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Abstract—One of the main methods for eliciting the values of
the membership function µ(x) is use the Likert scales, i.e., to ask
the user to mark his or her degree of certainty by an appropriate
mark k on a scale from 0 to n and take µ(x) = k/n. In this paper,
we show how to describe this process in terms of the traditional
decision making. Our conclusion is that the resulting membership
degrees incorporate both probability and utility information. It is
therefore not surprising that fuzzy techniques often work better
than probabilistic techniques – which only take into account the
probability of different outcomes.

I. INTRODUCTION

Fuzzy uncertainty: a usual description. Fuzzy logic (see,
e.g., [4], [6], [8]) has been designed to describe imprecise
(“fuzzy”) natural language properties like “big”, “small”, etc.
In contrast to “crisp” properties like x ≤ 10 which are either
true or false, experts are not 100% sure whether a given value
x is big or small. To describe such properties P , fuzzy logic
proposes to assign, to each possible value x, a degree µP (x)
to which the value x satisfies this property:

• the degree µP (x) = 1 means that we are absolutely sure
that the value x satisfies the property P ;

• the degree µP (x) = 0 means that we are absolutely sure
that the value x does not satisfy the property P ; and

• intermediate degrees 0 < µP (x) < 1 mean that we have
some confidence that x satisfies the property P but we
also have a certain degree of confidence that the value x
does not satisfy this property.

How do we elicit the degree µP (x) from the expert? One of
the usual ways is to use a Likert scale, i.e., to ask the expert to
mark his or her degree of confidence that the value x satisfies
the property P by one of the marks 0, 1, . . . , n on a scale from
0 to n. If an expert marks m on a scale from 0 to n, then we
take the ratio m/n as the desired degree µP (x). For example,
if an expert marks her confidence by a value 7 on a scale from
0 to 10, then we take µP (x) = 7/10.

For a fixed scale from 0 to n, we only get n+1 values this
way: 0, 1/n, 2/n, . . . , (n − 1)/n = 1 − 1/n, and 1. If we
want a more detailed description of the expert’s uncertainty,
we can use a more detailed scale, with a larger value n.

Traditional decision making theory: a brief reminder.
Decision making has been analyzed for decades. Efficient
models have been developed and tested to describe human
decision making, and the resulting tools have been effectively
used in business and in other decision areas; see, e.g., [1],
[2], [3], [5], [7]. These models are not perfect – this is one
the reasons why fuzzy methods are needed – but these tools
provide a reasonable first-order approximation description of
human decision making.

Need to combine fuzzy techniques and traditional decision
making techniques, and the resulting problem that we solve
in this paper. Traditional decision making tools are useful but
have their limitations. Fuzzy tools are also known to be very
useful, in particular, they are known to be useful in control
and in decision making (see, e.g., [4], [6]), so a natural idea
is to combine these two techniques.

To enhance this combination, it is desirable to be able to
describe both techniques in the same terms. In particular, it is
desirable to describe fuzzy uncertainty in terms of traditional
decision making. To the best of our knowledge, this has not
been done before; we hope that our description will lead to
useful applications in practical decision making.

Structure of the paper. In our opinion, one of the main
reasons why such a description has not been proposed earlier
is that there is a lot of confusion and misunderstanding about
such basic notions of traditional decision theory as utility,
subjective probability, etc. – just like many decision making
researchers have misunderstandings about fuzzy techniques.
Because of this, we start, in Section 2, with providing a
brief overview of the traditional decision theory and its main
concepts. In Section 3, we show how the Likert scale selection
can be described in these terms. The resulting straightforward
description leads to rather complicated optimization problems,
and how to solve these optimization problems. As a result, we
get an explicit expression that describes the membership values
µP (x) in terms of utility and subjective probability. The last
section provides conclusion and future work.



II. TRADITIONAL DECISION THEORY AND ITS MAIN
CONCEPTS: A BRIEF OVERVIEW

Main assumption behind the traditional decision theory.
Traditional approach to decision making is based on an
assumption that for each two alternatives A′ and A′′, a user
can tell:

• whether the first alternative is better for him/her; we will
denote this by A′′ < A′;

• or the second alternative is better; we will denote this by
A′ < A′′;

• or the two given alternatives are of equal value to the
user; we will denote this by A′ = A′′.

Towards a numerical description of preferences: the notion
of utility. Under the above assumption, we can form a natural
numerical scale for describing preferences. Namely, let us
select a very bad alternative A0 and a very good alternative
A1. Then, most other alternatives are better than A0 but worse
than A1.

For every probability p ∈ [0, 1], we can form a lottery L(p)
in which we get A1 w/prob. p and A0 w/prob. 1− p.

• When p = 0, this lottery coincides with the alternative
A0: L(0) = A0.

• When p = 1, this lottery coincides with the alternative
A1: L(1) = A1.

For values p between 0 and 1, the lottery is better than A0

and worse than A1. The larger the probability p of the positive
outcome increases, the better the result:

p′ < p′′ implies L(p′) < L(p′′).

Thus, we have a continuous scale of alternatives L(p) that
monotonically goes from L(0) = A0 to L(1) = A1. We will
use this scale to gauge the attractiveness of each alternative A.

Due to the above monotonicity, when p increases, we first
have L(p) < A, then we have L(p) > A, and there is a
threshold separating values p for which L(p) < A from the
values p for which L(p) > A. This threshold value is called
the utility of the alternative A:

u(A)
def
= sup{p : L(p) < A} = inf{p : L(p) > A}.

Then, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

We will describe such (almost) equivalence by ≡, i.e., we will
write that A ≡ L(u(A)).

How to elicit the utility from a user: a fast iterative process.
Initially, we know the values u = 0 and u = 1 such that
A ≡ L(u(A)) for some u(A) ∈ [u, u].

On each stage of this iterative process, once we know values
u and u for which u(A) ∈ [u, u], we compute the midpoint
umid of the interval [u, u] and ask the user to compare A with
the lottery L(umid) corresponding to this midpoint. There are
two possible outcomes of this comparison: A ≤ L(umid) and
L(umid) ≤ A.

• In the first case, the comparison A ≤ L(umid) means that
u(A) ≤ umid, so we can conclude that u ∈ [u, umid].

• In the second case, the comparison L(umid) ≤ A means
that umid ≤ u(A), so we can conclude that u ∈ [umid, u].

In both cases, after an iteration, we decrease the width of
the interval [u, u] by half. So, after k iterations, we get an
interval of width 2−k which contains u(A) – i.e., we get u(A)
w/accuracy 2−k.

How to make a decision based on utility values. Suppose
that we have found the utilities u(A′), u(A′′), . . . , of the
alternatives A′, A′′, . . . Which of these alternatives should we
choose?

By definition of utility, we have:
• A ≡ L(u(A)) for every alternative A, and
• L(p′) < L(p′′) if and only if p′ < p′′.

We can thus conclude that A′ is preferable to A′′ if and only
if u(A′) > u(A′′). In other words, we should always select
an alternative with the largest possible value of utility. So,
to find the best solution, we must solve the corresponding
optimization problem.

Before we go further: caution. We are not claiming that
people estimate probabilities when they make decisions: we
know they often don’t. Our claim is that when people make
definite and consistent choices, these choices can be described
by probabilities. (Similarly, a falling rock does not solve equa-

tions but follows Newton’s equations ma = m
d2x

dt2
= −mg.)

In practice, decisions are often not definite (uncertain) and not
consistent.

How to estimate utility of an action. For each action, we
usually know possible outcomes S1, . . . , Sn. We can often
estimate the probabilities p1, . . . , pn of these outcomes.

By definition of utility, each situation Si is equivalent to a
lottery L(u(Si)) in which we get:

• A1 with probability u(Si) and
• A0 with the remaining probability 1− u(Si).

Thus, the original action is equivalent to a complex lottery in
which:

• first, we select one of the situations Si with probability
pi: P (Si) = pi;

• then, depending on Si, we get A1 with probability
P (A1 |Si) = u(Si) and A0 w/probability 1− u(Si).

The probability of getting A1 in this complex lottery is:

P (A1) =

n∑
i=1

P (A1 |Si) · P (Si) =

n∑
i=1

u(Si) · pi.

In this complex lottery, we get:

• A1 with probability u =
n∑

i=1

pi · u(Si), and

• A0 wit probability 1− u.
So, the utility of the complex action is equal to the sum u.

From the mathematical viewpoint, the sum defining u
coincides with the expected value of the utility of an outcome.



Thus, selecting the action with the largest utility means that
we should select the action with the largest value of expected
utility u =

∑
pi · u(Si).

Subjective probabilities. In practice, we often do not know
the probabilities pi of different outcomes. How can we gauge
our subjective impressions about these probabilities?

For each event E, a natural way to estimate its subjective
probability is to fix a prize (e.g., $1) and compare:

• a lottery ℓE in which we get the fixed prize if the event
E occurs and 0 is it does not occur, with

• a lottery ℓ(p) in which we get the same amount with
probability p.

Here, similarly to the utility case, we get a value ps(E) for
which, for every ε > 0:

ℓ(ps(E)− ε) < ℓE < ℓ(ps(E) + ε).

Then, the utility of an action with possible outcomes

S1, . . . , Sn is equal to u =
n∑

i=1

ps(Ei) · u(Si).

Auxiliary issue: almost-uniqueness of utility. The above
definition of utility u depends on the selection of two fixed
alternatives A0 and A1. What if we use different alternatives
A′

0 and A′
1? How will the new utility u′ be related to the

original utility u?
By definition of utility, every alternative A is equivalent to

a lottery L(u(A)) in which we get A1 with probability u(A)
and A0 with probability 1−u(A). For simplicity, let us assume
that A′

0 < A0 < A1 < A′
1. Then, for the utility u′, we get

A0 ≡ L′(u′(A0)) and A1 ≡ L′(u′(A1)). So, the alternative A
is equivalent to a complex lottery in which:

• we select A1 with probability u(A) and A0 with proba-
bility 1− u(A);

• depending on which of the two alternatives Ai we get, we
get A′

1 with probability u′(Ai) and A′
0 with probability

1− u′(Ai).
In this complex lottery, we get A′

1 with probability u′(A) =
u(A) · (u′(A1)− u′(A0)) + u′(A0). Thus, the utility u′(A) is
related with the utility u(A) by a linear transformation u′ =
a · u+ b, with a > 0.

Traditional approach summarized. We assume that
• we know possible actions, and
• we know the exact consequences of each action.

Then, we should select an action with the largest value of
expected utility.

III. HOW TO DESCRIBE SELECTION OF A LIKERT SCALE
IN TERMS OF TRADITIONAL DECISION MAKING:

FORMULATION OF (AND SOLUTION TO) THE
CORRESPONDING OPTIMIZATION PROBLEM

How do we mark this on a Likert scale? We would like to
find out how people decide to mark some values with different
labels on a Likert scale. To understand this, let us recall how
this marking is done. Suppose that we have Likert scale with

n + 1 labels 0, 1, 2, . . . , n, ranging from the smallest to the
largest.

Then, if the actual value of the quantity x is very small, we
mark label 0. At some point, we change to label 1; let us mark
this threshold point by x1. When we continue increasing x,
we first have values marked by label 1, but eventually reach a
new threshold after which values will be marked by label 2;
let us denote this threshold by x2, etc. As a result, we divide
the range [X,X] of the original variable into n+ 1 intervals
[x0, x1], [x1, x2], . . . , [xn−1, xn], [xn, xn+1], where x0 = X
and xn+1 = X:

• values from the first interval [x0, x1] are marked with
label 0;

• values from the second interval [x1, x2] are marked with
label 1;

• . . .
• values from the n-th interval [xn−1, xn] are marked with

label n;
• values from the (n+1)-st interval [xn, xn+1] are marked

with label n+ 1.
Then, when we need to make a decision, we base this decision
only on the label, i.e., only on the interval to which x belongs.
In other words, we make n different decisions depending on
whether x belongs to the interval [x0, x1], to the interval
[x1, x2], . . . , or to the interval [xn, xn+1].

Decisions based on the Likert discretization are imperfect.
Ideally, we should take into account the exact value of the
variable x. When we use Likert scale, we only take into
account an interval containing x and thus, we do not take into
account part of the original information. Since we only use
part of the original information about x, the resulting decision
may not be as good as the decision based on the ideal complete
knowledge.

For example, an ideal office air conditioner should be able
to maintain the exact temperature at which a person feels com-
fortable. People are different, their temperature preferences are
different, so an ideal ai conditioner should be able to maintain
any temperature value x within a certain range [X,X]. In
practice, some air conditioners only have a finite number of
settings. For example, if we have setting corresponding to 65,
70, 75, and 80 degrees, then a person who prefers 72 degrees
will probably select the 70 setting or the 75 setting. In both
cases, this person will be somewhat less comfortable than if
there was a possibility of an ideal 72 degrees setting.

How do we select a Likert scale: main idea. According
to the general ideas of traditional (utility-based) approach to
decision making, we should select a Likert scale for which the
expected utility is the largest.

To estimate the utility of decisions based on each scale, we
will take into account the just-mentioned fact that decisions
based on the Likert discretization are imperfect. In utility
terms, this means that the utility of the Likert-based decisions
is, in general, smaller than the utility of the ideal decision.

Which decision should we choose within each label? In the
ideal situation, if we could use the exact value of the quantity



x, then for each value x, we would select an optimal decision
d(x), a decision which maximizes the person’s utility.

If we only the label k, i.e., if we only know that the
actual values x belongs to the k-th interval [xk, xk+1], then
we have to make a decision based only on this information.
In other words, we have to select one of the possible values
x̃k ∈ [xk, xk+1], and then, for all x from this interval, use the
decision d(x̃k) based on this value.

Which value x̃k should we choose: idea. According to the
traditional approach to decision making, we should select a
value for which the expected utility is the largest.

Which value x̃k should we choose: towards a precise
formulation of the problem. To find this expected utility,
we need to know two things:

• we need to know the probability of different values
of x; these probabilities can be described, e.g., by the
probability density function ρ(x);

• we also need to know, for each pair of values x′ and x,
what is the utility u(x′, x) of using a decision d(x′) in
the situation in which the actual value is x.

In these terms, the expected utility of selecting a value x̃k can
be described as ∫ xk+1

xk

ρ(x) · u(x̃k, x) dx. (1)

Thus, for each interval [xk, xk+1], we need to select a decision
d(x̃k) corresponding to the value x̃k for which the expression
(1) attains its largest possible value. The resulting expected
utility is equal to

max
x̃k

∫ xk+1

xk

ρ(x) · u(x̃k, x) dx. (2)

How to select the best Likert scale: general formulation
of the problem. The actual value x can belong to any
of the n + 1 intervals [xk, xk+1]. Thus, to find the overall
expected utility, we need to add the values (2) corresponding
to all these intervals. In other words, we need to select the
values x1, . . . , xn for which the following expression attains
its largest possible value:

n∑
k=0

max
x̃k

∫ xk+1

xk

ρ(x) · u(x̃k, x) dx. (3)

Equivalent reformulation in terms of disutility. In the
ideal case, for each value x, we should use a decision
d(x) corresponding to this value x, and gain utility u(x, x).
In practice, we have to use decisions d(x′) corresponding
to a slightly different value, and thus, get slightly worse
utility values u(x′, x). The corresponding decrease in utility
U(x′, x)

def
= u(x, x) − u(x, x) is usually called disutility. In

terms of disutility, the function u(x′x) has the form

u(x′, x) = u(x, x)− U(x′, x),

and thus, the optimized expression (1) takes the form∫ xk+1

xk

ρ(x) · u(x, x) dx−
∫ xk+1

xk

ρ(x) · U(x̃k, x) dx.

The first integral does not depend on x̃k; thus, the expression
(1) attains its maximum if and only if the second integral
attains its minimum. The resulting maximum (2) this takes
the form∫ xk+1

xk

ρ(x) ·u(x, x) dx−min
x̃k

∫ xk+1

xk

ρ(x) ·U(x̃k, x) dx. (4)

Thus, the expression (3) takes the form
n∑

k=0

∫ xk+1

xk

ρ(x) · u(x, x) dx−

n∑
k=0

min
x̃k

∫ xk+1

xk

ρ(x) · U(x̃k, x) dx.

The first sum does not depend on selecting the thresh-
olds. Thus, to maximize utility, we should select the values
x1, . . . , xn for which the second sum attains its smallest
possible value:

n∑
k=0

min
x̃k

∫ xk+1

xk

ρ(x) · U(x̃k, x) dx → min . (5)

Let is recall that are interested in the membership function.
For a general Likert scale, we have a complex optimization
problem (5). However, we are not interested in general Likert
scales per se, what we are interested in is the use of Likert
scales to elicit the values of the membership function µ(x).

As we have mentioned in Section 1, in an n-valued scale:
• the smallest label 0 corresponds to the value µ(x) = 0/n,
• the next label 1 corresponds to the value µ(x) = 1/n,
• . . .
• the lat label n corresponds to the value µ(x) = n/n = 1.

Thus, for each n:
• values from the interval [x0, x1] correspond to the value

µ(x) = 0/n;
• values from the interval [x1, x2] correspond to the value

µ(x) = 1/n;
•

• values from the interval [xn, xn+1] correspond to the
value µ(x) = n/n = 1.

The actual value of the membership function µ(x) corresponds
to the limit n → ∞, i.e., in effect, to very large values of n.
Thus, in our analysis, we will assume that the number n of
labels is huge – and thus, that the width of each of n + 1
intervals [xk, xk+1] is very small.

Let us take into account that each interval is narrow. Let
us use the fact that each interval is narrow to simplify the
expression U(x′, x) and thus, the optimized expression (5).

In the expression U(x′, x), both values x′ and x belong
to the same narrow interval and thus, the difference ∆x

def
=



x′−x is small. Thus, we can expand the expression U(x′, x) =
U(x+∆x, x) into Taylor series in ∆x, and keep only the first
non-zero term in this expansion. In general, we have

U(x+∆, x) = U0(x) + U1 ·∆x+ U2(x) ·∆x2 + . . . ,

where

U0(x) = U(x, x), U1(x) =
∂U(x+∆x, x)

∂(∆x)
,

U2(x) =
1

2
· ∂

2U(x+∆x, x)

∂2(∆x)
. (7)

Here, by definition of disutility, we get U0(x) = U(x, x) =
u(x, x) − u(x, x) = 0. Since the utility is the largest (and
thus, disutility is the smallest) when x′ = x, i.e., when
∆x = 0, the derivative U1(x) is also equal to 0 – since the
derivative of each (differentiable) function is equal to 0 when
this function attains its minimum. Thus, the first non-trivial
term corresponds to the second derivative:

U(x+∆x, x) ≈ U2(x) ·∆x2,

i.e., in other words, that

U(x̃k, x) ≈ U2(x) · (x̃k − x)2.

Substituting this expression into the expression∫ xk+1

xk

ρ(x) · U(x̃k, x) dx

that needs to be minimized if we want to find the optimal x̃k,
we conclude that we need to minimize the integral∫ xk+1

xk

ρ(x) · U2(x) · (x̃k − x)2 dx. (8)

This new integral is easy to minimize: if we differentiate this
expression with respect to the unknown x̃k and equate the
derivative to 0, we conclude that∫ xk+1

xk

ρ(x) · U2(x) · (x̃k − x) dx = 0,

i.e., that

x̃k ·
∫ xk+1

xk

ρ(x) · U2(x) dx =

∫ xk+1

xk

x · ρ(x) · U2(x) dx,

and thus, that

x̃k =

∫ xk+1

xk
x · ρ(x) · U2(x) dx∫ xk+1

xk
ρ(x) · U2(x) dx

. (9)

This expression can also be simplified if we take into account
that the intervals are narrow. Specifically, if we denote the
midpoint of the interval [xk, xk+1] by xk

def
=

xk + xk+1

2
, and

denote ∆x
def
= x−xk, then we have x = xk+∆x. Expanding

the corresponding expressions into Taylor series in terms of a
small value ∆x and keeping only main terms in this expansion,
we get

ρ(x) = ρ(xk +∆x) = ρ(xk) + ρ′(xk) ·∆x ≈ ρ(xk),

where f ′(x) denoted the derivative of a function f(x), and

U2(x) = U2(xk +∆x) = U2(xk) + U ′
2(xk) ·∆x ≈ U2(xk).

Substituting these expressions into the formula (9), we con-
clude that

x̃k =
ρ(xk) · U2(xk) ·

∫ xk+1

xk
x dx

ρ(xk) · U2(xk) ·
∫ xk+1

xk
dx

=

∫ xk+1

xk
x dx∫ xk+1

xk
dx

=

1

2
· (x2

k+1 − x2
k)

xk+1 − xk
=

xk+1 + xk

2
= xk.

Substituting this midpoint value x̃k = xk into the integral
(8) and taking into account that on the k-th interval, we have
ρ(x) ≈ ρ(xk) and U2(x) ≈ U2(xk), we conclude that the
integral (8) takes the form∫ xk+1

xk

ρ(xk) · U2(xk) · (xk − x)2 dx =

ρ(xk) · U2(xk) ·
∫ xk+1

xk

(xk − x)2 dx. (8a)

When x goes from xk to xk+1, the difference ∆x = x − xk

between the value x and the interval’s midpoint xk ranges
from −∆k to ∆k, where ∆k is the interval’s half-width:

∆k
def
=

xk+1 − xk

2
.

In terms of the new variable ∆x, the integral in the right-hand
side of (8a) has the form∫ xk+1

xk

(xk − x)2 dx =

∫ ∆k

−∆k

(∆x)2 d(∆x) =
2

3
·∆3

k.

Thus, the integral (8) takes the form

2

3
· ρ(xk) · U2(xk) ·∆3

k.

The problem (5) of selecting the Likert scale thus becomes
the problem of minimizing the sum (5) of such expressions
(8), i.e., of the sum

2

3
·

n∑
k=0

ρ(xk) · U2(xk) ·∆3
k. (10)

Here, xk+1 = xk+1 +∆k+1 = (xk +∆k) + ∆k+1 ≈ xk +

2∆k, so ∆k = (1/2) ·∆xk, where ∆xk
def
= xk+1 − xk. Thus,

(10) takes the form

1

3
·

n∑
k=0

ρ(xk) · U2(xk) ·∆2
k ·∆xk. (11)

In terms of the membership function, we have µ(xk) = k/n
and µ(xk+1) = (k + 1)/n. Since the half-width ∆k is small,
we have
1

n
= µ(xk+1)−µ(xk) = µ(xk+2∆k)−µ(xk) ≈ µ′(xk)·2∆k,



thus, ∆k ≈ 1

2n
· 1

µ′(xk)
. Substituting this expression into (11),

we get the expression
1

3 · (2n)2
· I , where

I =

n∑
k=0

ρ(xk) · U2(xk)

(µ′(xk))2
·∆xk. (12)

The expression I is an integral sum, so when n → ∞, this
expression tends to the corresponding integral

I =

∫
ρ(x) · U2(x)

(µ′(x))2
dx. (11)

Minimizing (5) is equivalent to minimizing I . With respect
to the derivative d(x)

def
= µ′(x), we need to minimize the

objective function

I =

∫
ρ(x) · U2(x)

d2(x)
dx (12)

under the constraint that∫ X

X

d(x) dx = µ(X)− µ(X) = 1− 0 = 1. (13)

By using the Lagrange multiplier method, we can reduce this
constraint optimization problem to the unconstrained problem
of minimizing the functional

I =

∫
ρ(x) · U2(x)

d2(x)
dx+ λ ·

∫
d(x) dx, (14)

for an appropriate Lagrange multiplier λ. Differentiating (14)
with respect to d(x) and equating the derivative to 0, we

conclude that −2 · ρ(x) · U2(x)

d3(x)
+ λ = 0, i.e., that d(x) =

c · (ρ(x) · U2(x))
1/3 for some constant c. Thus, µ(x) =∫ x

X
d(t) dt = c ·

∫ x

X
(ρ(t) ·U2(t))

1/3 dt. The constant c must be
determined by the condition that µ(X) = 1. Thus, we arrive
at the following formula.

IV. CONCLUSIONS AND FUTURE WORK

Resulting formula. The membership function µ(x) obtained
by using Likert-scale elicitation is equal to

µ(x) =

∫ x

X
(ρ(t) · U2(t))

1/3 dt∫X

X
(ρ(t) · U2(t))1/3 dt

, (15)

where ρ(x) is the probability density describing the probabil-

ities of different values of x, U2(x)
def
=

1

2
· ∂

2U(x+∆x, x)

∂2(∆x)
,

U(x′, x)
def
= u(x, x) − u(x, x), and u(x′, x) is the utility of

using a decision d(x′) corresponding to the value x′ in the
situation in which the actual value is x.

Comment. The above formula only applies to membership
functions like “large” whose values monotonically increase
with x. It is easy to write a similar formula for membership
functions like “small” which decrease with x. For membership
functions like “approximately 0” which first increase and then

decrease, we need to separately apply these formula to both
increasing and decreasing parts.

Conclusion. The resulting membership degrees incorporate
both probability and utility information. This fact explains
why fuzzy techniques often work better than probabilistic
techniques – because the probability techniques only take into
account the probability of different outcomes.

Extension to interval-valued case: preliminary results and
future work. In this paper, we consider an ideal situation in
which

• we have full information about the probabilities ρ(x), and
• the user can always definitely decide between every two

alternatives.
In practice, we often only have partial information about
probabilities (which can be described by the intervals of
possible values of ρ(x)) and user are often unsure which of the
two alternatives is better (which can be described by interval-
valued utilities).

For example, if we have no reasons to believe that some
values from the interval [X,X] are more probable than others
and that some values are more sensitive than others, it is
natural to assume that ρ(x) = const and U2(x) = const,
in which case the above formula (15) leads to a triangular
membership function. This may explain why triangular mem-
bership functions are successfully used in many applications
of fuzzy techniques.

In the future, it is desirable to extend our formulas to the
general interval-valued case.
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