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Abstract

Computer science educators observed that in the present way of teach-
ing computing, only 2% of students can easily handle computational con-
cepts — and, as a result, only 2% of the students specialize in computer
science. With the increasing role of computers in the modern world, and
the increasing need for computer-related jobs, this 2% barrier creates a
shortage of computer scientists. We notice that the current way of teach-
ing computer science is based on easiness of using two-valued logic, on
easiness of dividing all situations, with respect to each property, into three
classes: yes, no, and unknown. The fact that the number of people for
whom such a division is natural is approximately 2% provides a natural
explanation of the 2% barrier — and a natural idea of how to overcome
this barrier: to tailor our teaching to students for whom division into
more than three classes is much more natural. This means, in particular,
emphasizing fuzzy logic, in which for each property, we divide the objects
into several classes corresponding to different degrees with which the given
property is satisfied.

1 Introduction

2% barrier: a brief description. Computer science educators have ob-
served that only about two out of every 100 students enrolling in introductory
programming courses really resonate with the subject and seem to be natural-
born computer scientists; see, e.g., [3, 5, 6, 7]. This observation is in good
accordance with the fact that in many universities, computer science students
form about 2% of the total number of students, both on the undergraduate and
on the graduate level.



Donald E. Knuth, one of the world leading computer scientists and com-
puter science educators, uses this know fact to conclude that “roughly 2% of all
people ‘think algorithmically’, in the sense that they can rapidly reason about
algorithmic processes” [5, 6, 7].

Why the 2% barrier is a problem. As the world becomes more and more
computerized, the society needs more and more computer scientists — or at
least people who can think algorithmically. At present, there is a shortage of
computer scientists — and in spite of the numerous efforts by computer science
programs, the number of computer science students increases too slowly to cover
this shortage.

What we do in this paper. How can we overcome this 2% barrier? A
natural way to solve a problem is to analyze it. For the 2% problem, this
means that we need to first understand the reasons behind the 2% barrier.
In this paper, we provide a possible explanation for this barrier, and use this
explanation to describe a possible oath to solving this problem.

2 Why 2% Barrier? A Possible Explanation

What computational thinking means now? In most computer science
education programs, computational thinking includes the ability to take impre-
cise problems and reformulate them in precise terms, in terms which make it
easier to explain these problems in a language that a computer can understand.
A large part of this thinking is related to the traditional crisp 2-valued logic,
whether it is the actual logic with “and”, “or”, and “not” used in programming
languages, whether it is the fact that in the computer, everything has to be
represented as a sequence of Os and 1s.

What crisp computational thinking means in psychological terms.
For people to use this logic, they need to be able, with respect to each property,
to easily classify objects into three categories:

e objects which satisfy this property,
e objects which do not satisfy this property, and

e objects about which we do not know whether they satisfy the given prop-
erty or not.

What is known about people’s ability to easily classify into classes.
Classification of objects into classes is a process well-studied by psychologists.
A well-known “7 plus minus 2 law” states that people are most comfortable
with classifying into 742 classes; see, e.g., [8, 9]. This general psychological law
has also been confirmed in our specific area of formalizing expert knowledge:
namely, in [1, 2], it was shown that this law explains why in intelligent control,



experts normally use < 9 different degrees (such as “small”, “medium”, etc.) to
describe the value of each characteristic (see also [13]).

What the 7+ 2 law tells us about the number of people who easily
classify into 3 classes. What is the precise meaning of the 7 £+ 2 law? This
law does not mean that for all people, the number of classes into which they
naturally classify is always between 7—2 = 5 and 742 = 9: there are people for
whom the natural number of classes is smaller than 5, and there are people for
whom the natural number of classes is larger than 9. A natural way to interpret
this law is to treat it the same way as 4 notations in science and engineering
are usually interpreted (see, e.g., [11]): namely, to understand this law as saying
that the among the human population, the mean value of the natural number
of classes is 7 and the standard deviation is 2.

As in many other real-life sitiuations, the number of classes is affected by
many different factors; in such situations, it is reasonable to apply the Central
Limit Theorem, according to which the joint effect of many independent effects
leads (under some reasonable conditions) to a normal distribution; see, e.g.,
[12]. Thus, it is reasonable to conclude that the natural number of classes is a
normally distributed random variable with mean ;= 7 and standard deviation
o=2.

Based on these ideas, what is the proportion of people for whom
computational thinking is natural? As we have mentioned, computational
thinking means that it is natural for a person to divide everything into X = 3
classes — or even sometimes into 2 classes (“yes” and “no”). In other words, com-
putational thinking means that the natural number of classes does not exceed
3 X <3.

Now that we know the probability distribution for the natural number of
classes X, we can estimate the probability P(X < 3). A usual way of computing
such probabilities for a normal distribution with given mean p and standard
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deviation y is to reduce it to the standard normal distribution Z def M,

o
with 0 mean and standard deviation 1. For each real number z, the inequality

X < zis equivalent to Z < z Wf TR Thus, the desired probability P(X < x)

o
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In our case, we have x =3, u =7, and 0 = 2, s0 z =
and thus, P(X < 3) = ®(-2) ~ 2.3%.

These computations explains the 2% barrier. The above computations
show that approximately 2% of people have the ability to easily classify all the
objects into three classes (yes, no, and unknown), an ability which is crucial to
computational thinking as it is taught now.



3 How Can We Overcome the 2% Barrier? Fuzzy
Ideas Can Help

Our explanation of the 2% barrier: reminder. Our explanation seems
to indicate the origin of the 2% barrier to increasing the number of computer
scientists:

e a traditional way to study computer science is based on emphasizing two-
valued logic, while

e for 98% of the people, this logic is not very natural.

How to overcome this barrier? From this viewpoint, a reasonable way to
overcome the 2% barrier is to do more to tailor computer science education
to folks for whom division into more than 3 classes is much more natural. In
particular, instead of focusing on the two-valued logic, such tailored approaches
should emphasize multiple-valued logic.

Fuzzy ideas can help. In principle, from the mathematical viewpoint, there
are many different multiple-valued logics. Which one should we choose?

A good criterion for selection is taking into account that applications are
always a good stimulus for learning. It is reasonable to select a multiple-valued
logic which has the largest number of practical applications — and this is un-
doubtedly fuzzy logic; see, e.g., [4, 10, 14].

Conclusion. So, we arrive at the following conclusion: to overcome the 2%
barrier, to satisfy the society’s need for computer scientists, to increase the
number of computer scientists, we need to introduce fuzzy logic as early as
possible into the computer science education.

Discussion. Of course, simply introducing fuzzy logic is not a panacea, we
need to go further and reemphasize all the usual binary concepts of computer
science in terms of scales consisting of 7+2 elements. Some of this reformulation
has already been done in fuzzy research: there are notions of (and results about)
fuzzy automata, fuzzy graphs, even fuzzy algorithms. However, all this is just
the beginning, the main work is still ahead.
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