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Abstract—Some probability distributions (e.g., Gaussian) are
symmetric, some (e.g., lognormal) are non-symmetric (skewed).
How can we gauge the skeweness? For symmetric distributions,
the third central moment C3

def
= E[(x − E(x))3] is equal to 0;

thus, this moment is used to characterize skewness. This moment
is usually estimated, based on the observed (sample) values

x1, . . . , xn, as C3 =
1

n
·

n∑
i=1

(xi − E)3, where E
def
=

1

n
·

n∑
i=1

xi.

In many practical situations, we do not know the exact values
of xi. For example, to preserve privacy, the exact values are
often replaced by intervals containing these values (so that we
only know whether the age is under 10, between 10 and 20,
etc). Different values from these intervals lead, in general, to
different values of C3; it is desirable to find the range of all such
possible values. In this paper, we propose a feasible algorithm
for computing this range.

I. INTRODUCTION

Need for statistical databases. We want to cure diseases, we
want to eliminate poverty and increase education level, but it
is not always clear what causes certain diseases, which factors
affect the income and the education. The relation between
different phenomena needs to be extracted from the empirical
data. For this purpose, we maintain large databases. Data
coming from census help us to understand, e.g., how the
parents’ income level affects the children’s education level,
and how the person education level influences his or her
income level. Medical data help us to better understand, e.g.,
the role of the environment, age, gender, etc. in the spread of
different diseases.

Need for maintaining privacy in statistical databases. We
rarely know before hand which factors (or which combinations
of factors) are important and which are not. We want to extract
this information from the database. Therefore, we need to be
able to test different hypotheses on the data from this database.

In order to test different hypotheses, we need to be able to
compute different statistical characteristics which are needed
to test a hypothesis. Different hypotheses require different
characteristics, so, in principle, we should allow researchers to
estimate the values of all these characteristics. The problem is
that based on these values, we can inadvertently disclose the
confidential information.

For example, a researcher may conjecture that all the
patients whose blood pressure is above a certain threshold have
a higher risk of heart attacks, and this researcher is looking for
the value of the threshold for which the correlation between
blood pressure and heart attacks is the largest. One of the
natural ways for a researcher to find the best threshold is to
all possible thresholds t1 < t2 < . . . < tN ; i.e., for each of
these thresholds ti, to compute the values of different statistics
based on the set Si of all the patients whose blood pressure is
greater than or equal to ti. The more different thresholds we
take, the more accurate is our determination of the optimal
threshold. When the thresholds are close enough, then the
difference between the sets Si and Si+1 may consist of a single
patient – the one whose actual blood pressure is between the
two consecutive thresholds. So, by comparing the means and
other statistical characteristics corresponding to the two related
sets, we will be able to reconstruct all the values corresponding
to this particular individual patient – and if we know all the
characteristics of each person, then, by knowing one of the
easy-to-obtain characteristics (e.g., exact birthdate), we would
thus be able to identify all the medical characteristics of each
person.

In view of the possibility of such undesirable privacy
violations, it is important to make sure that privacy is protected
in statistical databases.

Intervals as a way to preserve privacy in statistical
databases. One way to preserve privacy is not to store the
exact data values – from which a person can be identified – in
the database, but rather store ranges (intervals). For example,
instead of recording the exact age of each patient, we only
record whether this age is, e.g., between 0 and 10, between
10 and 20, etc.

In general, we set some threshold values t1, . . . , tK and
ask a person whether the actual value of the corresponding
quantity is in the interval [t1, t2], in the interval [t2, t3], . . . ,
or in the interval [tK−1, tK ].

As a result, for each quantity x and for each person i, instead
of the exact value xi of the corresponding quantity, we store
an interval xi = [xi, xi] that contains the actual (non-stored)
value xi. Each of these intervals coincides with one of the



given ranges

[t1, t2], [t2, t3], . . . , [tK−1, tK ].

Need to estimate third central moment C3. To gauge
asymmetry of a probability distribution, statisticians use the
third central moment (see, e.g., [13]), since for symmetric
distributions, this moment is equal to 0. Based on the sample
values x1, . . . , xn, this central moment is usually estimated as

C3 =
1

n
·

n∑
i=1

(xi − E)3,

where

E =
1

n
·

n∑
i=1

xi.

Estimating statistical characteristics under interval uncer-
tainty: what is known. The general problem of estimating
the range of a function under interval uncertainty is known as
interval computations; see, e.g., [5], [9].

The need for interval computations comes beyond pri-
vacy concerns: it usually comes from the fact that in many
cases, data come from measurements, and measurements are
never absolutely accurate; see, e.g., [12]. In other words,
the measurement result x̃i are, in general, different from the
actual (unknown) values xi of the quantities that we are
measuring. Often, the only information that we know about
the measurement error ∆xi

def
= x̃i − xi is the upper bound

∆i on its absolute value: |∆xi| ≤ ∆i. In this case, after
the measurement, the only only information that we have
about the actual value xi is that this value is in the interval
xi = [xi, xi] = [x̃i −∆i, x̃i +∆i].

Thus, if we use the measured values x1, . . . , xn to estimate
the values of some auxiliary quantity y = f(x1, . . . , xn), we
need to know the range of possible values of y:

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

In particular, if we perform a statistical analysis of the
measurement results, then, for each statistical characteristic
C(x1, . . . , xn), we need to find its range

C = {C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

For the mean E, the situation is simple: the mean is an
increasing function of all its variables. So, its smallest value
E is attained when each of the variables xi attains its smallest
value xi, and its largest value E is attained when each of the
variables attains its largest value xi:

E =
1

n
·

n∑
i=1

xi, E =
1

n
·

n∑
i=1

xi.

However, other statistical measures are, in general, non-
monotonic. It turns out that in general, computing the values
of these characteristics under interval uncertainty is NP-hard
[1], [2], [11]. This means, crudely speaking, that unless P=NP

(which most computable scientists believe to be wrong), no
feasible (polynomial-time) algorithm is possible that would
always compute the range of the corresponding characteristic
under interval uncertainty. Since variance is the second central
moment, similar argument applies to third central moment too.

Estimating statistical characteristics for privacy case under
interval uncertainty: what is known. For privacy case, the
range of variance, covariance, and correlation can be computed
in polynomial time [3], [4], [7], [8].

What we do in this paper. In this paper, we show that for
privacy case, the range of third central moment C3 can also
be computed in polynomial time.

II. ANALYSIS OF THE PROBLEM

Computing the minimum C3 can be reduced to computing
the maximum C3. We need to compute the range [C3, C3] of
the moment C3 when each variable xi is in the corresponding
interval xi = [xi, xi]. The function C3(x1, . . . , xn) is odd, i.e.,
satisfies the property C(−x1, . . . ,−xn) = −C(x1, . . . , xn).
Thus, for the intervals

−xi = {−xi : xi ∈ [xi, xi]} = [−xi,−xi],

we have

C3(−x1, . . . ,−xn) = −C3(x1, . . . ,xn).

In particular, for the upper endpoint C3(−x1, . . . ,−xn), we
get

C3(−x1, . . . ,−xn) = −C3(x1, . . . ,xn).

Thus, if we can compute the upper endpoint for any set of
intervals, we can compute the lower endpoint as

C3(x1, . . . ,xn) = −C3(−x1, . . . ,−xn).

Because of this possibility, in the following text, we will
concentrate on computing the upper endpoint C3.

When a function attains maximum on the interval: known
facts from calculus. A function f(x) defined on an interval
[x, x] attains its maximum on this interval either at lone of its
endpoints, or in some internal point of the interval. If it attains
is maximum at a point x ∈ (x, x), then its derivative at this

point is 0:
df

dx
= 0.

If it attains its maximum at the point x = x, then we cannot

have
df

dx
< 0, because then, for some point x−∆x ∈ [x, x],

we would have a larger value of f(x). Thus, in this case, we

must have
df

dx
≥ 0.

Similarly, if a function f(x) attains its maximum at the

point x = x, then we must have
df

dx
≤ 0.

Thus, for each function f(x), we have three possibilities for
the value x where this function attains its maximum:

• first possibility is that x < x < x and
df

dx
= 0;



• second possibility is that x = x and
df

dx
≥ 0;

• third possibility is that x = x and
df

dx
≤ 0.

Let us apply these known facts to our problem. For C3 we
have:

∂C3

∂xi
=

3

n
· (xi − E)2 − 3

n2
·

n∑
j=1

(xj − E)2 =

3

n2
· ((xi − E)2 − σ2),

where σ2 def
=

1

n
·

n∑
j=1

(xj − E)2. So:

•
∂C3

∂xi
= 0 if and only if |xi −E| = σ, i.e., if and only if

xi = E − σ or xi = E + σ;

•
∂C3

∂xi
≥ 0 if and only if |xi −E| ≥ σ, i.e., if and only if

xi ≤ E − σ or xi ≥ E + σ;

•
∂C3

∂xi
≤ 0 if and only if |xi −E| ≤ σ, i.e., if and only if

E − σ ≤ xi ≤ E + σ.

Thus, for each i, at a point (x1, . . . , xn) where C3 attains its
maximum, we get one of the following three options:

1) first option is that xi < xi < xi and either xi = E − σ
or xi = E + σ;

2) second option is that xi = xi and either xi ≤ E − σ or
xi ≥ E + σ;

3) third option is that xi = xi and E − σ ≤ xi ≤ E + σ.
In the privacy case, each interval xi coincides with one of the
intervals [tk, tk+1]. Let i− denote the number of the interval
that contains E−σ, and let i+ ≥ i− denote the number of the
interval that contains E+σ. To apply the above conclusions, let
us consider all possible locations on this interval with respect
to the the interval [ti− , ti−+1] that contains E − σ and the
interval [ti+ , ti++1] that contains E + σ:

1) if the interval is completely to the right of E + σ, i.e.,
if i+ + 1 < k and thus, E + σ < tk, then we cannot
have the first or the third options, so we must have the
second option and thus, we must have xi = xi;

2) if the interval is completely to the left of E − σ, i.e., if
k + 1 < i− and thus, tk+1 < E − σ, then we cannot
have the first or the third options, so we must have the
second option and thus, we must have xi = xi;

3) if i−+1 < k < i+, then we have E−σ < xi < E+σ;
in this case, we cannot have the first and the second
option, so we must have the third option, and thus, we
must have xi = xi;

4) if k = i− < i+, i.e., if the interval x− = [tk, tk+1]
coincides with the interval that contains E−σ, and this
interval is different from the interval that contains E+σ,
then we cannot have the second option, because then

we would have xi = xi = tk+1, and we know that
this value is larger than E − σ; similarly, we cannot
have the third option, since in this case, we would have
xi = xi = tk and thus, we would have xi < E − σ; so,
in this case, only the first option is possible, so we must
have xi = E − σ;

5) if k = i− = i+, then we cannot have the third option,
since then we would have xi = xi = tk < E − σ; thus,
we must have the first or the second option, i.e., we must
have xi = E − σ, xi = E + σ, or xi = xi;

6) finally, if k = i+ > i−, i.e., if the interval contains
E+σ, then we must consider all three possible options:
xi = xi = tk, xi = E + σ, and xi = xi = tk+1.

Thus, for all the intervals [tk, tk+1] except for the interval
corresponding to k = i+, we have a single option for xi. For
the interval k = i+, we have three possible options for each
variable xi.

Towards a feasible algorithm: idea. For each k, let us denote,
by nk, the number of intervals xi that coincide with [tk, tk+1].
For k = i+, in principle, we have three options for each of
nk indices i, to the total of 3nk possible assignments. This
number of assignments is non-feasibly large.

However, good news is that since all nk intervals are
identical, it does not matter which values xi get assigned to
different values, what matters is how many get assigned. In
the case of i− < i+, what matters is:

• how many values xi get assigned the value xi = xi; let
us denote this number by n;

• how many values xi get assigned the value xi = xi; let
us denote this number by n; and

• how many values xi get assigned the value xi = E + σ;
this number is equal to n− n− n.

Similarly, when i− = i+, what matters is:
• how many values xi get assigned the value xi = E − σ;

let us denote this number by n−;
• how many values xi get assigned the value xi = E + σ;

let us denote this number by n+; and
• how many values xi get assigned the value xi = xi; this

number is equal to n− n− − n+.
For each combination of such values n and n (or n− and n+),
we assign values E−σ and/or E+σ to some of the variables
xi. The problem is that we do not know the values E and σ;
however, we can find them if we take into account that:

• the average of all selected values xi should be equal to
E, i.e., the sum

∑
xi of all selected values xi should be

equal to n · E;
• the average value of x2

i should be equal to σ2 +E2, i.e.,
the sum

∑
x2
i of the squares of all selected values xi

should be equal to n · (E2 + σ2).
Thus, we get two equations from which we can determine both
the values E and σ. The first equation equates n · E with a
linear combination of values E−σ, E+σ, and known values
like xi and xi. Thus, this equation is a linear equation in terms
of E and σ. We can use this equation to express E as a linear



function of σ. Now, the second equation becomes a quadratic
equation in terms of σ, from which we can determine σ.

Towards a feasible algorithm: details. For each pair with
i− < i+, once we have fixed the values n and n for which
n+ n ≤ ni+ , the equation n · E =

∑
xi takes the form

n·E =

ti−−1∑
k=1

nk ·tk+1+ni− ·(E−σ)+

i+−1∑
k=i−+1

nk ·tk+n·ti++

n · ti++1 + (ni+ − n− n) · (E + σ) +

K−1∑
k=i++1

nk · tk+1,

i.e., the form
N · E = S +M · σ,

where we denoted

N = n− ni− − (ni+ − n− n), (1)

S =

ti−−1∑
k=1

nk · tk+1 +

i+−1∑
k=i−+1

(nk · tk) + n · ti+ + n · ti++1+

K−1∑
k=i++1

nk · tk+1, (2)

and
M = −ni− + (ni+ − n− n). (3)

Thus, we conclude that

E =
S +M · σ

N
, (4)

and therefore, that

E − σ =
S + (M −N) · σ

N
(5)

and
E + σ =

S + (M +N) · σ
N

. (6)

Similarly, for the selected values xi, the equation

n · (σ2 + E2) =
∑

x2
i

takes the form

n·(σ2+E2) =

ti−−1∑
k=1

nk ·t2k+1+ni− ·(E−σ)2+

i+−1∑
k=i−+1

nk ·t2k+

n · t2i+ +n · t2i++1+(ni+−n−n) ·(E+σ)2+
K−1∑

k=i++1

nk · t2k+1.

Substituting the expressions (4)–(6) into this formula, we
conclude that

n·σ2+n·
(
S +M · σ

N

)2

= S2+ni− ·
(
S + (M −N) · σ

N

)2

+

(ni+ − n− n) ·
(
S + (M +N) · σ

N

)2

, (7)

where we denoted

S2 =

ti−−1∑
k=1

nk · t2k+1 +

i+−1∑
k=i−+1

nk · t2k + n · t2i+ + n · t2i++1+

K−1∑
k=i++1

nk · t2k+1. (8)

The equation (7) is a quadratic equation in terms of σ.
Similarly, for each pair with i− = i+, once we have fixed

the values n− and n+ for which n−+n+ ≤ ni+ , the equation
n · E =

∑
xi takes the form

n · E =

ti+−1∑
k=1

nk · tk+1 + n− · (E − σ) + n+ · (E + σ)+

(n− n− − n+) · ti++1 +
K−1∑

k=i++1

nk · tk+1,

i.e., the form
N · E = S +M · σ,

where we denoted

N = n− n− − n+, (9)

S =

ti+−1∑
k=1

nk · tk+1 + (n− n− − n+) · ti++1+

K−1∑
k=i++1

nk · tk+1, (10)

and
M = −n− + n+. (11)

Thus, we conclude that E has the form (4) and thus, E − σ
and E+σ have the form (5) and (6). Similarly, for the selected
values xi, the equation

n · (σ2 + E2) =
∑

x2
i

takes the form

n·(σ2+E2) =

ti+−1∑
k=1

nk ·t2k+1+n− ·(E−σ)2+n+ ·(E+σ)2+

(n− n− − n+) · t2i++1 +
K−1∑

k=i++1

nk · t2k+1.

Substituting the expressions (4)–(6) into this formula, we
conclude that

n · σ2 + n ·
(
S +M · σ

N

)2

= S2 + n− · (E − σ)2+

n+ · (E + σ)2, (12)

where we denoted

S2 =

ti+−1∑
k=1

nk · t2k+1 + (n− n− − n+) · t2i++1+



K−1∑
k=i++1

nk · t2k+1. (13)

The equation (13) is also a quadratic equation in terms of σ.
Once the find E and σ, we can compute C3. For i− < i+,

we get

C3 =

ti−−1∑
k=1

nk · (tk+1 − E)3 + ni− · (−σ)3+

i+−1∑
k=i−+1

nk · (tk − E)3 + n · (ti+ − E)3+

n · (ti++1 − E)3 + (ni+ − n− n) · σ3+

K−1∑
k=i++1

nk · (tk+1 − E)3. (14)

For i− = i+, we get

C3 =

ti+−1∑
k=1

nk · (tk+1 − E)3 + n− · (−σ)3 + n+ · σ3+

(n−n−−n+) ·(ti++1−E)3+

K−1∑
k=i++1

nk ·(tk+1−E)3. (15)

III. RESULTING ALGORITHM

Input. We have K threshold values t1, . . . , tK that divide the
range [t, t] of possible values of the quantity x into K − 1
zones

[t1, t2], . . . , [tK−1, tK ],

where t1 = t and tK = t.
In the databases, we have n intervals each of which is equal

to one of these zones. For each k, we have nk intervals equal

to the zone [tk, tk+1]; here,
K∑

k=1

nk = n.

The values E − σ and E + σ may be outside the range; to
describe the possible locations of these values, we add zones
(t0, t1] with t0 = −∞ and [tK , tK+1) with tK+1 = +∞.

Algorithm. Since we do not know which zone i− contains
E−σ and which zone i+ contains E+σ, we need to consider
all possible combinations of integers i− ≤ i+ for which 0 ≤
i− and i+ ≤ K + 1.

For each pair with i− < i+, we consider all pairs of natural
numbers n and n for which n+ n ≤ ni+ . For each such pair
of natural numbers, we:

• compute the values (1)–(3);
• find σ from the quadratic equation (7); this quadratic

equation may have zero, one or two non-negative solu-
tions σ; for each of these solutions,
• we compute E by using the formula (4);
• we check whether E− σ ∈ [ti− , ti−+1] and whether

E + σ ∈ [ti+, ti++1];
• if these two inclusions are satisfied, we use the

formula (14) to compute C3.

For each pair with i− = i+, we consider all pairs of natural
numbers n− and n+ for which n−+n+ ≤ ni+ . For each such
pair of natural numbers, we:

• compute the values (9)–(11);
• find σ from the quadratic equation (12); this quadratic

equation may have zero, one or two non-negative solu-
tions σ; for each of these solutions,
• we compute E by using the formula (4);
• we check whether E − σ ∈ [ti+ , ti++1] and whether

E + σ ∈ [ti+, ti++1];
• if these two inclusions are satisfied, we use the

formula (15) to compute C3.
We then return the largest of all computed values C3 as the

desired maximum C3.

Computation time. For each of K2 pairs of zones, we
consider pairs of natural numbers whose sum does not exceed
ni+ and thus, does not exceed the total number of records n.
Therefore, the total number of such pairs does not exceed n2.
For each pair, computations take time O(K), so overall, this
algorithm requires time which is quadratic in n: O(n2).

IV. FROM INTERVAL TO FUZZY UNCERTAINTY

Need for fuzzy uncertainty. In the previous text, we consid-
ered a situation in which, for each record i, we know exactly
which of the intervals [tk, tk+1] contains the value xi. For
example, this may mean that we know exactly whether the
age is between 0 and 10, between 10 and 20, etc.

This makes sense if we start with an exact age and replace
this exact age with an interval to preserve privacy. In some
practical situations, however, instead of the exact age or an
exact height or weight, we have an expert’s impression of this
characteristic. An expert can say that a patient is most probably
between 10 and 20 years old, but this is not crisp information:
it is possible that the actual patient is, e.g., 21 years old.

How to describe and process fuzzy uncertainty. We assume
that, instead of the exact intervals [tk, tk+1], we have member-
ship functions for which µk(x) = 1 for x ∈ [tk, tk+1] and for
which positive value extend a little bit beyond tk and beyond
tk+1. In this case, we can apply Zadeh’s extension principle
to the formula for C3 and get a fuzzy number corresponding
to the third central moment.

It is known that Zadeh’s extension principle can be de-
scribed in terms of α-cuts α-cuts xi(α) = {xi |µi(xi) ≥ α}.
It is known (see, e.g., [10]) that for any function y =
f(x1, . . . , xn), the α-cut of y is equal to

y(α) = {f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

In particular, this means that for the third central moment C3,
we have

C3(α) = {C3(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

Thus, from the computational viewpoint, the problem of
estimating C3 under fuzzy uncertainty can be reduced to
several similar problems for interval uncertainty – interval
problems corresponding to different values α.



In view of this reduction, in the following text, we will
concentrate on estimating the correlation under interval uncer-
tainty.

Interval computation problem corresponding to α < 1.
For α = 1, each α-cut coincides with the original interval
tk = [tk, tk] = [tk, tk+1]. For these intervals, tk = tk = tk−1.
For this problem, we have already described the algorithm.

For α < 1, we have wider (and thus, intersecting) intervals
tk(α) = [tk(α), tk(α] for which, in general, tk(α) < tk <
tk−1(α). Since these intervals intersect, each value x may be
covered by several intervals of this type. It is reasonable to
assume that the uncertainty is not huge, so for each point,
at most two such intervals can contain this point. In other
words, while we have tk(α) > tk+1(α), we should also have
tk(α) < tk+2(α).

The difference between this situation and the previously
considered situation of non-intersecting intervals is that we
can now have two different intervals containing E − σ and
two different intervals containing E+σ. For E−σ, this is not
a serious issue, this would simply mean that for both intervals,
we select E−σ. However, for E+σ, this means that we have to
select not just a pair of natural numbers n and n corresponding
to one such interval, but we need to select two pairs of natural
numbers corresponding to both intervals containing E + σ.
Selecting two pairs of numbers means selecting four natural
numbers ≤ n.

As a result, we get an algorithm similar to the above one, but
the computation time of this algorithm is now O(n4), which
is much larger than the previous O(n2) time.
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