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ABSTRACT: In this paper the problem of the most appropriate modeling of scarce information for an engi-
neering analysis is investigated. This investigation is focused on a comparison between a rough probabilistic
modeling based on the first two moments and interval modeling. In many practical cases, the available informa-
tion is limited to such an extent that a more thorough modeling cannot be pursued. The engineer has to make a
decision regarding the modeling of this limited and coarse information so that the results of the analysis provide
the most suitable basis for conclusions. We approach this problem from the angle of information theory and
propose to select the most informative model (in Shannon’s sense). The investigation reveals that the answer
to question of model choice depends on the confidence, which is needed for the engineering results in order to
make informed decisions.

1 INTRODUCTION

Practical engineering problems often involve the
quantification of uncertainty on the basis of quite lim-
ited information. This is associated with two prob-
lems. First, it is desirable to represent the available
information as completely as possible in the theoret-
ical uncertainty model. Second, the modeling should
not rely on assumptions, which cannot be justified and
so introduce artificial information. These issues need
to be addressed properly in order to arrive at realis-
tic results in a structural, reliability or other analysis.
In practice, a complete satisfaction of both require-
ments is virtually impossible, but a good balance can
be obtained in many cases. If the available informa-
tion is very limited, the specification of probability
distributions is critical, but coarse models may still
be suitable. In the probabilistic framework, one may
then estimate the first two moments to work towards
a rough probabilistic approximation solution. Alter-
natively, one could estimate two bounds to form the
range of the corresponding variable and thus, gener-
ate an interval.

These two options were compared in (Beer et al.
2013) from a practical point of view in a geotechnical
context. They were examined in view of (i) an appro-
priate modeling of the information actually available

in practical cases, (ii) the transfer of the uncertainty
to the computational results, and (iii) the interpreta-
tion of the results. Specific emphasis was put on the
interpretability of the results as the basis to derive in-
formed engineering decisions if only scarce informa-
tion is available. It was found that interval modeling
and fuzzy modeling provide certain advantages if the
available information is very limited. These models
cover the worst case scenario for the input parameters.
In a reliability analysis this provides information re-
garding the magnitude of possible exceedance of the
limit state as an indication for the severity of the worst
case. Emphasizing extreme events, interval analysis
can be quite helpful when low-probability-but-high-
consequence events are concerned in a risk assess-
ment, whilst probabilistic methods may fail to iden-
tify these events. The feature of covering the worst
case (conditional on the requirements set to specify
the interval bounds) makes interval results quite con-
servative. The degree of conservatism is comparable
with conclusions based on Chebyshev’s inequality,
and which approach is more conservative depends on
the problem. The difference between results from in-
terval analysis and probabilistic analysis is controlled
by the assumption of the probabilistic model for the
latter analysis. This difference may be only small if
the assumed probabilistic model leads to larger fail-



ure probabilities than other probabilistic models plau-
sible according to the available information. As the
critical regions of the limit state surface are, in many
practical cases, particularly affected by the assump-
tion of the probabilistic models for the input variables,
it was concluded that it may be advisable to consider
an interval solution if probabilistic input information
is very vague or only available in a bounded form.
The application of very rough probabilistic approxi-
mations such as Chebyshev’s inequality may lead to
even more conservative conclusions compared to in-
terval analysis, whilst the interval analysis results still
satisfy the requirement of revealing the worst case on
a pre-defined confidence level.

On the basis of the identified features of interval
analysis in comparison with a probabilistic analysis
in the case of limited information a rough recom-
mendation was provided to decide whether to model
the problem using intervals or to employ probabilis-
tic models. The borderline case is determined by the
specification of the first two moments of a variable
with sufficient confidence. If this is not possible, in-
tervals provide the better alternative. From a statistical
perspective, this conclusion hinges on a sufficiently
large sample size for variance estimation. Since this
depends on the problem and on the experts’ judg-
ment, a general cut-off sample size cannot be defined.
Also, if expert knowledge is available to pursue a
Bayesian estimate, it depends on the quality of the
expert knowledge expressed as prior distributions. It
was concluded that a sample size of less than seven
may be understood as a strong indication towards us-
ing intervals, and that a sample size beyond 30 should
be sufficient, for most practical cases, to specify a
probabilistic model. For cases in between, advice was
given to use both approaches and to go with the more
conservative decision from these options.

This provides some support to the engineer to make
the most appropriate model choice in the specific
case, but it still leaves some remaining indetermi-
nacy in “intermediate” cases. In order to address the
remaining indeterminacy, we investigate the model
alternatives in view of their information content. A
natural idea is to select the most informative ap-
proach, i.e., that approach in which we need the small-
est amount of additional information (in Shannon’s
sense) to obtain the full information about the situa-
tion. We follow this idea and come up with the fol-
lowing conclusion: in practical situations in which a
95% confidence level is sufficient, interval bounds are
more informative; however, in situations in which we
need higher confidence, a probabilistic model based
on the first two moments is more informative.

2 AMOUNT OF INFORMATION

In this paper, we describe a general approach, in
which we compare the information contained in two
alternative representations – crudely speaking, by

simply counting the bits. In this approach, all parts
of missing information are (implicitly) assumed to be
of equal importance. In specific applications, we may
care more about about some parts of the missing in-
formation and less about other parts. In such applica-
tions, when deciding which representation is the best,
we may need into the account the relative value of
different parts of information.

In order to specify a most realistic uncertainty
model, we need to find the values of several param-
eters describing this model. From a statistical per-
specive; the more parameters we need to determine,
the more observations we need to find the values of
all these parameters (Sheskin 2007). In practice, it is
rarely possible to have many calibrations, so that we
are often limited to determine only two parameters;
see, e.g., (Rabinovich 2005). Usually, the parameters
that we select are:

• either the first two moments of the distribution
(or, equivalently, the mean E and the standard
deviation σ),

• or the smallest and the largest values, i.e., the
range [x,x] of possible values.

Crudely speaking, moments correspond to the statis-
tical approach to uncertainty, while the range corre-
sponds to the interval approach to uncertainty; see,
e.g., (Jaulin, Kieffer, Didrit, & Walter 2001, Moore,
Kearfott, & Cloud 2009).

In order to investigate the amount of information
contained in these two alternative representations we
employ the concept of Shannon’s entropy. The tra-
ditional Shannon’s notion of the amount of informa-
tion is based on defining information as the (average)
number of “yes”-“no” (binary) questions that we need
to ask so that, starting with the initial uncertainty, we
will be able to completely determine the object.

After each binary question, we can have 2 possi-
ble answers. So, if we ask q binary questions, then,
in principle, we can have 2q possible results. Thus,
if we know that our object is one of n objects, and
we want to uniquely pinpoint the object after all these
questions, then we must have 2q ≥ n. In this case, the
smallest number of questions is the smallest integer
q that is ≥ log2(n). This smallest number is called a
ceiling and denoted by ⌈log2(n)⌉.

For discrete probability distributions, we get the
standard formula for the average number of questions
−∑pi · log2(pi). For the continuous case, we can esti-
mate the average number of questions that are needed
to find an object with a given accuracy ε – i.e., divide
the whole original domain into sub-domains of radius
ε and diameter 2ε.

For example, if we start with an interval [a, b] of
width b− a, then we need to subdivide it into

n ∼ b− a

2ε



sub-domains, so we must ask

log2(n) ∼ log2(b− a)− log2(ε)− 1

questions. In the limit, the term that does not depend
on ε leads to log2(b− a). For continuous probability
distributions, we get the standard Shannon’s expres-
sion log2(n) ∼ S − log2(2ε), where

S = −
∫
ρ(x) · log2 ρ(x)dx.

Let us describe this idea in more detail.

Discrete case: no information about probabilities.
Let us start with the simplest situation when we know
that we have n possible alternatives A1, . . . ,An, and
we have no information about the probability (fre-
quency) of different alternatives. Let us show that in
this case, the smallest number of binary questions
that we need to determine the alternative is indeed
q

def
= ⌈log2(n)⌉.
We have already shown that the number of

questions cannot be smaller than ⌈log2(n)⌉; so, to
complete the derivation, we need to show that it is
sufficient to ask q questions. Indeed, let’s enumerate
all n possible alternatives (in arbitrary order) by
numbers from 0 to n − 1, and write these numbers
in the binary form. Using q binary digits, one can
describe numbers from 0 to 2q − 1. Since 2q ≥ n,
we can describe each of the n numbers by using
only q binary digits. So, to uniquely determine the
alternative Ai out of n given ones, we can ask the
following q questions: “is the first binary digit 0?”,
“is the second binary digit 0?”, etc, up to “is the q-th
digit 0?”.

Case of a discrete probability distribution. Let
us now assume that we also know the probabili-
ties p1, . . . , pn of different alternatives A1, . . . ,An. If
we are interested in an individual selection, then the
above arguments show that we cannot determine the
actual alternative by using fewer than log2(n) ques-
tions. However, if we have many (N ) similar situa-
tions in which we need to find an alternative, then
we can determine all N alternatives by asking ≪
N · log2(n) binary questions.

To show this, let us fix i from 1 to n, and estimate
the number of events Ni in which the output is i. This
number Ni is obtained by counting all the events in
which the output was i, so

Ni = ni1 + ni2 + . . .+ niN ,

where nk equals to 1 if in k-th event the output is i
and 0 otherwise. The average E(nik) of nik equals to
pi · 1 + (1− pi) · 0 = pi. The mean square deviation
σ[nik] is determined by the formula

σ2[nik] = pi · (1−E(nik))
2+(1−pi) · (0−E(nik))

2.

If we substitute here E(nik) = pi, we get σ2[nik] =
pi · (1 − pi). The outcomes of all these events are
considered independent, therefore nik are indepen-
dent random variables. Hence the average value of Ni

equals to the sum of the averages of nik:

E[Ni] = E[ni1] +E[ni2] + . . .+E[niN ] = N · pi.

The mean square deviation σ[Ni] satisfies a likewise
equation

σ2[Ni] = σ2[ni1] + σ2[ni2] + . . . = N · pi · (1− pi),

so σ[Ni] =
√
pi · (1− pi) ·N .

For big N the sum of equally distributed indepen-
dent random variables tends to a Gaussian distribu-
tion (the well-known Central Limit Theorem), there-
fore for big N , we can assume that Ni is a random
variable with a Gaussian distribution. Theoretically
a random Gaussian variable with the average a and
a standard deviation σ can take any value. However,
in practice, if, e.g., one buys a voltmeter with guar-
anteed 0.1V standard deviation, and it gives an error
1V, it means that something is wrong with this instru-
ment. Therefore it is assumed that only some values
are practically possible. Usually a ”k-sigma” rule is
accepted that the real value can only take values from
a− k0 · σ to a+ k0 · σ, where k0 is 2, 3, or 4. So in
our case we can conclude that Ni lies between

N · pi − k0 ·
√
pi · (1− pi) ·N

and
N · pi + k0 ·

√
pi · (1− pi) ·N.

Now we are ready for the formulation of Shannon’s
result. In this quality control example, the choice of
the parameter k0 matters, but, as we’ll see, in our case
the results do not depend on k0 at all.

• Let a real number k > 0 and a positive integer n
be given. The number n is called the number of
outcomes.

• By a probability distribution, we mean a se-
quence {pi} of n real numbers, pi ≥ 0,

∑
pi = 1.

The value pi is called a probability of i-th event.

• Let an integer N is given; it is called the number
of events.

• By a result of N events we mean a sequence rk,
1 ≤ k ≤ N of integers from 1 to n. The value rk
is called the result of k-th event.

• The total number of events that resulted in the
i-th outcome will be denoted by Ni.

• We say that the result of N events is consistent
with the probability distribution {pi} if for every
i, we haveN · pi− k0 ·σi ≤Ni ≤N · pi+ k0 ·σi,
where

σi
def
=
√
pi · (1− pi) ·N.



• Let’s denote the number of all consistent results
by Ncons(N).

• The number ⌈log2(Ncons(N))⌉ will be called the
number of questions, necessary to determine the
results of N events and denoted by Q(N).

• The fraction
Q(N)

N
will be called the average

number of questions.

• The limit of the average number of questions
when N →∞ will be called the information.

When the number of events N tends to infinity, the
average number of questions tends to

S(p)
def
= −

∑
pi · log2(pi).

This Shannon’s result says that if we know the
probabilities of all the outputs, then the average
number of questions that we have to ask in order
to get a complete knowledge equals to the entropy
of this probabilistic distribution. As expected, this
average number of questions does not depend on the
threshold k0. Since we somewhat modified Shannon’s
definitions, we cannot use the original Shannon’s
proof and refer to (Kreinovich and Xiang 2010) for
the new proof relevant to the present investigation.

Case of a continuous probability distribution. After
a finite number of “yes”-“no” questions, we can only
distinguish between finitely many alternatives. If the
actual situation is described by a real number, then,
since there are infinitely many different possible real
numbers, after finitely many questions, we can only
get an approximate value of this number.

Once we fix the accuracy ε > 0, we can talk about
the number of questions that are necessary to deter-
mine a number x with this accuracy ε, i.e., to deter-
mine an approximate value r for which |x− r| ≤ ε.

Once an approximate value r is determined, possi-
ble actual values of x form an interval [r − ε, r + ε]
of width 2ε. Vice versa, if we have located x on an
interval [x,x] of width 2ε, this means that we have
found x with the desired accuracy ε: indeed, as an
ε-approximation to x, we can then take the midpoint
x+ x

2
of the interval [x,x].

Thus, the problem of determining x with the ac-
curacy ε can be reformulated as follows: we divide
the real line into intervals [xi, xi+1] of width 2ε (so
that xi+1 = xi + 2ε), and by asking binary questions,
find the interval that contains x. As we have shown,
for this problem, the average number of binary ques-
tion needed to locate x with accuracy ε is equal to
S = −∑pi · log2(pi), where pi is the probability that
x belongs to i-th interval [xi, xi+1].

In general, this probability pi is equal to∫ xi+1
xi

ρ(x)dx, where ρ(x) is the probability distri-
bution of the unknown values x. For small ε, we

have pi ≈ 2ε · ρ(xi), hence log2(pi) = log2(ρ(xi)) +
log2(2ε). Therefore, for small ε, we have

S = −
∑

ρ(xi) · log2(ρ(xi)) · 2ε−∑
ρ(xi) · 2ε · log2(2ε).

The first sum in this expression is the integral sum for
the integral

S(ρ)
def
= −

∫
ρ(x) · log2(x)dx

(this integral is called the entropy of the probability
distribution ρ(x)); so, for small ε, this sum is approx-
imately equal to this integral (and tends to this in-
tegral when ε → 0). The second sum is a constant
log2(2ε) multiplied by an integral sum for the inter-
val

∫
ρ(x)dx = 1. Thus, for small ε, we have

S ≈ −
∫
ρ(x) · log2(x)dx− log2(2ε).

So, the average number of binary questions that are
needed to determine x with a given accuracy ε, can be
determined if we know the entropy of the probability
distribution ρ(x).

Partial information about probability distribution:
discrete case. In many real-life situations, as we have
mentioned, instead of having complete information
about the probabilities p = (p1, . . . , pn) of different
alternatives, we only have partial information about
these probabilities – i.e., we only know a set P of pos-
sible values of p.

If it is possible to have p ∈ P and p′ ∈ P , then it
is also possible that we have p with some probability
α and p′ with the probability 1− α. In this case, the
resulting probability distribution α · p+ (1−α) · p′ is
a convex combination of p and p′. Thus, it it reason-
able to require that the set P contains, with every two
probability distributions, their convex combinations –
in other words, that P is a convex set; see, e.g., (Wal-
ley 1991).

• By a probabilistic knowledge, we mean a convex
set P of probability distributions.

• We say that the result of N events is consistent
with the probabilistic knowledge P if this result
is consistent with one of the probability distribu-
tions p ∈ P .

• Let’s denote the number of all consistent results
by Ncons(N).

• The number ⌈log2(Ncons(N))⌉ will be called the
number of questions, necessary to determine the
results of N events and denoted by Q(N).

• The fraction
Q(N)

N
will be called the average

number of questions.



• The limit of the average number of questions
when N →∞ will be called the information.

By the entropy S(P ) of a probabilistic knowledge
P , we mean the largest possible entropy among all
distributions p ∈ P ; S(P ) def

= max
p∈P

S(p). When the

number of events N tends to infinity, the average
number of questions tends to the entropy S(P ); this
proposition was also first proved in (Kreinovich and
Xiang 2010). It is worth mentioning that when N
goes to infinity, the probability set reduces to a single
element – namely, to the distribution related to the
long-run relative frequencies.

Partial information about probability distribution:
continuous case. In the continuous case, we also of-
ten encounter situations in which we only have partial
information about the probability distribution. In such
situations, instead of a knowing the exact probability
distribution ρ(x), we only know a (convex) class P
that contains the (unknown) distribution. In such sit-
uations, we can similarly ask about the average num-
ber of questions that are needed to determine x with a
given accuracy ε.

Once we fix an accuracy ε and a subdivision of
the real line into intervals [xi, xi+1] of width 2ε, we
have a discrete problem of determining the interval
containing x. For this discrete problem, the average
number of “yes”-“no” questions is equal to the largest
entropy S(p) among all the corresponding discrete
distributions pi =

∫ xi+1
xi

ρ(x)dx. As we have men-
tioned, for small ε, we have S(p) ∼ S(ρ)− log2(2ε),
where S(ρ) = −

∫
ρ(x) · log2(ρ(x))dx is the entropy

of the corresponding continuous distribution. Thus,
the largest discrete entropy S(p) comes from the
distribution ρ(x) ∈ P for which the corresponding
(continuous) entropy S(ρ) attains the largest possible
value.

3 ANALYSIS OF THE PROBLEM

We want to find out which of the two representations
is more informative: a representation by the first
two moments (or, equivalently, by the mean E and
standard deviation σ) and a representation by an
interval [x,x]. For both representations, in order
to uniquely determine the actual value x, we need
to gather additional information. So, in which of
these two representations do we need to gather more
information?

Toward a reformulation of the problem in precise
terms. As we have mentioned in the previous section,
the amount of information can be naturally gauged by
the average number of questions that we need to ask to
determine the actual situation. According to the above
results, once we know the class P of possible proba-
bility distributions, this average number of questions

S(P ) can be determined as the largest entropy S(ρ) of
all probability distributions ρ from the given class P .
So, to answer our question, it is sufficient to compare
the values S(P ) corresponding to the two representa-
tions.

To make a comparison, we need to relate the
bounds x and x with the values E and σ. In the
case of normal distribution, with confidence 95%,
the actual value of the random variable x is con-
tained in the confidence interval [E − 2σ,E + 2σ].
With confidence 99.9%, the actual value is contained
in the interval [E − 3σ,E + 3σ]. With confidence
1− 10−8, the actual value is in the six-sigma interval
[E − 6σ,E + 6σ]; see, e.g., (Rabinovich 2005, She-
skin 2007). Thus, it makes sense to consider an in-
terval [E − k0 · σ,E + k0 · σ], for some appropriate
value k0.

In many practical problems, the two-sigma level of
confidence is reasonable. The corresponding 5% level
is a threshold that is used in many practical applica-
tions – to decide when a new medicine is better than
the previous one, to decide whether the new medicine
or, more generally, a new strategy has an effect, to
decide whether a new theory is confirmed by obser-
vations, etc.; see, e.g., (Sheskin 2007).

However, there are problems in which a higher
level of confidence is needed. For example, in the de-
sign of civil engineering structures, when a technical
problem can lead to collapse with fatalities, we need
at least 3σ level corresponding to < 0.1% probability
of errors. In chip design, the confidence in individual
chip elements should be even higher: the reliability
of computer means that all the cells are reliable, and
to make sure that all millions of cells work correctly,
we need to make sure that the probability of failure of
an individual cell is ≪ 10−6. In such situations, the
six-sigma level of confidence is used.

For Gaussian distributions, it makes sense to take
k0 = 2, k0 = 3, or k0 = 6, depending on the confi-
dence level with which we want to bound the possible
values. As we have mentioned, in practice, the dis-
tribution is often non-Gaussian. In this case, we may
have heavy tails, i.e., distributions for which the prob-
ability of high deviations is much larger than for the
Gaussian distribution. In this case, to cover all possi-
ble values of x with a given confidence, we need to
consider larger values k0.

On this basis we can perform the necessary com-
putations. When we look for the distribution with
the largest entropy in a given class, a natural way to
find the largest value is to differentiate the expression
for the entropy and to equate the corresponding
derivative to 0. From this viewpoint, instead of the
binary logarithms log2(x), it is more convenient to
use natural logarithms ln(x), because the natural

logarithm is easier to differentiate: its derivative is
1

x
.

Since log2(x) =
ln(x)

ln(2)
, these two logarithms – and



thus, the corresponding values of entropy – differ by
a constant factor. When we compare two entropies,
multiplying both by a positive constant does not
change which one is better. With this in mind, in the
following text, we will use a version of Shannon’s
entropy that uses natural logarithms.

Estimating S(P ): interval case. Let us start with
the interval case, when all we know is that the ac-
tual value x belongs to the interval [x,x] = [E − k0 ·
σ,E + k0 · σ]. In this case, the class P consists of all
possible probability distributions ρ(x) which are lo-
cated on this interval, i.e., for which ρ(x) = 0 for all
values x outside this interval.

It is known that in this class, the distribution ρ with
the largest entropy S(ρ) is the uniform distribution;
see, e.g., (Jaynes 2003). Indeed, we need to maximize
the entropy S(ρ) = −

∫
ρ(x) · ln(ρ(x))dx under the

constraints ρ(x)≥ 0 and
∫
ρ(x)dx= 1. The unknown

here are the values ρ(x) corresponding to different
points x. We can use Lagrange multiplier method to
reduce the constraint optimization problem to the un-
constrained optimization problem of maximizing the
combination

−
∫
ρ(x) · ln(ρ(x))dx+ λ ·

(∫
ρ(x)dx− 1

)
for an appropriate value λ. Differentiating this objec-
tive function with respect to ρ(x) and equating the
derivative to 0, we get − ln(ρ(x))− 1 + λ = 0, hence
ln(ρ(x)) = 1− λ and ρ(x) = exp(1− λ). This value
is the same for all x, so this is indeed a uniform dis-
tribution.

From the condition
∫ x
x ρ(x)dx = 1 (that the total

probability is 1) we conclude that (x− x) · ρ(x) = 1,

hence ρ(x) =
1

x− x
. For this probability distribution,

the entropy has the form

−
∫ x

x
ρ(x) · ln(ρ(x)) =

∫ x

x

1

x− x
· ln(x− x)dx =

(x− x) · 1

x− x
· ln(x− x) = ln(x− x).

Describing the range in terms of E and σ, we con-
clude that in the interval case,

Sint(P ) = ln(2 · k0 · σ) = ln(σ) + ln(2 · k0).

Estimating S(P ): case of moments. In the moments
case, the class P consists of all probability distri-
butions with given first and second moments E =∫
x · ρ(x)dx and M = E2 + σ2 =

∫
x2 · ρ(x)dx.

It is known that in this class, the distribution ρ with
the largest entropy S(ρ) is the normal distribution;
see, e.g., (Jaynes 2003). Indeed, we need to maximize
the entropy S(ρ) = −

∫
ρ(x) · ln(ρ(x))dx under the

constraints ρ(x)≥ 0,
∫
ρ(x)dx= 1,

∫
x ·ρ(x)dx=E,

and
∫
x2 · ρ(x)dx = M . We can use Lagrange mul-

tiplier method to reduce the constraint optimization
problem to the unconstrained optimization problem of
maximizing the combination

−
∫
ρ(x) · ln(ρ(x))dx+ λ0 ·

(∫
ρ(x)dx− 1

)
+

λ1 ·
(∫

x · ρ(x)dx−E
)
+

λ2 ·
(∫

x2 · ρ(x)dx−M
)

for appropriate values λi. Differentiating this objec-
tive function with respect to ρ(x) and equating the
derivative to 0, we get

− ln(ρ(x))− 1 + λ0 + λ1 · x+ λ2 · x2 = 0,

hence

ln(ρ(x)) = 1− λ0 − λ1 · x− λ2 · x2,

and ρ(x) is, thus, a Gaussian distribution. Since we
know the mean E and the standard deviation, this dis-
tribution takes the form

ρ(x) =
1√

2 · π · σ
· exp

(
−(x−E)2

2σ2

)
.

Shannon’s entropy S(ρ) is an expected value of

ψ(x)
def
= ln(ρ(x)).

For the above Gaussian distribution,

ψ(x) = ln(
√
2 · π · σ) + 1

2
· (x−E)2

σ2
.

Here, E is the mean, so the expected value of (x−
E)2 is, by definition, the variance σ2. Thus, the ex-
pected value S(P ) of the function ψ(x) takes the form

S(P ) = ln(
√
2 · π · σ) + 1

2
· σ

2

σ2
= ln(

√
2 · π · σ) + 1

2
.

Thus, we arrive at the following expression for S(P )
for the moments case:

Smom(P ) = ln(σ) + ln(
√
2 · π) + 1

2
.

Resulting comparison. We want to choose a repre-
sentation for which the remaining number of binary
questions is the smallest possible. Thus, we should
select the moments if and only if Smom(P ) < Sint(P ).
Substituting the above expressions for Smom(P ) and



Sint(P ), we conclude that the moments method is bet-
ter if and only if

ln(σ) + ln(
√
2 · π) + 1

2
< ln(σ) + ln(2 · k0),

i.e., if and only if

ln(
√
2 · π) + 1

2
< ln(2 · k0).

By applying exp(x) to both sides of this inequality,
we can obtain the following equivalent simpler in-
equality: √

2 · π ·
√
e < 2 · k0,

i.e.,

k0 >

√
π · e
2

≈ 2.066.

So, when k0 = 2, the interval representation is better;
when k0 ≥ 3, the moments representation is more in-
formative.

The above conclusion is based on the assump-
tion that we select a symmetric confidence interval
[E − k0 · σ,E + k0 · σ]. In principle, we can consider
asymmetric confidence intervals [x,x] corresponding
to the same confidence level. For such intervals, the
width x − x is larger than for the symmetric ones;
thus, the corresponding value of S(P ) = ln(x − x)
is also larger. So, in comparison to such intervals, the
moments representation may be better.

For normal distributions, k0 = 2 corresponds to
95% confidence intervals, meaning that the probabil-
ity of being further than 2σ from the mean does not
exceed 5%. In some practical situations, the distri-
butions are not normal; see, e.g., (Novitskii & Zo-
graph 1991, Orlov 1991). For example, often, we have
heavy-tailed distributions, in which the probability of
large deviations is much larger than for the normal
distribution. For such distributions, 95% confidence
intervals correspond to k0 ≫ 2. Therefore, for such
distributions, even when 95% confidence is satisfac-
tory, the moments representation is more informative.

4 CONCLUSIONS

We are interested in selecting the most informative
representation. It turns out that from this viewpoint,
which of the two representation to use – the mo-
ments representation or the interval representation –
depends on what is the desired level of confidence.
In practical problems in which the probability dis-
tribution is close to normal, and 95% confidence
is satisfactory, an interval representation is more
informative. To be more precise, interval representa-
tion is only slightly more informative, but still more
informative, and in many situations, when measure-
ments are difficult and we want to extract as much
information from them as possible, any possibility to
gain additional information is welcome. On the other

hand, in problems in which we need higher levels
of confidence – or in which we have a heavy-tailed
distribution – the moments representation is more
informative.
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