
How to Generate Worst-Case Scenarios When
Testing Already Deployed Systems Against

Unexpected Situations
Francisco Zapata1, Ricardo Pineda1, and Martine Ceberio2

1Research Institute for Manufacturing & Engineering Systems RIMES
2Department of Computer Science

University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
fazapatagonzalez@utep.edu, rlpineda@utep.edu, mceberio@utep.edu

Abstract—Before a complex system is deployed, it is tested –
but it is tested against known operational mission and under
different operational scenarios. Once the system is deployed,
new possible unexpected and/or uncertain operational scenarios
emerge. It is desirable to develop methodologies to test the system
against such scenarios. A possible methodology to test the system
would be to generate the worst case scenario that we can think
of to understand in principle the behavior of the system. So,
we face a question of generating such worst-case scenarios. In
this paper, we provide some guidance on how to generate such
worst-case scenarios.

I. FORMULATION OF THE PROBLEM

General problem. Before a complex system is deployed,
Integration, Verification, Validation, Test and Evaluation
(IVVT&E) methodologies are applied against well defined
operational mission and under known operational scenarios
and Modes of Operation. Once the system is deployed, new
possible scenarios emerge; see, e.g., [2], [3], [9] and references
therein. It is desirable to be develop methodologies to test a
system against such emergent scenarios.

General examples. A defense system encounters new
weapons that were not available when this system was de-
ployed. A health care monitoring system encounters a new
illness that was not known before system testing and deploy-
ment.

Specific example. As a specific example, let us consider an
automatic system that helps prevent a car from getting too
close to the walls of the freeway (or a tunnel).

At first glance, all we need for this is a sensoring system
that measures a distance x from a car to the nearby wall –
e.g., by emitting a sound wave and measuring the distance by
the time it took the sound to bounce back. There are usually
several distance sensors, and the system is set up to work well
in the expected situation of a freeway or a tunnel.

The problem starts when we encounter a new unexpected
situation, e.g., a hole in the wall or rock that fell near a wall.
In the case of a hole, some sensors measure the distance to
a wall, while other sensors measure the distance to a next
faraway wall which is located very far from the road. As a
result, the existing algorithms may under-estimate the distance

to the obstacle. So, even when the car is dangerously close to
the wall, the system may operate under the false impression
of safety.

Need for generating worst-case scenarios. Once the system
designers realize that novel situations are possible, they can
come up with ways to improve the system’s performance on
such non-standard situations. A usual way of testing a system
is to test it on worst-case scenarios; see, e.g., [2], [3], [9]. So,
we face a question of generating such worst-case scenarios.

What we do in this paper. In this paper, on the example of the
above car problem, we explore the ways of generating worst-
case scenarios to validate system behavior under unexpected
scenarios. We start with a simplified (crisp) case when we
assume to know the exact range of each variable and when
we do not have any information about which combinations
of values of these variables are more probable and which
are less probable. Then, we show how we can take into
account (inevitably imprecise, uncertain) information about
which values (and which situations) are more probable and
which are less probable.

While our preliminary results are encouraging, the main
objective of this paper is not so much to present new results,
but rather to introduce an important class of problems and to
solicit help of the fuzzy research community in solving these
problems.

II. CASE STUDY: PRECISE FORMULATION OF THE
PROBLEM (CRISP CASE)

How the distance-measuring system is set up now: a sim-
plified description. The distance-measuring system usually
involve several sensors, to make sure that the system remains
operational when one of the sensors fails.

Each of the sensors produces a measurement results, so
we need to estimate the actual distance d based on these
measurement results x1, . . . , xn. Because of the measurement
noise, for each distance d, we get different values xi ≈ d with
different probabilities. In many cases, the measurement error
is normally distributed, with a standard deviation σ. In other



words, for each result xi, we have a probability distribution
with the probability density

ρd,i(xi) =
1√

2π · σ
· exp

(
− (xi − d)2

2σ2

)
.

Measurement errors of different distributions are usually in-
dependent; so the probability distribution for the vector x =
(x1, . . . , xn) of measurement results can be described as a
product of the probability density functions corresponding to
different sensors:

ρd(x1, . . . , xn) =
n∏

i=1

1√
2π · σ

· exp
(
− (xi − d)2

2σ2

)
.

As a desired estimate d for the distance, it is reasonable to
select the most probable value d, i.e., the value d for which,
for the actual measurement results x1, . . . , xn, the probability
ρd(x1, . . . , xn) is the largest possible.

Differentiating this expression with respect to d and equat-
ing the derivative to 0, we conclude that the most probable
value d is equal to the arithmetic average

x =
x1 + . . .+ xn

n

of the measurement results x1, . . . , xn.

Criterion for selecting a worst-case scenario. The above
analysis shows that a reasonable way to set up a system for
measuring distance is to estimate this distance based on the
arithmetic average of measured values x1, . . . , xn.

This average works well in standard situations, but in non-
standard situations, we should raise an alert when at least
one of the measured distances xi becomes dangerously small,
i.e., equivalently, when the smallest of the three distances is
dangerously small. In other words, ideally, we should make
decisions based not on the average but on the minimum
m

def
= min(x1, . . . , xn).

When the minimum m is close to the average x, the situation
is not so bad. The worst-case scenario is when there is a drastic
difference between x and m. In other words, the worst-case
scenario is, in this case, a scenario for which the difference

x−m =
x1 + . . .+ xn

n
−min(x1, . . . , xn) (1)

attains the largest possible value.

Crisp case. First, we consider the crisp case, when each
distance xi can take arbitrary value from the interval [0, D],
for some constant D. In this case, we need to maximize the
objective function (1) under the constraints that 0 ≤ xi ≤ D.

III. CASE STUDY: ALGORITHMIC ANALYSIS

In general, exact optimization is difficult. In general, the
problem of exactly maximizing a given function is com-
putationally difficult (NP-hard); see, e.g., [5], [7]. Crudely
speaking, this means that unless P = NP (which most computer
scientists believe to be false), we cannot have an efficient
(feasible) algorithm that always provides an exact solution to
the optimization problem.

Let us select an approximate algorithm. Since exact opti-
mization is difficult, we need to use approximate optimization
algorithms. Most known optimization algorithms – such as
gradient descent and its versions – use derivatives of the
objective function. In our case, the objective function is not
differentiable when two of the values xi coincide. Indeed, even
for two values x1 and x2, the function min(x1, x2) is equal to
x1 when x1 ≤ x2 and to x2 when x1 ≥ x2; thus, this function
is not differentiable at the point x1 = x2.

Since our objective function is not differentiable, we need to
use optimization algorithms which do not require derivatives.
One of the simplest algorithms of this type is component-
wise optimization. In this algorithm, to find the values
xmax
1 , . . . , xmax

n at which the given function f(x1, . . . , xn)
attains its maximum, we start with some initial values
x
(0)
1 , . . . , x

(0)
n . Then, we do the following:

• First, we fix all the values but x1, i.e., we take

x2 = x
(0)
2 , . . . , xn = x(0)

n ,

and find the value x
(1)
1 for which the expression

f(x1, x
(0)
2 , . . . , x

(0)
n ) is the largest possible.

• Then, we fix all the values but x2, i.e., we take

x1 = x
(1)
1 , x3 = x

(0)
3 , . . . , xn = x(0)

n ,

and we find the value x
(1)
2 for which the expression

f(x
(1)
1 , x2, x

(0)
3 . . . , x

(0)
n ) is the largest possible.

• Then, we repeat the same to find new values of x3, x4,
. . . , xn.

• Once the new values x
(1)
1 , . . . , x(1)

n of all the variables
x1, . . . , xn are found, we again fix the values of all the
variables but x1, find the new value x

(2)
1 of x1, etc.

• We stop when we do not get any improvement, i.e., when
the values on the next iteration are equal to (or close to)
values on the previous iteration.

In more formal terms, we can describe this algorithm as
follows. In this algorithm, we start with the initial values
x
(0)
1 , . . . , x

(0)
n , and then we perform iterations. On each it-

eration, we start with the values x
(k)
1 , . . . , x

(k)
n obtained on

the previous iteration (or, for the first iteration, with the initial
values). Each iteration consists of n computational stages. On
each stage i = 1, . . . , n, we find the next value x

(k+1)
i in the

following way:
• we fix the previously obtained values of all the variables

except for xi, i.e., we take

x1 = x
(k+1)
1 , . . . , xi−1 = x

(k+1)
i−1 ,

xi+1 = x
(k)
i+1, . . . , xn = x(k)

n ;

• we then find a value xi for which the func-
tion f(x

(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
n ) attains the

largest value;
• this value xi is then taken as the new value x

(k+1)
i .

We stop when ∣∣∣x(k+1)
i − x

(k)
i

∣∣∣ ≤ ε



for all i, for some appropriate ε > 0.

Let us apply the selected algorithm to our problem. Since
in the normal case, the measurement results xi come from
measuring the same distance, it is reasonable to start with
equal values x

(0)
1 = . . . = x

(0)
n = d0, for some appropriate

distance d0. Let us now implement the first iteration.

First stage: general description. At the first stage, according
to the general algorithm, we select a value x1 for which the
difference

x1 + d0 + . . .+ d0
n

−min(x1, d0, . . . , d0)

is the largest possible. The first term in this expression has the
form

x1 + (n− 1) · d0
n

.

The value of the second (minimum) term depends on whether
x1 ≤ d0 or x1 ≥ d0. Let us consider these two cases one by
one.

First stage: case when x1 ≤ d0. In this case, the minimum
is equal to x1 and thus, the maximized function is equal to

x1 + (n− 1) · d0
n

− x1 =
n− 1

n
· d0 −

n− 1

n
· x1.

This function decreases with x1, so for values x1 ∈ [0, d0],
the largest possible value of the objective function is attained
when x1 attains its smallest possible value x1 = 0. For this
value x1 = 0, the above objective function takes the form

n− 1

n
· d0. (2)

First stage: case when x1 ≥ d0. In this case, the minimum
is equal to d0 and thus, the maximized function is equal to

x1 + (n− 1) · d0
n

− d0.

This function increases with x1, so for values x1 ∈ [d0, D],
the largest possible value of the objective function is attained
when x1 attains its largest possible value x1 = D. For this
value x1 = D, the above objective function takes the form

n− 1

n
· d0 +

1

n
·D − d0 =

1

n
· (D − d0). (3)

First stage: final result. By considering the above two cases,
we conclude that the maximum of our function is attained
either for x1 = 0, or for x1 = D. To find the result x(1)

1 of
the first stage, we need to check which of the values is larger.
By comparing the results (2) and (3) corresponding to x1 = 0
and x1 = D, we conclude that the value x1 = 0 leads to the
larger value of the objective function if and only if

n− 1

n
· d0 ≥ n− 1

n
· d0 +

1

n
·D − d0,

i.e., if and only if D ≤ d0 · n. So, we arrive at the following
conclusion:

• if D ≤ d0 · n, then we take

x
(1)
1 = 0;

• if D ≥ d0 · n, then we take

x
(1)
1 = D.

In the analysis of the second stage, we will consider both
choices.

Second stage: case when D ≤ d0 · n and x
(1)
1 = 0. In this

case, the objective function takes the form

0 + x2 + (n− 2) · d0
n

− 0 =
1

n
· x2 +

n− 1

n
· d0.

This function increases with x2, so for values x2 ∈ [0, D],
the largest possible value of the objective function is attained
when x2 attains its largest possible value x2 = D. Thus, in
this case, we take x

(1)
2 = D.

Second stage: case when D ≥ d0 · n and x
(1)
1 = D. The

situation in this case depends on whether n = 2 or n > 2.
If n = 2, then the objective function takes the form

D + x2

2
−min(D,x2) =

D + x2

2
− x2 =

1

2
·D − 1

2
· x2.

This function decreases with x2, so for values x2 ∈ [0, D],
the largest possible value of the objective function is attained
when x2 attains its smallest possible value x2 = 0. Combining
with the previous case, we conclude that for n = 2, one of
the two values xi should be equal to 0, and another one to D.

If n > 2, the objective function takes the form

D + x2 + (n− 2) · d0
n

−min(D,x2, d0, . . . , d0).

The value of the minimum depends on whether x2 ≤ d0 or
x2 ≥ d0. Let us consider these two cases one by one.

If x2 ≤ d0, then the objective function takes the form

D + x2 + (n− 2) · d0
n

−x2 =
D + (n− 2) · d0

n
− n− 1

n
·x2.

This function decreases with x2, so for values x2 ∈ [0, d0],
the largest possible value of the objective function is attained
when x2 attains its smallest possible value x2 = 0. The
corresponding value of the objective function is equal to

D + (n− 2) · d0
n

. (5)

If x2 ≥ d0, then the objective function takes the form

D + x2 + (n− 2) · d0
n

− d0.

This function increases with x2, so for values x2 ∈ [d0, D],
the largest possible value of the objective function is attained
when x2 attains its largest possible value x2 = D. The
corresponding value of the objective function is equal to

D +D + (n− 2) · d0
n

− d0 =

D + (n− 2) · d0
n

+
D

n
− d0. (6)



Since we consider the case when D ≥ n · d0, the expression
(6) corresponding to x2 = D is larger than the expression (5)
corresponding to x2 = 0. Thus, we take x

(1)
2 = D.

So, we arrive at the following conclusions:

Second stage: final result for n = 2.
• If D ≤ d0 · n, then we take

x
(1)
1 = 0 and x

(1)
2 = D;

• if D ≥ d0 · n, then we take

x
(1)
1 = D and x

(1)
2 = 0.

Second stage: final result for n > 2. We always take x
(2)
1 =

D. In other words:
• if D ≤ d0 · n, then we take

x
(1)
1 = 0 and x

(1)
2 = D;

• if D ≥ d0 · n, then we take

x
(1)
1 = D and x

(1)
2 = D.

k-th stage: a natural hypothesis and its induction-based
proof. Let us prove, by induction, that on each stage k, if
k < n, then:

• if D ≤ d0 · n, then we take

x
(1)
1 = 0 and x

(1)
2 = . . . = x

(1)
k = D;

• if D ≥ d0 · n, then we take

x
(1)
1 = x

(1)
2 = . . . = x

(1)
k = D.

If k = n, then:
• if D ≤ d0 · n, then we take

x
(1)
1 = 0 and x

(1)
1 = . . . = x

(1)
k = D;

• if D ≥ d0 · n, then we take

x
(1)
1 = x

(1)
2 = . . . = x

(1)
k−1 = D and x

(1)
k = 0.

We know that the above is true for k = 1 and k = 2.
Let us assume that this is true for selecting the values
x
(1)
1 , x

(1)
2 , . . . , x

(1)
k−1, and let us prove that it is true for selecting

the next value x
(1)
k as well.

k-th stage: case when D ≤ d0 · n, x
(1)
1 = 0, and x

(1)
1 =

. . . = x
(1)
k−1 = D. In this case, the objective function takes the

form
0 + (k − 2) ·D + xk + (n− k) · d0

n
− 0.

This function increases with xk, so for values xk ∈ [0, D],
the largest possible value of the objective function is attained
when xk attains its largest possible value xk = D. Thus, in
this case, we indeed take x

(1)
k = D.

k-th stage: case when D ≥ d0 · n and x
(1)
1 = . . . = x

(1)
k−1 =

D. The situation in this case depends on whether n = k or
n > k.

If n = k, then the objective function takes the form

(n− 1) ·D + xn

n
−min(D, . . . ,D, xn) =

(n− 1) ·D + xn

n
− xn =

n− 1

n
·D − n− 1

n
· xn.

This function decreases with xn, so for values xn ∈ [0, D],
the largest possible value of the objective function is attained
when xn attains its smallest possible value xn = 0. So, in this
case, we select x(1)

k = 0.
If n > k, the objective function takes the form

(k − 1) ·D + xk + (n− k) · d0
n

−

min(D, . . . ,D, xk, d0, . . . , d0).

The value of the minimum depends on whether xk ≤ d0 or
xk ≥ d0. Let us consider these two cases one by one.

If xk ≤ d0, then the objective function takes the form

(k − 1) ·D + xk + (n− k) · d0
n

− xk =

(k − 1) ·D + (n− k) · d0
n

− n− 1

n
· xk.

This function decreases with xk, so for values xk ∈ [0, d0],
the largest possible value of the objective function is attained
when xk attains its smallest possible value xk = 0. The
corresponding value of the objective function is equal to

(k − 1) ·D + (n− k) · d0
n

. (7)

If xk ≥ d0, then the objective function takes the form

(k − 1) ·D + xk + (n− k) · d0
n

− d0.

This function increases with xk, so for values xk ∈ [d0, D],
the largest possible value of the objective function is attained
when xk attains its largest possible value xk = D. The
corresponding value of the objective function is equal to

(k − 1) ·D +D + (n− k) · d0
n

− d0 =

(k − 1) ·D + (n− k) · d0
n

+
D

n
− d0. (8)

Since we consider the case when D ≥ n · d0, the expression
(8) corresponding to xk = D is larger than the expression (7)
corresponding to xk = 0. Thus, we take x

(1)
k = D.

The statement is proven.

The result of the first iteration is actually the global
maximum. So far, we have traced only one iteration of the
component-wise optimization algorithm. Let us show that the
second iteration will not improve the value of the objective
function and thus, the first-iteration vector is what our algo-
rithm will return.

For that, let us show that the vector obtained on the
first iteration – in which one component is 0 and all other



components are equal to D – actually corresponds to the
largest possible value of the objective function (1).

Indeed, one can easily check that the objective function (1)
is a convex function; see, e.g., [8]. Thus, due to the known
properties of convex functions (see, e.g., [8]), the maximum
of the objective function (1) on a box

[0, D]× . . .× [0, D]

is attained at one of the vertices, i.e., when some of the values
xi are equal to 0 and some to D. The value of the objective
function does not change if we swap some values xi, it only
depends on how many values xi are equal to 0 and how many
to D. Without losing generality, we can therefore take x1 =
. . . = xz = D and xz+1 = . . . = xn = 0, for some z.

When z = 0, all the values xi are equal to 0. In this case,
both the mean x and the minimum m are equal to 0, so the
difference (1) is also equal to 0.

Similarly, when z = n, all the values xi are equal to D. In
this case, both the mean x and the minimum m are equal to
D, so the difference (1) is equal to 0.

Since the difference x − m is always non-negative, its
maximum should be found when z = 1, . . . , n − 1. In this
case,

x1 + . . .+ xz + xz+1 + . . .+ xn

n
−

min(x1, . . . , xz, xz+1, . . . , xn) =

z ·D + (n− z) · 0
n

−min(D, . . . ,D, 0, . . . , 0) =

z ·D
n

−min(0, D) =
z ·D
n

.

This expression increases with z, so for values

z ∈ {1, . . . , n− 1},

the largest possible value of the objective function is attained
when z attains its largest possible value z = n− 1, i.e., when
n− 1 values xi are equal to D and one value is equal to 0.

This is exactly what we got after the first iteration. So, the
result of the first iteration is indeed the global maximum.

IV. GENERAL RECOMMENDATION

Based on this positive computational experience, we can
recommend to use component-wise optimization as a general
technique for finding the parameters corresponding to the
worst-case scenario.

V. FROM CRISP CASE TO A MORE REALISTIC CASE OF
SOFT CONSTRAINTS

In the above text, we assumed:
• that we know the exact bound D on the possible distances

xi, and
• that we have no information about which combinations

x = (x1, . . . , xn) are more probable and which are less
probable.

In practice, we only know such bounds with uncertainty, but
we also have some information about which combinations are

more probable and which are less probable. This information
is usually described in imprecise terms, by using words from a
natural language. It is therefore reasonable to use fuzzy tech-
niques (see, e.g., [4], [6], [11]) to describe this information. In
the fuzzy approach, we assign, to every vector x, a degree µ(x)
to which the corresponding combination of values is probable.

Then, to find the worst-case scenario, instead of optimizing
an objective function f(x) under crisp constrains, we need to
optimize the objective function under such soft (fuzzy) con-
straints; for this optimization, we can use known techniques
of optimizing a (crisp) function over fuzzy sets (see, e.g., [4],
[6]).

For example, we can use Bellman-Zadeh techniques in
which we maximize the expression

g(x)
def
= min

(
f(x)− y

y − y
, µ(x)

)
,

where y and y are the minimum and maximum of the function
f(x) over the entire domain, the ratio

f(x)− y

y − y

describes to what extent the vector x is optimal, and the
optimized expression g(x) reflects the requirement that the
desired vector x must be optimal and it must satisfy the given
constraints – with min corresponding to “and”.

REFERENCES

[1] R. L. Pineda, “Understanding Engineered Complex Systems of Systems
(CSoS), Fourth General Assembly Cartagena Network of Engineering
CNE, Metz, France, 2010.

[2] R. T. Brooks and A. P. Sage, “System of systems integration and
test”, Information Knowledge Systems Management, 2005/2006, Vol. 5,
pp. 261–280.

[3] C. B. Keating, “Emergence in System of Systems”, in: M. Jamshidi (ed.),
System of Systems Engineering: Innovations for the 21st Century, John
Wiley and Sons, 2009, pp. 169–190.

[4] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[5] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-
plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1997.

[6] H. T. Nguyen and E. A. Walker, First Course In Fuzzy Logic, CRC Press,
Boca Raton, Florida, 2006.

[7] P. M. Pardalos, Complexity in Numerical Optimization, World Scientific,
Singapore, 1993.

[8] R. T. Rockafeller, Convex Analysis, Princeton University Press, Princeton,
New Jersey, 1970.

[9] B. Rogers and E. Gilbert, “Identifying arhitectural modularity in the
smart grid: an application of design structure matrix methodology”,
Proceedings of the Grid-Interop Forum’2011 “Implementing Interoper-
ability Advancing Smart Grid Standards, Architecture and Community”,
Phoenix, Arizona, December 5–8, 2011.

[10] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman & Hall/CRC, Boca Raton, Florida, 2007.

[11] L. A. Zadeh, “Fuzzy sets”, Information and control, 1965, Vol. 8,
pp. 338–353.


