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Abstract—To preserve privacy, the original data points (with
exact values) are replaced by boxes containing each (inacces-
sible) data point. This privacy-motivated uncertainty leads to
uncertainty in the statistical characteristics computed based on
this data. In a previous paper, we described how to minimize this
uncertainty under the assumption that we use the same standard
statistical estimates for the desired characteristics. In this paper,
we show that we can further decrease the resulting uncertainty
if we allow fuzzy-motivated weighted estimates, and we explain
how to optimally select the corresponding weights.

I. FORMULATION OF THE PROBLEM

Need to preserve privacy. In many practical applications,
e.g., in medicine and in education, to better serve customers,
it is important to know as much as possible about the potential
customers. Customers are often reluctant to share information,
since this information can be potentially used against them.
For example, age can be used by companies to (unlawfully)
discriminate against older job applicants. It is thus important
to preserve privacy when storing customer data; see, e.g., [6].

How to preserve privacy: k-anonymity and /-diversity.
To maintain privacy, we divide the space of all possible
combinations of values (z1,...,2,) into boxes. For each
record, instead of storing the actual values z;, we only store
the label of the box containing x.

To avoid further loss of privacy, it is important to make
sure that location in a box does not identify a person. This is
usually achieved by requiring that for some fixed &, each box
contains at least k records.

It is also not good if all records within a box have the same
value of an i-th quantity x;. It is thus required that for some
£, in each box there are at least ¢ different values of each z;;
see, e.g., [1].

Statistical data processing. Based on the available data, we
need to estimate averages E;, variances V; = 02-2, covariances
Cjj, correlations p;;, and other statistical characteristics. The
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means are usually estimated as follows:
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The covariance is usually estimated as:
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The variance is usually estimated with a formula
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and the correlation is estimated as
Ci;
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Comment. We are interested in large databases, in which the
number N of records is large. For large N, the difference
between the usual un-biased estimate for V; (with N — 1 in
the denominator) and the estimate with N is negligible. To
simplify computations, in this paper, by V; and o;, we will
mean the versions corresponding to N; our results can be
easily be reformulated for the un-biased estimates, which in
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In statistical data processing, privacy leads to uncertainty.
To maintain privacy, we replace each numerical value x§.” )
with the corresponding interval. Different values from these
intervals lead to different values of the resulting statistical
characteristics. Hence, for each characteristic, we get a whole
interval of possible values.

our terms take the form Vj -



If this interval is too wide, the resulting range is useless:
(e.g., for correlation, the interval [—1,1] is useless). It is
therefore desirable to select, among all possible subdivisions
into boxes which preserve k-anonymity (and ¢-diversity), the
one which leads to the narrowest intervals for the desired
statistical characteristic.

What we do in this paper. In Section 2, following [7], we
describe how this problem is solved now. Please note that
because our objective is to generalize these formulas to the
weighted case, the notations that we use in Section 2 are
slightly different from the notations from [7].

Then, in Section 3, we explain how fuzzy-motivated ideas
can improve the corresponding estimates.

II. How THIS PROBLEM IS SOLVED NOw

Estimating accuracy caused by privacy-based subdivision
into boxes: case of k-anonymity. To minimize uncertainty,
we select the smallest boxes. Hence, each box B should have
exactly k records.

For values from the intervals [Z; — A;(x),Z; + Ai(2)],
instead of the the ideal estimate C (xgl oY), we get:
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satisfies the
inequality |Aa:2(»p )| < A;(z). When we have many records,

boxes are small, so we can use a linear approximation:

The range of this linear expression is [C — A, C + A], where
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Expressions for the corresponding partial derivatives. The
estimate for the accuracy A is described in terms of partial

derivatives —— of the statistical characteristic C. For the mean
.
E;, the derivative is equal to
OFE; 1
For the variance V;, we have
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Therefore, for o; = \/V;, we get
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For the covariance C;;, we have
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For the correlation p;;, we have:
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For all these characteristics C', the derivative takes the form
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for some expression b;(x).

Towards optimal subdivision into boxes. The overall ex-
pression for A is a sum of terms corresponding to different
points. So, to minimize A, we must, for each point, minimize
the corresponding term
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Because of the relation between the partial derivatives and
b;(x), this minimization is equivalent to minimizing the term
n

Z a;(z) - A;(z), where we denoted a;(z) = Lof |b;(2)]-

=1

The only constraint on the values A;(x) is that the corre-
sponding box should contain exactly k£ different points. The
number of points can be obtained by multiplying the data

density p(z) by the box volume H (2A;(z)). The data density

can be estimated based on the data So, we minimize the

expression
n
> ai(x) - M)
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under the constraint
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(Asymptotically) optimal subdivision into boxes (case of
k-anonymity). The Lagrange multiplier technique leads to
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for some c(x). From the constraint, we get

This means that around each point z, we need to select the

box with half-widths
n
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The resulting accuracy is equal to
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where the sum is taken over all N data points x.

We need to dismiss rare points. In many practical situations,
we have rare points, for which the smallest box containing k of
them is huge. This big-size box will contribute a large amount
of uncertainty to A; so we should dismiss such rare points.
If we select a subset S C {1,2,..., N} of the set of N
original points, then the privacy-related uncertainty reduces to

#

where #(S) denote the number of points in the set S. The
statistical accuracy reduces to

A
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(see, e.g., [5]). Minimizing the sum
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leads to selecting all 2 with ¢(x) < ¢y, where ¢y minimizes
the sum
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Examples. For estimating the mean E;, we have a;(z) =
const and thus,

1
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In this case, ¢(x) is a decreasing function of density. So,
dismissing points with ¢(x) > ¢ is equivalent to dismissing
all the points with p(x) < po (for some po).

For computing covariance Cj;, the derivative is proportional
to x; — E;. Thus, the values a;(z) are proportional to |z; — E;|.
So, the upper threshold ¢y on c¢(x) is equivalent to the lower
threshold on the ratio

¢(x) = const -

n

p(z)
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Thus, we can also use points = with small p(z) — if z; or
x; is close to the corresponding mean. Using extra points
improves accuracy.

How to also take into account /-diversity. Up to now,
we only took into account the k-anonymity requirement. We
also need to take into account that within each box, for each
variable x;, there are > ¢ different values of x;. To formalize
this requirement, we first need to describe what “different”
means.

Usually, for each variable 4, different means that |z; — x| >
g; for some threshold ¢;. Thus, ¢ different values means that
2A;(x) > £ - ;. So, the problem is to find A;(x) such that
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According to [7], the solution to this optimization problem
is as follows: around each point x, we first compute the values
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If 2A;(z) > £ - ¢; for all 4, we select A;(z). Otherwise, we
sort the quantities by a;(x) - €;:

Y

ay(xz) -e1 > as(x) - €2 L an(x) - ep.

Then, for each ¢ from 1 to n, we compute
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For each ¢, if Tt > ap11(x) - €441, We compute
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We select ¢ for which A(t) is the smallest, and take:
1
o Aj(x) = 3 -l g; for 1 <t, and
° AZ<.’IJ) =

+(n—t)-c

for ¢ > t.
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Comment. The computation time of this algorithm is quadratic
in n. This is OK, since the number n of different character-
istics is usually reasonably small. What is important is that
the algorithm is still linear-time in terms of the number of
records V.

II1. FuzzZY-MOTIVATED IDEA

Main idea. In [7], to improve the accuracy of the resulting
estimate, we propose to ignore some data points while keeping
other data points. In other words, we propose a crisp separation
between data points that we keep and data points that we
ignore. Fuzzy logic has taught us that in many cases, it is
beneficial to replace such a crisp separation with a “fuzzy”
one in which, instead of ignoring or keeping a data point, we
take a data point with a certain degree; see, e.g., [2], [4], [8].

Implementing the idea. Specifically, instead of using the
above formula for computing the statistical characteristics, in
which all data points are treated equally, we assign a weight



w(z) > 0 to each data point so that > w(z) = 1, and use the
weighted estimates for all the statistical characteristics:
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Optimization problem. Our objective is to find the weights
w(x) for which the resulting uncertainty is the smallest possi-
ble. Similarly to the crisp case, this uncertainty consists of two
parts: the part coming from the privacy-motivated uncertainty
and the part coming from the fact that the size is finite.

One can check that for privacy-motivated uncertainty, the

corresponding derivatives — are proportional to the weight
N

w(x). For each box, we thus face the exact same optimization
problem for finding the best sizes A;(z) of the corresponding
privacy-related box. As a result, for the overall privacy-
motivated uncertainty, we get the expression n-»_ w(z)-c(x).

For the statistical part: if we simply estimate the variance
of the estimate for the mean E; = > w(z) - z;, then, due to
the fact that the variance of the sum of independent variables
is equal to the sum of the variances, we conclude that the
variance of this estimate is proportional to Y w?(z); see,
e.g., [5]. Thus, the standard deviation of this estimate is

proportional to
/ z w?(x).

For the traditional equal-weight estimate, when

for all x, the proportionality coefficient becomes equal to the

expression
1
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that we used in Section 2.

One can check that, similarly, estimates for the accuracy
of other statistical characteristics can be obtained ifrom the
estimates provided in Section 2 by replacing m with

Z w?(z), i.e., this part is equal to
xr

A- /ZwQ(x).

Thus, to minimize the overall inaccuracy, we need to
minimize the following sum:

nZw(w) ce(x)+ A- /sz(x)

under the constraints Y w(x) =1 and w(z) > 0.

x

Solving the resulting optimization problem: general idea.
By applying the Lagrange multiplier method to the above
constraint optimization problem, we can reduce this problem
to the following unconstrained optimization problem:

nZw(m) ce(z)+ A- /sz(x)—

A <Z w(z) — 1) — min,

x

for an appropriate Lagrange multiplier A. Differentiating this
objective function with respect to w(z) and equating the
derivative to 0, we conclude that
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To be more precise, since we require that w(z) > 0, this
formula only holds when n - ¢(z) < \; when n-¢(x) > A, we
should get w(x) = 0.

n-c(z) + —A=0,

Towards computing the auxiliary parameter \. How can
we find A\? By squaring both sides of this formula, we get

W @)= 5 e e@)) - Y wily).

By adding left- and right-hand sides corresponding to different
x, we get
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Dividing both sides of this equality by > w?(x) = Y w?(y),
@ y

we conclude that

i.e., that
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This is a quadratic equation in terms of A, namely:
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where N is the total number of points that we did not dismiss,
i.e., for which n - ¢(x) < A, and the sums are taken over all
such points.

From this quadratic equation, we can find A. Thus, we
naturally arrive at the following iterative algorithm for com-
puting A.



Iterative algorithm for computing the auxiliary parameter
A. The goal of this algorithm is to find the threshold value A,
so that points « for which n-c(z) > A will be dismissed from
our estimates (i.e., we would have w(z) = 0 for such points).

In the beginning, we do not have any reason to dismiss any
values, so we start with the first approximation \g.

On each iteration k, we start with the value \;_; obtained
on the previous iteration, and compute the next approximation
A as follows.

« First, we compute the total numbers N of points z for

which n - ¢(x) < Ag_1.

o Then, we compute the sums > c(x) and > c?(z) over

x

all such points. ’

« Based on these values, we solve the quadratic equation
(2) and find the next approximation .
We stop iterations when the process converges, i.e., when

A = Ag—1-

Towards computing w(x). We know, from the formula (1),
that for those points for which n - ¢(x) < A, we have

w(z) = K- (A= c(x)), 3)

for some constant K. To find K, we can use the fact that
> w(xz) = 1. Substituting the expression (3) into this con-

xT
straint, we conclude that
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Since we have already computed the values N, A, and 3" ¢(x)
when we computed A\, we can thus compute K. ’

So, we arrive at the following formula for computing the
desired weights.

Formula for computing the optimal weights w(z). By
running the above iterative algorithm, we have computed the
auxiliary value A. In the process of computing A, we have
computed the values N and >_ c¢(x), where the sum is taken

over all the points z for which 7 - c(x) < A
Now, we compute

.
N - Z()

The optimal weights can now be computed as follows:

K =

e when n - c(x) > A, the optimal weight is w(z) = 0;
e when n - ¢(z) < A, the optimal weight is equal to

w(z) = K- (A= c(z)).

Comment. As expected, the larger the uncertainty contribution
¢(x) from a point, the smaller the weight with which we take
this point. When this contribution is large enough (i.e., larger
than the threshold determined by the auxiliary parameter \),
we completely ignore such points.

IV. BOXES APPROPRIATE FOR SEVERAL DIFFERENT
CHARACTERISTICS

What we provided before. In the previous sections, we
described how, for each statistical characteristic C, we can
find the boxes (i.e., data anonymization) that leads to the most
accurate estimate of this selected characteristic.

Remaining problem. In practice, we may need to compute
the values of different statistical characteristics. The problem
is that optimal boxes corresponding to different characteristics
C are, in general, different.

~For example, boxes that lead to most accurate estiznates
E of mean E may lead to very inaccurate estimates C;; of

correlation C;, and vice versa.

Towards a possible solution to this problem. Based on the
previous experience, we know how many times users were
looking for values of different statistical characteristics; in

other words, we know the probabilities po > 0 (Z po =1
c

of looking for different characteristics C.

We also know what accuracy A§ is desirable for estimating
each characteristic C. For example, we may fix the same
relative error for all estimates, and take, e.g., AOC =0.1-Cif
this relative error is 10%. Then, for each characteristic C, the
accuracy of estimating this characteristic is better gauged not
by the absolute accuracy A® but rather by the ratio

det A7
qc A g

describing how close we are to the desired accuracy.
In this situation, a reasonable idea is to minimize average

quality
def
7= pe-ac.
c

Towards an algorithm. How can we solve the corresponding
optimization problem? The objective function ¢ has the form

bc C
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By changing the order of summation, we get an equivalent

formula
=33 (Tl [3])
p=1li=1 \ ¢ —0 g

This optimization problem is similar to the optimization prob-
lem corresponding to the case of a single statistical character-
istic C', with the only difference that instead of the original

partial derivatives we use a weighted combination
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of these derivatives.
In terms of the coefficients a;(x) introduced in Section 2,

this means that instead of using the values a{ (z) correspond-

ing to an individual characteristic C', we must use a linear
combination of these values:

a;(x) = p—c~acx.
i(z) ZC:AOC i () (4)

Resulting algorithm. Use the same algorithm(s) as in Section
2 and 3, except that instead of the values a¢ corresponding

i
to an individual statistical characteristic C, we should use the
values (4).
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