXPLANATION OF COMPLEX-VALUED Fuzzy
SETS: FUZZY-RELATED COMPUTATIONAL PROBLEMS AND
How COMPLEX-VALUED DEGREES HELP

Processing fuzzy data: what are the main computational
challenges. To analyze why complex-valued fuzzy techniques
may be useful let us recall computational challenges related
to different uses of fuzzy techniques.



The most widely used fuzzy-related techniques are tech-
niques of fuzzy control and fuzzy modeling. In these tech-
niques:

« we have some rules,

e« we combine membership functions corresponding to
these rules — getting the membership function p(u) for
the result — and then

o we apply defuzzification to the resulting membership
function to get a control value .

The most frequently used defuzzification technique is centroid
defuzzification, in which we compute u as a ratio of two

integrals:
Ju- p(u)du
S pu(u)du
Combining membership functions is computationally sim-
ple: e.g., to find the degree to which the condition
Ai(x1) & Ag(x2) of a fuzzy rule is satisfied for each xq
and x5, we simply apply the corresponding t-norm (“and”-
operation) fg (a,b) to the degrees p1(x1) and po(zg) with
which the conditions A;(x1) and Ay(xzs) are satisfied. This
can be done in parallel and thus, really fast. In contrast, inte-
gration cannot be paralellized that easily, and thus, integration
is the main time-consuming part of the computations related
to fuzzy control.

Similarly, in fuzzy decision making, we:

o first compute a membership function p(u) that describes
to what degree each alternative w satisfies the require-
ments,

« and then select an alternative u for which this degree is
the largest.

u =

Similarly to fuzzy control, we can compute different values
w(u) in parallel, and thus — if we have enough processors at
our disposal — reasonably fast. The main time-consuming part
of the fuzzy optimization algorithm is thus finding the location
where a given function p(u) attains its global maximum.

Summarizing: in applications of fuzzy techniques, the most
time-consuming computational operations are:

o integration and

« global optimization.

Integration and maximization problems are indeed compu-
tationally difficult. Both integration and maximization may be
easy when we deal with simple functions, e.g., with triangular
functions used in many applications of fuzzy techniques.
However, for general functions, both integration and global
optimization are NP-hard; see, e.g. [8]. This means, crudely
speaking, that we cannot feasibly solve all particular cases of
these problems.

Integration and maximization problems are feasibly solv-
able for analytical functions but not for smooth ones.
Since we cannot solve all particular cases of the integration
and maximization problem, a natural question is: for what
classes of functions can we feasibly solve these problems? We
know that these problems are feasible for triangular functions,
we know that these problems are not feasible for general

continuous functions. Where is the “threshold” separating
feasible from non-feasible cases?

Such a threshold have discovered in a recent paper [6]. In
this paper, it is shown that the threshold goes between smooth
and analytical functions:

« both integration and optimization problems are NP-hard

for smooth (differentiable) functions;

« however, these two problems become feasible (i.e., solv-

able in polynomial time) if we restrict ourselves to
analytical functions.

Relation to complex numbers. For real-valued functions of
a real variable, an analytical function means a function which
can be (at least locally) described by a convergent power series

flx) = ao—i—al-(;v—xo)—i—ag-(x—x())2+a3~(x—xo)3+...

All such functions can be naturally extended to complex
numbers — that is why all standard functions such as exp(x),
sin(z), etc., can be easily extended to complex values z =
x +1-y of the input.

In the complex domain, analytical functions can be defined
much easier: as functions f(z) which are differentiable with
respect to z; see, e.g., [12]. From this viewpoint, analytical
functions can simply be defined as smooth functions which
can be extended to smooth functions of a complex variable.
Thus, the above threshold result can be formulated as follows:

o for general smooth functions of a real variable, both
integration and optimization problems are NP-hard;

o on the other hand, for functions which can be extended to
smooth functions of a complex variable, both integration
and optimization become computationally feasible.

Resulting computational explanation of why fuzzy-valued
fuzzy. We thus arrive at the computational explanation of why
complex-valued fuzzy sets are practically useful: because

« the most computationally intense operations involved in
fuzzy techniques are integration and optimization,

« aintegration and optimization are computationally fea-
sible only when the corresponding functions can be
extended to smooth functions of complex variables.

III. WHY COMPLEX NUMBERS IN GENERAL?

Why complex numbers in general: formulation of the prob-
lem. Complex numbers were first invented as a mathematical
trick. It is not accidental that i = v/—1 is called an imaginary
number: it was invented to represent something that does not
exist in real life.

Surprisingly, it turns out the complex numbers are very
actively used in modern engineering and in modern physics,
to describe real-life phenomena; see, e.g., [5]. For example:

o itis difficult to imagine quantum physics without complex

numbers;

o complex numbers are ubiquitous in control theory.

Our explanation. Our explanation is similar to the explanation
of why complex numbers appear in fuzzy: that they make



the corresponding computational problems computationally
feasible.

Indeed, what kind of computational problems do we en-

counter in physics?

« usually, physical theories are described in terms of differ-
ential equations; so, to solve the corresponding physical
problems, we need to solve (integrate) the corresponding
differential equations;

« alternatively, physical theories can be describing in terms
of optimization principles; in this case, to solve the
corresponding physical problems, we need to find optima
of the given objective functions.

Similar, in control:

o we have differential equations that describe the system’s
dynamics; so, to predict the system’s behavior, we need
to solve (integrate) the corresponding equations;

« the main objective of control is to find the control strategy
that optimizes the appropriate objective function, so we
need to solve the corresponding optimization problem as
well.

In both types of applications, we need to solve integration
and optimization problems. And we know that both problems
become feasible only if the corresponding functions allow
extension to the complex case.

Thus, it is natural that physical theories which allow feasible
predictions and control theories that lead to efficient control
strategies are often formulated in complex terms: the use of
complex numbers guarantees that we have feasibility.

IV. COMPLEX NUMBERS NOT ONLY MAKE
COMPUTATIONS FEASIBLE, THEY OFTEN MAKE FEASIBLE
COMPUTATIONS FASTER

Why complex numbers: an answer that we gave so far.
In the previous sections, we explained the effectiveness of
complex numbers by citing a result that operations such
as integration and optimization are only feasible when the
corresponding functions can be extended to smooth functions
in a complex domain. In this result:

« in the general case, the problem is NP-hard, so no feasible
algorithm is possible;

e on the other, when functions can be extended to the
complex domain, feasible algorithms become possible.

Additional reasons why complex numbers: they lead to
faster feasible algorithms. It turns out that sometimes, even in
the situations when a real-valued feasible algorithm is possible,
the use of complex numbers can speed up computations. A
typical example of such a situation is the use of Fast Fourier
Transform (FFT), an efficient algorithm for transforming a
real function x(t) into its complex-valued Fourier transform
X (w). The use of FFT leads to most efficient algorithms for
multiplying polynomials, for multiplying large integers, for
solving linear differential equations with constant coefficients,
etc.; see, e.g., [3].

This is also true for fuzzy-related computations: complex
numbers speed up feasible fuzzy computations. For example,

in [9], it is shown that the use of FFT speeds up the com-
putation of fuzzy arithmetic operations — e.g., when we use
Zadeh’s extension principle to compute the sum or the product
of two fuzzy numbers.
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