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Abstract

In geophysics, we usually have several Earth models based on different types of data: seismic, gravity,
etc. Each of these models captures some aspects of the Earth structure. To get the more description of the
Earth, it is desirable to “fuse” these models into a single one. To appropriately fuse the models, we need
to know the accuracy of different models. In this paper, we show that the traditional methods cannot be
directly used to estimate these accuracies, and we propose a new method for such estimation.
c⃝2013 World Academic Press, UK. All rights reserved.
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1 To Properly Fuse Geophysical Models, It Is Important to Esti-
mate Accuracy of Different Models

Need to fuse models: geophysics. One of the main objectives of geophysics is to determine the density
ρ(x, y, z) at different depths z and at different geographical locations (x, y). There exist several methods for
estimating the density: e.g., we can use seismic data [1], or we can use gravity measurement. Each of the
techniques for estimating ρ has its own advantages and limitations: e.g., seismic measurements often lead to
a more accurate value of ρ than gravity measurements, but seismic measurements mostly provide information
about the areas above the Moho surface. It is desirable to combine (“fuse”) the models obtained from different
types of measurements into a single model that would combine the advantages of all of these models.

Fusion: statistical approach. Similar situations are frequent in practice: we are interested in the value
of a quantity, and we have reached the limit of the accuracy that can be achieved by using a single available
measuring instrument. In this case, to further increase the estimation accuracy, we perform several measure-
ments of the desired quantity xi – by using the same measuring instrument or different measuring instruments
– and combine the results xi1, xi2, . . . , xim of these measurement into a single more accurate estimate x̂i; see,
e.g., [5, 7].

The need for fusion appears when we have already extracted as much accuracy from each type of measure-
ments as possible. This means, in particular, that we have found and eliminated the systematic errors (thus,
the resulting measurement error has 0 mean), and that we have found and eliminated the major sources of
the random error. Since all big error components are eliminated, what is left is the large number of small
error components. According to the Central Limit Theorem, the distribution of the sum of a large number
of independent small random variables is approximately normal. Thus, it is natural to assume that each

measurement error ∆xij
def
= xij − xi is normally distributed with 0 mean and some variance σ2

j . Then, the

probability density corresponding to xij is
1√

2π · σj

· exp

(
− (xij − xi)

2

2σ2
j

)
. It is also reasonable to assume
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that measurement errors corresponding to different measurements are independent. Under this assumption,
the overall probability density is equal to the product of the corresponding probability distributions

L =
m∏
j=1

1√
2π · σj

· exp

(
− (xij − xi)

2

2σ2
j

)
. (1)

According to the Maximum Likelihood Principle, we select the value xi for which the above probability L is
the largest possible. Since exp(a) · exp(b) = exp(a+ b), we get

L =
m∏
j=1

1√
2π · σj

· exp

−
m∑
j=1

(xij − xi)
2

2σ2
j

 . (2)

Maximizing L is equivalent to minimizing − ln(L), i.e., to minimizing the sum
m∑
j=1

(xij − xi)
2

σ2
j

. Differentiating

this sum w.r.t. xi and equating the derivative to 0, we conclude that
m∑
j=1

σ−2
j · (xij − xi) = 0, so

xi =

m∑
j=1

σ−2
j · xij

m∑
j=1

σ−2
j

. (3)

This idea has been successfully applied to geophysics; see, e.g., [2, 3, 4, 6].

Need to estimate accuracy of the corresponding models. To apply the above formula, we need to
know the accuracies σj of different models.

2 Traditional Methods of Estimating Accuracy Cannot Be Directly
Used in Geophysics

Let us describe the traditional methods of estimating accuracy (see, e.g., [5]) and let us show that these
methods can be directly applied to the above geophysical problem.

First method: calibration. The first method is to calibrate the corresponding measuring instrument.
Calibration is possible when we have a “standard” measuring instrument which is several times more accurate
than the instrument which we are calibrating. We then repeatedly measure the same quantity by using both
our measuring instrument and the standard one. Since the standard instrument is much more accurate than
the one we testing, the result xi,st of using this instrument is practically equal to the actual value xi, and
thus, the measurement error ∆xij = xij −xi is well approximated by the difference ∆xij ≈ xij −xi,st between
the measurement results.

Since all the measurements xij , i = 1 . . . , n, are performed by the same measuring instrument j, all these
measurements have the same standard deviation σj . In this case, the likelihood (2) take the simplified form

L =
1

(
√
2π)n · σn

j

· exp

(
−

n∑
i=1

(xij − xi)
2

2σ2
j

)
. (4)

We need to find the value σj for which the likelihood L attains the largest possible value. Maximizing L is

equivalent to minimizing − ln(L) = const + n · ln(σj) +
n∑

i=1

(xij − xi)
2

2σ2
j

. Differentiating this sum w.r.t. σj and

equating the derivative to 0, we get the usual estimate

σ2
j =

1

n
·

n∑
i=1

(xij − xi)
2. (5)

Since we know approximate values of xij − xi, we can thus estimate σj .
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It is not possible to directly use calibration. For calibration to work, we need to have a measuring
instrument which is several times more accurate than the one that we currently use. In geophysics, however,
seismic (and other) methods are state-of-the-art, no method leads to more accurate determination of the
densities. As a result, calibration techniques cannot be directly applied to estimating approximation errors
in the geophysics problems.

Second method: using several similar instruments. In some practical situations, when we do have a
standard measuring instrument, we can instead compare the results xi1 and xi2 of using two similar measuring
instruments to measure the same quantities xi. The two instruments are independent and have the same
accuracy σ, so the likelihood function has the form

L =
1

(
√
2π)n · σn

· exp

(
−

n∑
i=1

(xi1 − xi)
2

2σ2

)
· 1

(
√
2π)n · σn

· exp

(
−

n∑
i=1

(xi2 − xi)
2

2σ2

)
.

In this case, we do not know σ and we do not know the actual values x1, . . . , xm; in the spirit of the Maximum
Likelihood method, we will select the values of all these parameters for which the likelihood attains the largest
possible value. Maximizing L is equivalent to minimizing

− ln(L) = const + 2n · ln(σ) +
n∑

i=1

(xi1 − xi)
2

2σ2
+

m∑
i=1

(xi2 − xi)
2

2σ2
. (6)

Minimizing with respect to xi leads to xi =
xi1 + xi2

2
. Substituting these values xi into the formula (7) and

minimizing the resulting expression with respect to σ, we get

σ2 =
1

2n
·

n∑
i=1

(xi1 − xi2)
2
. (7)

It is not possible to directly use this method either. In usual measurements, when we estimate
the accuracy of measurements performed by a measuring instrument, we can produce two similar measuring
instruments and compare their results. In geophysics, we want to estimate the accuracy of a model, e.g., a
seismic model, a gravity-based model, etc. In this situation, we do not have two similar applications of the
same model, so the second method cannot be directly applied either.

Moreover, Maximum Likelihood approach cannot be applied to estimate model accuracy.
Let us now consider the most general situation: we have several quantities with (unknown) actual values
x1, . . . , xi, . . . , xn, we have several measuring instruments (or geophysical methods) with (unknown) accura-
cies σ1, . . . , σj , . . . , σm, and we know the results xij of measuring the i-th quantity by using the j-th measuring
instrument. At first glance, a reasonable idea is to find all the unknown quantities – i.e., the actual values xi

and the σj – from the Maximum Likelihood method. In this case, the likelihood takes the form

L =

n∏
i=1

m∏
j=1

1√
2π · σj

· exp

(
− (xij − xi)

2

2σ2
j

)
. (8)

The problem with this approach is that, in contrast to the previous cases, this expression does not attain
a finite maximum, it can reach values which are as large as possible. Namely, if we pick some j0 and take

xi = xij0 + ε and σj0 = ε, then we get
(xij0 − xi)

2

2σ2
j0

=
1

2
, so the corresponding exponential factor is equal to

exp

(
−1

2

)
; all other factors are also finite (and positive) in the limit ε → 0 except for the terms

1√
2π · σj0

which tends to infinity.
One can check that if all the values σj are positive, then the above likelihood expression attains finite

values. Thus, the largest possible – infinite – value is attained when one of the standard deviations σj0 is
equal to 0. In this case, in accordance with the formula (3), we get xi = xij0 . In other words, for this problem,
the Maximum Likelihood method leads to a counterintuitive conclusion that one of the measurements was
absolutely accurate. This is not physically reasonable, so Maximum Likelihood method cannot be directly
used to estimate random errors.
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3 How to Estimate Model Accuracy: Proposed Idea

Analysis of the problem. We know that xij = xi + ∆xij , where approximation errors ∆xij = xij − xi

are independent normally distributed random variables with 0 mean and (unknown) standard deviations σ2
j .

For every two estimation methods (e.g., measuring instruments) j and k, the difference xij − xik between the
results of estimating the same quantity xi by these two methods has the form

xij − xik = (xi +∆xij)− (xi +∆xik) = ∆xij −∆xik.

Derivation of the resulting formula. The difference between two independent normally distributed
random variables ∆xij and ∆xik is also normally distributed. The mean of the difference is equal to the
difference of the means, i.e., to 0 − 0 = 0, and the variance of the difference is equal to the sum of the
variances, i.e., to σ2

j + σ2
k.

Thus, the difference xij − xik = ∆xij −∆xik is normally distributed with 0 mean and variance σ2
j + σ2

k.
For each j and k, we have n values x1j − x1k, . . . , xnj − xnk from this distribution. Based on this sample, we
can apply the usual formula (5) to estimate the standard deviation σ2

j + σ2
k as σ2

j + σ2
k ≈ Ajk, where

Ajk
def
=

1

n
·

n∑
i=1

(xij − xik)
2. (9)

In particular, for every three different measuring instruments, with unknown accuracies σ2
1 , σ

2
2 , and σ2

3 , we
get the equations

σ2
1 + σ2

2 ≈ A12, σ2
1 + σ2

3 ≈ A13, σ2
2 + σ2

3 ≈ A23. (10)

By adding all three equalities (10) and dividing the result by two, we get

σ2
1 + σ2

2 + σ2
3 =

A12 +A13 +A23

2
. (11)

Resulting formulas. Subtracting, from (11), each of the equalities (10), we conclude that σ2
j ≈ Ṽj , where

Ṽ1 =
A12 +A13 −A23

2
; Ṽ2 =

A12 +A23 −A13

2
; Ṽ3 =

A13 +A23 −A12

2
. (12)

Comment. In general, when we have M different models, we have
M · (M − 1)

2
different equations σ2

j +σ2
k ≈

Ajk to determine N unknowns σ2
j . When M > 3, we have more equations than unknowns, so we can use the

Least Squares method to estimate the desired values σ2
j .

Challenge. The formulas σ2
i ≈ Ṽi are approximate. If we use an estimate Ṽj for σ2

j , we may get physically
meaningless negative values for the corresponding variances.

It is therefore necessary to modify the formulas (12) so as to avoid negative values.

An idea of how to deal with this challenge. The negativity challenge is caused by the fact that the
estimates in (12) are approximate. So, to come up with the desired modification, we will first estimate the

accuracy of each of the formulas (12), i.e., the standard deviation ∆j for the difference ∆Vj
def
= Ṽj − σ2

j .

For large n, the difference ∆Vj between the actual value of σ2
j and its statistical estimate is asymptotically

normally distributed, with asymptotically 0 mean; see, e.g., [7]. In the next section, we will estimate the

standard deviation ∆j for this difference. Thus, we can conclude that the actual value σ2
j = Ṽj − ∆Vj is

normally distributed with mean Vj and standard deviation ∆j . We also know that σ2
j ≥ 0. As an estimate

for σ2
j , it is therefore reasonable to use a conditional expected value E

(
Ṽj −∆Vj

∣∣∣ Ṽj −∆Vj ≥ 0
)
. This new

estimate is an expected value of a non-negative number and thus, cannot be negative. In the next section, we
will show how to compute this new estimate.
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4 Derivation of the Corresponding Formulas

Estimating accuracies ∆j of the estimates V j for σ2
j . Let us estimate the accuracy ∆j of Ṽj , i.e., the

expected value ∆2
j = E

[(
Ṽj − σ2

j

)2]
. According to (12), Ṽj is computed based on the values

Ajk =
1

n
·

n∑
i=1

(xij − xik)
2 =

1

n
·

n∑
i=1

(∆xij −∆xik)
2.

To simplify notations, let us denote ai
def
= ∆xij , bi

def
= ∆xik, and ci

def
= ∆xiℓ; then, we conclude that

Ṽj =
1

2
·

[
1

n
·

n∑
i=1

(ai − bi)
2 +

1

n
·

n∑
i=1

(ai − ci)
2 − 1

n
·

n∑
i=1

(bi − ci)
2

]
,

i.e.,

Ṽj =
1

2n
·

n∑
i=1

[
(ai − bi)

2 + (ai − ci)
2 − (bi − ci)

2
]
. (13)

Opening parentheses inside the sum, we get

(ai − bi)
2 + (ai − ci)

2 − (bi − ci)
2 = a2i − 2ai · bi + b2i + a2i − 2ai · ci + c2i − b2i + 2bi · ci − c2i .

Thus, the formula (13) takes the form

Ṽj =
1

n
·

n∑
i=1

(a2i − ai · bi − ai · ci + bi · ci).

Therefore,

∆2
j = E

[(
Ṽj − σ2

j

)]
= E

[(
Ṽj

)2
− 2Ṽj · σ2

j + σ4
j

]
= E1 − 2σ2

1 · E2 + σ4
1 , (14)

where

E1
def
= E

[(
Ṽj

)2]
= E

( 1

n
·

n∑
i=1

(a2i − ai · bi − ai · ci + bi · ci)

)2
 , (15)

E2
def
= E

[
Ṽj

]
= E

[
1

n
·

n∑
i=1

(a2i − ai · bi − ai · ci + bi · ci)

]
.

The expected value E2 is equal to linear combination of the expected values of the expressions a2i , ai · bi,
ai · ci, and bi · ci:

E2 =
1

n
·

n∑
i=1

(
E[a2i ]− E[ai · bi]− E[ai · ci] + E[bi · ci]

)
. (16)

All variables ai, bi, and ci are independent and normally distributed with 0 mean and the corresponding
variances Vj = σ2

j . Due to independence, E[ai · bi] = E[ai] ·E[bi] = 0 ·0 = 0; similarly E[ai · ci] = E[bi · ci] = 0,

and the only non-zero term is E[a2i ] = σ2
j . Thus, in the sum in E2, only n terms a21, . . . , a

2
n lead to non-zero

expected value σ2
j , hence E2 =

1

n
· n · σ2

j = σ2
j .

Let us now compute E1. In general, the square of a sum can be represented as

(∑
i

zi

)2

=
∑
i

z2i +
∑
i ̸=i′

zi ·zi′ .

In our case, zi = a2i − ai · bi − ai · ci + bi · ci. Thus, the expected value E2 can be presented as

E1 =
1

n2
·

n∑
i=1

E[z2i ] +
1

n2
·
∑
i ̸=i′

E[zi · zi′ ]. (17)
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Here, the expression z2i =
(
a2i − ai · bi − ai · ci + bi · ci

)2
takes the form

z2i = a4i + a2i · b2i + a2i · c2i + b2i · c2i + terms which are odd in ai, bi, or ci.

Due to independence and the fact that all normally distributed variables ai, bi, and ci have 0 mean and thus,
0 odd moments, the expected values of odd terms like a3i · bi is zero: e.g., E[a3i · bi] = E[a3i ] ·E[bi] = 0. Thus,

E[z2i ] = E[a4i ] + E[a2i · b2i ] + E[a2i · c2i ] + E[b2i · c2i ].

For the normal distribution, E[a4i ] = 3σ4
j ; due to independence, E[a2i · b2i ] = E[a2i ] · E[b2i ] = σ2

j · σ2
k. Thus,

E[z2i ] = 3σ4
j + σ2

j · σ2
k + σ2

j · σ2
ℓ + σ2

k · σ2
ℓ ,

and
1

n2
·

n∑
i=1

E[z2i ] =
1

n
· (3σ4

j + σ2
j · σ2

k + σ2
j · σ2

ℓ + σ2
k · σ2

ℓ ). (18)

For zi · zi′ with i ̸= i′, we similarly have

zi · zi′ = (a2i − ai · bi − ai · ci + bi · ci) · (a2i′ − ai′ · bi′ − ai′ · ci′ + bi′ · ci′) = a2i · a2i′ + odd terms with 0 mean.

Thus, E[zi · zi′ ] = E[a2i · a2i′ ] = E[a2i ] · E[a2i′ ] = σ2
j · σ2

j = σ4
j and so, after adding over all n2 − n pairs (i, i′)

with i ̸= i′, we get

1

n2
·

n∑
i ̸=i′

E[zi · zi′ ] =
n2 − n

n2
· σ4

j =

(
1− 1

n

)
· σ4

j . (19)

Substituting the expressions (18) and (19) into the formula (17), we conclude that

E1 =
1

n
· (3σ4

j + σ2
j · σ2

k + σ2
j · σ2

ℓ + σ2
k · σ2

ℓ ) +

(
1− 1

n

)
· σ4

j .

Substituting this expression for E1 and the formula E2 = σ2
j into the formula (14), we get

∆2
j =

1

n
· (3σ4

j + σ2
j · σ2

k + σ2
j · σ2

ℓ + σ2
k · σ2

ℓ ) +

(
1− 1

n

)
· σ4

j − 2σ4
j + σ4

j ,

i.e.,

∆2
j =

1

n
· (2σ4

j + σ2
j · σ2

k + σ2
j · σ2

ℓ + σ2
k · σ2

ℓ ). (2)

We do not know the exact values σ2
j , but we do no know the estimates Ṽj for these values; thus, we can

estimate ∆j as follows:

∆2
j ≈ 1

n
·
((

Ṽj

)2
+ Ṽj · Ṽk + Ṽj · Ṽℓ + Ṽk · Ṽℓ

)
. (21)

From estimating ∆j to a non-negative estimate for σ2
j . So far, we have an estimate Ṽj for σ2

j (as

defined by the formula (12)), we know that the difference ∆Vj = Ṽj −σ2
j is normally distributed with 0 mean,

and we know the standard deviation ∆j of this difference. Since, as we mentioned in the previous section, the

original estimate Ṽj may be negative, it is desirable to use a new estimate E
(
Ṽj −∆Vj

∣∣∣ Ṽj −∆Vj ≥ 0
)
.

The Gaussian variable ∆Vj has 0 mean and standard deviation ∆j ; thus, it can be represented as t ·∆j ,
where t is a Gaussian random variable with 0 and standard deviation 1. In terms of the new variable t, the

non-negativity condition Ṽj −∆Vj ≥ 0 takes the form Ṽj −∆j · t ≥ 0, i.e., t ≤ δj
def
=

Ṽj

∆j
. Thus, the desired

conditional mean is equal to

E
(
Ṽj −∆j · t

∣∣∣ t ≤ δj

)
= E

(
Ṽj

∣∣∣ t ≤ δj

)
−∆j · E (t | t ≤ δj ) = Ṽj −∆j · E (t | t ≤ δj ) . (22)
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So, to compute the desired estimate, it is sufficient to be able to compute the value E (t | t ≤ δj ) for the

standard Gaussian variable t, with the probability density function ρ(t) =
1√
2π

· exp
(
− t2

2

)
. By definition,

this conditional mean is equal to the ratio E (t | t ≤ δj ) =
Nj

Dj
, where

Nj =

∫ δj

−∞
t · ρ(t) dt; Dj =

∫ δj

−∞
ρ(t) dt. (23)

The denominator Dj is equal to Φ(δj)
def
= Prob(t ≤ δj). The numerator Nj of this formula is equal to

Nj =

∫ δj

−∞
t · 1√

2π
· exp

(
− t2

2

)
dt. (24)

By introducing a new variable s =
t2

2
for which ds = t · dt, we reduce (24) to

Nj =
1√
2π

·
∫ δ2j/2

∞
exp(−s) ds.

This integral can be explicitly computed, so we get

Nj = − 1√
2π

· exp

(
−
δ2j
2

)
and thus,

E (t | t ≤ δj ) = − 1√
2π

·
exp

(
−
δ2j
2

)
Φ(δj)

.

So,

E
(
Ṽj −∆j · t

∣∣∣ t ≤ δj

)
= Ṽj −∆j · E (t | t ≤ δj ) = Ṽj +

∆j√
2π

·
exp

(
−
δ2j
2

)
Φ(δj)

.

5 Resulting Algorithm

Let us assume that for each value xi (i = 1, . . . , n), we have three estimates xi1, xi2, and xi3 corresponding
to three different models. Our objective is to estimate the accuracies σ2

j of these three models.

First, for each j ̸= k, we compute Ajk =
1

n
·

n∑
i=1

(xij − xik)
2. Then, we compute

Ṽ1 =
A12 +A13 −A23

2
; Ṽ2 =

A12 +A23 −A13

2
; Ṽ3 =

A13 +A23 −A12

2
.

After that, for each j, we compute

∆2
j =

1

n
·
((

Ṽj

)2
+ Ṽj · Ṽk + Ṽj · Ṽℓ + Ṽk · Ṽℓ

)
.

Once we compute the preliminary estimates Ṽj and their accuracies ∆j , we then compute the auxiliary ratios

δj =
Ṽj

∆j
and return, as an estimate σ̃2

j for σ2
j , the value

σ̃2
j = Ṽj +

∆j√
2π

·
exp

(
−
δ2j
2

)
Φ(δj)

.
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