
Towards Discrete Interval, Set, and Fuzzy
Computations

Enrique Portillo1, Olga Kosheleva2, and Vladik Kreinovich1
Departments of 1Computer Science and 2Teacher Education
University of Texas at El Paso, El Paso, Texas 79968, USA

eportillo2@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Abstract—In many applications, we know the function
f(x1, . . . , xn), we know the intervals xi of possible values of each
quantity xi, and we are interested in the range of possible values
of y = f(x1, . . . , xn); this problem is known as the problem of
interval computations. In other applications, we know the function
f(x1, . . . , xn), we know the fuzzy sets Xi that describe what we
know about each quantity xi, and we are interested in finding
the fuzzy set Y corresponding to the quantity y = f(x1, . . . , xn);
this problem is known as the problem of fuzzy computations.
There are many efficient algorithms for solving these problems;
however, most of these algorithms implicitly assume that each
quantity xi can take any real value within its range. In practice,
some quantities are discrete: e.g., xi can describe the number of
people. In this paper, we provide feasible algorithms for interval,
set, and fuzzy computations for such discrete inputs.

Index Terms—discrete case, interval computations, fuzzy com-
putations

I. NEED FOR DISCRETE INTERVAL, SET, AND FUZZY
COMPUTATIONS

Need for data processing. We want to understand the world,
we want to know the values of different quantities which char-
acterize the world. Some quantities we can directly measure:
e.g., we can easily measure the temperature in El Paso. In
many real-life situations, however, we are interested in the
value of some quantity y which is difficult (or even impossible)
to measure directly. For example, we may be interested in the
temperature inside a star, or we may want to know where a
close-to-Earth asteroid will be in 20 years.

Since we cannot measure these quantities directly, what we
can do instead is:

• measure (or otherwise estimate) the values of the quanti-
ties x1, . . . , xn which are related to y by a known relation
y = f(x1, . . . , xn), and then

• apply the corresponding algorithm f to the measurement
results x̃1, . . . , x̃n, producing an estimate

ỹ = f(x̃1, . . . , x̃n)

for y.

For example, to measure the density at different depths and
different locations, we can:

• measure the gravity field at different locations and at
different heights, and then

• use the known algorithms to reconstruct the desired
density values.

In the general case, such a measure-and-compute procedure
is called indirect measurement, and the application of the
algorithm f is known as data processing; see, e.g., [13].

Need to take uncertainty into account. Measurements are
never absolutely accurate – and alternatives like expert esti-
mates are even less accurate. The result x̃i of measuring (or es-
timating) the quantity xi is, in general, different from the actual
value of this quantity. Because of the corresponding approx-
imation errors ∆xi

def
= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n)

of data processing is, in general, different from the actual
(unknown) value y = f(x1, . . . , xn) (even if we, for simplicity,
assume that the dependence f between xi and y is known
exactly).

To make appropriate decisions based on the estimate ỹ, it is
important to know the accuracy ∆y

def
= ỹ− y of this estimate.

For example, if a geophysical analysis has shown that a natural
gas field contains ỹ = 10 trillion cubic feet of gas, the big
question is how accurate is this estimate:

• if it is 10± 1, we should start production;
• if it is 10± 20, meaning that there may be no gas at all,

then a further geophysical analysis is needed before we
invest a lot of money in this field.

Traditional probabilistic approach to uncertainty. Tradi-
tionally, in science and engineering, a probabilistic approach
is used to gauge to measurement uncertainty. In this approach,
we:

• estimate the probabilities of different values of ∆xi (it is
often Gaussian),

• find correlations (if any) between the corresponding ran-
dom variables ∆xi, and then

• use known statistical methods to derive the resulting
probability distribution for ∆y;

see, e.g., [13], [14].
A usual way of finding the probability distribution for

∆xi = x̃i − xi is to repeatedly compare:
• the results x̃i obtained by our measuring instrument and
• the results x̃st

i obtained by a much more accurate (“stan-
dard”) measuring instrument.

Since the standard measuring instrument is much more accu-
rate, we can ignore the corresponding measurement error ∆xst

i

in comparison with ∆xi and thus, assume that the value x̃st
i

measured by the standard instrument is equal to xi. Under this

assumption, the difference x̃i − x̃st
i is approximately equal to

the desired measurement uncertainty ∆xi = x̃i − xi. Based
on these differences x̃i − x̃st

i ≈ ∆xi, we can estimate the
probability distribution for ∆xi.

Need to go beyond the traditional probabilistic approach.
There are two cases when the above approach cannot be
applied.

• The first case if when we have state-of-the-art measure-
ments. For example, a geophysicist may use the latest
state-of-the-art super-accurate instrument for measuring
the gravity values at different points. It would be great if
there was a five times more accurate instrument available,
but this instrument is the best we have.

• Another case is when we use the measurements as a part
of manufacturing process. In such situations, in principle,
we can calibrate each sensor, but the problem is that
while sensors are often cheap, their calibration is several
order of magnitude more expensive. Such an expensive
calibration may be necessary if we are manufacturing a
critical component of a passenger airplane or of a reactor
for a nuclear power station, but when we manufacture
toothbrushes, such expenses are unnecessary.

Case of interval uncertainty. When we do not know the
probabilities of different values of measurement error ∆xi,
then we should know at least some upper bound ∆i on this
error. Indeed, if we do not even known any upper bound, then
this is not a measurement, this is a wild guess.

For measurements, a manufacturer provides an upper bound
on the measurement error, i.e., a value ∆i for which

|∆xi| ≤ ∆i.

In this case, if we know the measurement result x̃i, we can
conclude that the actual value xi of the measured quantity lies
in the interval xi

def
= [x̃i −∆i, x̃i +∆i].

For example, when the measured value is x̃i = 1.0, and the
accuracy is ∆i = 0.1, we conclude that the actual value xi

belongs to the interval [1.0− 0.1, 1.0 + 0.1] = [0.9, 1.1].

Need for interval computations. When we know all the inputs
with interval uncertainty, then for each input xi, we only know
the interval xi of possible values of xi. Different combinations
of values xi from the corresponding intervals lead, in general,
to different values y = f(x1, . . . , xn) of the desired quantity y.
In such situations, it is desirable to find the set of all possible
values y, i.e., the set

Y
def
= {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}. (1)

The problem of estimating such a range based on known
intervals xi is known as a problem of interval computations;
see, e.g., [6], [9].

Comment. In a more general case, when instead of intervals, we
have more general sets, we get what is called set computations.

Need for fuzzy uncertainty and fuzzy computations. In
many practical cases, instead of measuring the values xi,
we ask experts to estimate these values. Such estimates are
ubiquitous in such difficult-to-formalize areas as medicine, and
even in such easier-to-formalize areas as geophysics. Experts
can rarely express their estimates by using exact numbers, their
estimates usually involve imprecise (“fuzzy”) words from a
natural language. For example, an expert can say that the value
is small, or, in more detail, that is approximately equal to 1.0,
with an error of approximately 0.1.

Fuzzy logic is a technique specifically invented to translate
such imprecise statements into a language understandable to
a computer; see, e.g., [8], [11], [15]. In fuzzy logic, to each
statement S describing a real number, and to each possible
value x, we assign a degree µS(x) describing to what extent
the value x is consistent with this statement. This degree can be
obtained, e.g., by asking an expert to mark his/her confidence
that x is consistent with S on a scale from 0 to some integer
n: if an expert marks m, then we take

µS(x) =
m

n
.

This procedure can be repeated for several values x, and then
an interpolation can be used to find the values µS(x) for all
other real values. The corresponding function µS(x) is known
as a membership function.

Once we have membership functions µi(xi) corresponding
to different inputs, we need to compute the membership
function µ(y) corresponding to y = f(x1, . . . , xn). The
computation of such membership function is known as fuzzy
computation.

How to perform fuzzy computations: towards Zadeh’s
extension principle. In order to describe formulas for fuzzy
computations, it is reasonable to recall that y is a possible value
of of the desired variable if for some real numbers x1, . . . , xn

for which y = f(x1, . . . , xn):
• the value x1 is a possible value of the first input, and
• the value x2 is a possible value of the second input, and
• . . .
• the value xn is a possible value of the n-th input.

In other words, we are interested in the degree to which the
following statement holds:∨

xi:f(x1,...,xn)=y

(x1 is possible& . . . &xn is possible). (2)

We know the degree to which each xi is a possible value of
the i-th input; this degree is equal to µi(xi). The highlighted
statement is obtained from these basic statements by using “or”
(∨) and “and” (&). Thus, to find the degree in the statement
(2), we need to be able to transform the degrees of belief a
and b in original A and B into degrees of belief into their
propositional combinations A ∨B and A&B.

This problem is typical in the analysis of expert statements.
Indeed, the degrees to which A&B and A∨B are true depend
not only on the degrees with which the statements A and
B are true, but also on the relations between A and B. So,

ideally, after we ask the experts about their degrees of certainty
in different statements S1, . . . , Sn, we should also ask them
about their degrees of certainty in different propositional com-
binations of these statements. However, there are exponentially
many such combinations, and it is not practically possible to
elicit all corresponding degrees. Thus, we have to able, given
degrees a and b for statements A and B, generate reasonable
estimates f∨(a, b) for the degree of A ∨ B and f&(a, b) for
the degree of A&B.

It is reasonable to require that these estimates satisfy rea-
sonable properties: e.g., since “A and true” and “A and A” are
both equivalent to A, we should have f&(a, 1) = f&(a, a) = a.
The more we believe in B, the larger is our belief in A&B,
so we should have b ≤ b′ imply f&(a, b) ≤ f&(a, b

′). Thus,
when a ≤ b ≤ 1, we have

a = f&(a, a) ≤ f&(a, b) ≤ f&(a, 1) = a

hence f&(a, b) = a. Since “A and B” means the same as “B
and A”, we have f&(b, a) = f&(a, b) = a, i.e., in general,

f&(a, b) = min(a, b).

Similarly, since “A or false” and “A or A” are both
equivalent to A, we should have f∨(a, 0) = f∨(a, a) = a.
The more we believe in B, the larger is our belief in A ∨ B,
so we should have b ≤ b′ imply f∨(a, b) ≤ f∨(a, b

′). Thus,
when 0 ≤ b ≤ a, we have

a = f∨(a, 0) ≤ f∨(a, b) ≤ f∨(a, a) = a

hence f∨(a, b) = a. Since “A or B” means the same as “B
or A”, we have f∨(b, a) = f∨(a, b) = a, i.e., in general,

f∨(a, b) = max(a, b).

Substituting min and max into the formula (2), we conclude
that

µ(y) = max
x1,...,xn:f(x1,...,xn)

min(µ1(x1), . . . , µn(xn)). (3)

This formula, first proposed by L. Zadeh, the founder of fuzzy
logic, is known as Zadeh’s extension principle.

From the computational viewpoint, fuzzy computations can
be reduced to interval and set computations. According to
the formula (3), for every real number α, the inequality

µ(y) ≥ α

is equivalent to the condition that for some x1, . . . , xn for
which f(x1, . . . , xn) = y, we have µ1(x1) ≥ α, . . . , and
µn(xn) ≥ α. In other words, if we denote

xi(α)
def
= {xi : µi(xi) ≥ α}

and y(α) = {y : µ(y) ≥ α}, we get

y(α) = {f(x1, . . . , xn) : x1 ∈ x1(α), . . . ,xn(α)}. (4)

By applying interval (or set) computations, we can find the
sets y(α) = {y : µ(y) ≥ α}. Once we know these sets, we

can reconstruct each value µ(y) of the desired membership
function µ as max{α : µ(y) ≥ α}, i.e., as max{α : y ∈ y(α)}.

In other words, fuzzy computations can be reduced to the
interval (or, more generally, set) computations for the sets
xi(α) (such sets are known as α-cuts).

Need for discrete computations. Usually, in interval, set
and fuzzy computations, we consider the cases when all the
variables are continuous, i.e., can take all real values from
the corresponding ranges. In practice, sometimes, variables are
discrete, e.g., xi can be number of people. It is reasonable to
develop efficient algorithms for computing the ranges in such
discrete cases.

Comment. In view of the above reduction of fuzzy computa-
tions to interval (set) computations, in the following text, we
will consider only algorithms for the interval (set) case.

II. IN GENERAL, THE CORRESPONDING DISCRETE
INTERVAL AND SET COMPUTATION PROBLEMS ARE

COMPUTATIONALLY INTRACTABLE (NP-HARD)

How difficult are the usual (continuous) interval computa-
tion problems. For a linear function

f(x1, . . . , xn) = a0 +

n∑
i=1

ai · xi, (5)

its range y over intervals xi = [x̃i −∆i, x̃i + ∆i] is easy to

compute: y = [ỹ −∆, ỹ +∆], where ỹ = a0 +
n∑

i=1

ai · x̃i and

∆ =
n∑

i=1

|ai| ·∆i.

For a quadratic function

f(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑
j=1

aij · xi · xj ,

computing the range over given intervals is, in general, an NP-
hard problem; see, e.g., [7] and references therein. Moreover,
it is NP-hard even when we restrict ourselves to such a simple
quadratic function as variance [3], [4], [10]:

V =
1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

. (6)

Comment. This comment is for those who are not very familiar
with the notion of NP-hardness. This notion is related to the
notion of a feasible algorithm:

• some algorithms are feasible in the sense that they finish
in reasonable time,

• some algorithms are not feasible, since they take time –
even for reasonable-size inputs – which is longer than the
lifetime of the Universe.

It is usually assumed that feasible algorithms are exactly
polynomial-time algorithms, i.e., algorithms A for which the
running time tA(x) on each input x is bounded by a polyno-
mial of the bit-length len(x) of the input: tA(x) ≤ P (len(x)).

This definition is not perfect:

• an algorithm which requires time 10300 · len(x) is clearly
polynomial-time, but not feasible;

• on the other hand, an algorithm that finishes in time
exp

(
10−7 · len(x)

)
is clearly not polynomial-time, but

it is also clearly feasible for all inputs x of length
len(x) ≤ 108.

However, while not perfect, this is the best definition we have.
We then consider a class of problems (called NP) in which:
• once we have a guess,
• we can check, in feasible time, whether this guess is a

correct solution.
Some problems from the class NP can be solved in polynomial
time. For other problems, no such feasible algorithm is known.
Whether every problem from the class NP can be solved in
feasible time is an open problem; this problem is known as
P ?
=NP (Most computer scientists believe that P̸=NP). What is

known is that some problem from the class NP are the hardest
in this class, in the sense that every problem from the class
NP can be feasibly reduced to this problem. Such problems
are known as NP-hard. (For more detailed explanations, see
[5], [7], [12].)

Discrete case. In the discrete case, each variable xi can
take only finitely many values xi1, . . . , xini . In most practical
situations, these values are equally distributed, i.e., have the
form xij = ci+j ·hi for some starting point ci and step hi. In
other words, the value xi can be expressed as xi = ci+x′

i ·hi,
where the new variable x′

i can only take integer values. We can
substitute such expressions for xi into the desired dependence
y = f(x1, . . . , xn) and thus, get a new expression in which
each new variable takes only integer values. Without losing
generality, we can therefore assume that each variable xi takes
integer values between some bounds Xi and Xi. In this case,
the range estimation problem takes the following form:

• for each input i, we know the bounds Xi and Xi on xi;
• we also know a function f(x1, . . . , xn);
• our objective is to find the range

Y = {f(x1, . . . , xn) : xi = Xi, Xi + 1, . . . , Xi}.

Discrete case: the problem becomes NP-hard even for
linear functions. When the values xi are discrete, then even
for interval functions f(x1, . . . , xn), the problem of computing
the range becomes NP-hard. This directly follows from the
known fact that the following subset sum problem is NP-hard
[5], [7], [12]:

• given integers a1, . . . , an, and a,
• check whether there exist values xi ∈ {0, 1} for which

n∑
i=1

ai · xi = a.

This means that when we consider variables xi that take only
values 0 and 1, it is NP-hard to check whether the range of

a linear function f(x1, . . . , xn) =
n∑

i=1

ai · xi contains given

integer a.

What we do in this paper. In this paper, we use the ideas
originally proposed by N. Vereschagin and E. Hirsh in their

unpublished work and ideas from [1], [2] to show that in
a realistic situation when the ranges of the coefficients ai
are bounded, the problem of estimating the range of a linear
function for discrete inputs becomes feasible. Moreover, we
show that the problem of computing the range is feasible even
for some quadratic functions such as variance.

III. EFFICIENT ALGORITHMS FOR DISCRETE INTERVAL
(AND SET) COMPUTATIONS

Main assumption. In practice, there is usually a general bound
on the values of all the coefficients ai. In line with this fact, let
us assume that all the values are bounded by some constant A:
|ai| ≤ A.

It is also reasonable to assume that the possible values of xi

are bounded by some constant X: |xi| ≤ X . In other words,
we have |Xi| ≤ X and |Xi| ≤ X for all i.

In this section, we show that under these reasonable as-
sumptions, we can design efficient algorithms for computing
the range of a linear function (and even of some quadratic
functions).

Case of a linear function: at first glance, it looks like we
need exponential time. For a linear function (5), we want
to find the set of all its values when each inputs takes all
the values xi from Xi to Xi. There are finitely many values
of each input xi, so there are finitely many combinations
(x1, . . . , xn) of such values. In principle, we can:

• enumerate all such combinations,
• compute the value f(x1, . . . , xn) for each of these com-

binations, and
• thus form the desired set Y .

However, if we take at least two different values of each of n
variables xi, we will thus need to consider at least 2n different
combinations (x1, . . . , xn). Thus, the above straightforward
algorithm requires exponential time.

Case of a linear function: a new polynomial-time algo-
rithm. To decrease the computation time, instead of directly
computing the desired range

Y =

{
n∑

i=1

ai · xi : xi = Xi, Xi + 1, . . . , Xi

}
,

let us sequentially compute the ranges Y0 = {0}, Y1, Y2, . . . ,
Yk, . . . , Yn−1, and then finally Yn = Y , where we denoted

Yk =

{
k∑

i=1

ai · xi : xi = Xi, Xi + 1, . . . ,Xi

}
.

For each k, from |ai| ≤ A and |xi| ≤ X , we conclude that

|ai ·xi| ≤ A ·X , and thus,
∣∣∣∣ k∑
i=1

ai · xi

∣∣∣∣ ≤ k ·A ·X ≤ n ·A ·X .

So, each set Yk only contains integers from −n · A · X to
n ·A ·X . There are no more than 2n ·A ·X +1 such integers,
so each set Yk contains no more than 2n ·A ·X +1 elements.

Once the set Yk is computed, we can compute Yk+1 by
using the fact that

Yk+1 = {yk + ak+1 · xk+1 : yk ∈ Yk &

xk+1 = Xk+1, . . . ,Xk+1}.

We can compute this set by taking, for each elements yk from
the set Yk, all possible values xk+1, and computing the values
yk + ak+1 · xk+1. The set Yk contains no more than

2n ·A ·X + 1 = O(n)

elements, and there are at most 2X+1 = O(1) possible values
of xk+1; so overall, we need to consider O(n) ·O(1) = O(n)
pairs.

After n iterations of this procedure, we get the desired range
Y = Yn. In this computation, we repeat O(n) steps n times.
So, the overall computation time is equal to n ·O(n) = O(n2).
This algorithm requires quadratic time.

Computing the range of variance in polynomial time. To

compute the variance, we need to know the values y =
n∑

i=1

x2
i

and z =
n∑

i=1

xi. To compute the corresponding ranges in

polynomial time, similarly to the case of the linear function,
let us sequentially compute the intermediate sets of pairs
P0 = {(0, 0)}, P1, . . . , Pn, where

Pk =

{(
k∑

i=1

x2
i ,

k∑
i=1

xi

)
: xi = Xi, . . . , Xi

}
.

For each k, there are O(n) possible values of
k∑

i=1

x2
i and O(n)

possible values of
k∑

i=1

xi. So, for each k, the set Pk contains

no more than O(n) · O(n) = O(n2) possible pairs. Once we
know Pk, we can find Pk+1 as

Pk+1 = {(yk + x2
k+1, zk + xk+1) : (yk, zk) ∈ Pk &

xk+1 = Xk+1, . . . ,Xk+1}.

To compute Pk+1, for each of O(n2) possible pairs (yk, zk) ∈
Pk, we consider all O(1) possible values xk+1; thus, each
computation requires O(n2) computation steps.

After n iterations, we get the set P = Pn. These computa-
tions take time n ·O(n2) = O(n3).

Once we have the set Pn, we can compute the desired set
Y of possible values of variance as

Y =

{
1

n
· y −

(
1

n
· z
)2

: (y, z) ∈ Pn

}
.

For each of O(n2) pairs (y, z) ∈ P , computing the expression
1

n
· y −

(
1

n
· z
)2

takes O(1) steps. Thus, the overall compu-

tation of Y from P takes O(n2) ·O(1) = O(n2) steps.
The overall computation time for this algorithm is therefore

equal to O(n3) +O(n2) = O(n3).

Computing higher central moments in polynomial time.
The above construction can be generalized to computing

higher-order central moments. Indeed, for each positive integer
m, the m-th central moment is defined as

Cm
def
=

1

n
·

n∑
i=1

(xi − E)k,

where E
def
=

1

n
·

n∑
i=1

xi. By using the usual binomial formula

to describe (xi −E)k = xk
i + k · xk−1

i ·E + . . .+Ek, we can
represent Cm as a linear combination of the sums

Mℓ
def
=

1

n
·

n∑
i=1

xℓ
i

for ℓ = 0, 1, 2, . . . , n, with coefficients proportional to different
powers of E = M1.

To compute the range of possible values of Cm, let us
therefore compute, for each k from 0 to n, the set Tk of all

possible tuples (s1(k), . . . , sm(k)), where sℓ(k) =
n∑

i=1

xℓ
i . For

k = 0, we have T0 = {(0, . . . , 0)}. Each sum sℓ(k) is bounded
by O(n), so for each k, the set Tk contains no more than
O(nm) tuples.

Once we know the set Tk, we can compute Tk+1 as

Tk+1 = {((s1 + xk+1, . . . , sm + xm
k+1) : (s1, . . . , sm) ∈ Tk &

xk+1 = Xk+1, . . . , Xk+1}.

On each step, this computation takes time O(nm), so overall,
the computation of the set Tn takes time

n ·O(nm) = O(nm+1).

Once we have the set Tn, we can take each of its O(nm)
tuples, and for each of them, compute the desired moment
Mm. This takes time O(nm), so overall, this algorithm takes
time O(nm+1) +O(nm) = O(nm+1).

Computing covariance in polynomial time. For covariance

Cxy =
1

n
·

n∑
i=1

xi · yi −

(
1

n
·

n∑
i=1

xi

)
·

(
1

n
·

n∑
i=1

yi

)
,

we can similarly sequentially compute the sets of triples T0 =
{(0, 0, 0)}, T1, . . . , Tn, where

Tk =

{(
k∑

i=1

xi,
k∑

i=1

yi,
n∑

i=1

xi · yi

)}
.

Each component has O(n) values, so each set consists of
O(n3) elements. Here,

Tk+1 = {(s1 + xk+1, s2 + yk+1, s3 + xk+1 · yk+1) :

(s1, s2, s3) ∈ Tk &xk+1 = Xk+1, . . . , Xk+1 &

yk+1 = Y k+1, . . . , Y k+1}.

Each iteration thus takes O(n3) steps, so the overall compu-
tation time for Tn is n ·O(n3) = O(n4).

Once we know the set Tn with O(n3) triples (s1, s2, s3), we
can compute the covariance Cxy for each of these triples, and

thus, find the desired range Y of the covariance in time O(n3).
The overall computation time is thus O(n4)+O(n3) = O(n4).

Computing correlation in polynomial time. A similar idea
can be used to compute the range of correlation in polynomial
time. Indeed, the correlation ρxy is defined as

ρxy =
Cxy√
Vx · Vy

,

where

Vx
def
=

1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

and

Vy
def
=

1

n
·

n∑
i=1

y2i −

(
1

n
·

n∑
i=1

yi

)2

.

To compute the range of the correlation, we compute the sets
of tuples T0 = {(0, 0, 0, 0, 0)}, T1, . . . , Tn, where

Tk =

{(
k∑

i=1

xi,
k∑

i=1

yi,
n∑

i=1

xi · yi,
k∑

i=1

x2
i ,

k∑
i=1

y2i

)}
.

Each component has O(n) values, so each set consists of
O(n5) elements. Here,

Tk+1 =

{(s1+xk+1, s2+yk+1, s3+xk+1 ·yk+1, s4+x2
k+1, s5+y2k+1) :

(s1, s2, s3, s4, s5) ∈ Tk, &

xk+1 = Xk+1, . . . ,Xk+1 &

yk+1 = Y k+1, . . . , Y k+1}.

Each iteration thus takes O(n5) steps, so the overall compu-
tation time for Tn is n ·O(n5) = O(n6).

Once we know the set Tn with O(n5) tuples (s1, s2, s3),
we can compute Cxy , Vx, Vy , and the correlation ρxy for
each of these tuples, and thus, find the desired range Y of
the covariance in time O(n5). The overall computation time
is thus O(n6) +O(n5) = O(n6), i.e., polynomial.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721, by Grants 1
T36 GM078000-01 and 1R43TR000173-01 from the National
Institutes of Health, and by a grant on F-transforms from the
Office of Naval Research.

REFERENCES

[1] M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, A. Murguia,
and J. Santillan, “How To Take Into Account Dependence Between
the Inputs: From Interval Computations to Constraint-Related Set Com-
putations, with Potential Applications to Nuclear Safety, Bio- and
Geosciences”, Journal of Uncertain Systems, 2007, Vol. 1, No. 1, pp. 11–
34.

[2] M. Ceberio, V. Kreinovich, A. Pownuk, and B. Bede, “From Interval
Computations to Constraint-Related Set Computations: Towards Faster
Estimation of Statistics and ODEs Under Interval, P-Box, and Fuzzy
Uncertainty”, In: J.-T. Yao (ed.), Novel Developments in Granular
Computing: Applications for Advanced Human Reasoning and Soft
Computation, IGI Global Publisher, 2010, pp. 131–147.

[3] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles,
“Computing variance for interval data is NP-hard”, ACM SIGACT News,
2002, Vol. 33, No. 2, pp. 108–118.

[4] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, “Exact
bounds on finite populations of interval data”, Reliable Computing, 2005,
Vol. 11, No. 3, pp. 207–233.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Co., New York,
1979.

[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[7] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational com-
plexity and feasibility of data processing and interval computations,
Kluwer, Dordrecht, 1998.

[8] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[9] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM Press, Philadelphia, Pennsylviania, 2009.

[10] H. T. Nguyen, V. Kreinovich, B. Wu, and G. Xiang, Computing Statistics
under Interval and Fuzzy Uncertainty, Springer Verlag, Berlin, Heidel-
berg, 2012.

[11] H. T. Nguyen and E. A. Walker, First Course In Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[12] C. Papadimitriou, Computational Complexity, Addison Welsey, Reading,
Massachusetts, 1994.

[13] S. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, American Institute of Physics, New York, 2005.

[14] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman and Hall/CRC Press, Boca Raton, Florida, 2011.

[15] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.

