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Abstract. In computable mathematics, there are known definitions of
computable numbers, computable metric spaces, computable compact
sets, and computable functions. A traditional definition of a computable
function, however, covers only continuous functions. In many applica-
tions (e.g., in phase transitions), physical phenomena are described by
discontinuous or multi-valued functions (a.k.a. constraints). In this pa-
per, we provide a physics-motivated definition of computable discon-
tinuous and multi-valued functions, and we analyze properties of this
definition.

1 Formulation of the Problem

Need to define computable discontinuous functions. One of the main objectives
of physics it to predict physical phenomena, i.e., use the observations to compute
the predicted values of the corresponding physical quantities. Many physical phe-
nomena such as phase transitions and quantum transitions include discontinuous
dependencies y = f(z) (“jumps”); see, e.g., [2].

In other physical situations, for some values x, we may have several possible
values y. From the purely mathematical viewpoint, this means that the relation
between x and y is no longer a function, it is a relation of a constraint R C X XY
following the terminology widely used in applications, we will also call them
multi-valued functions.

To analyze which models of discontinuous or multi-valued behavior are com-
putable and which are not, we need to have a precise definition of what is means
for a discontinuous and/or multi-valued function to be computable. Alas, the
current definitions of computable functions are mostly limited to continuous
case.

What we plan to do. Our main goal is to define what it means for a discontinuous
and/or multi-valued function to be computable.

For that purpose, we first explain the current definitions of computable num-
bers, objects, and functions. Then, we use physical motivations to come up with a
new definition of computable discontinuous and multi-valued functions. Finally,
we provide a few preliminary results about the new definition.



Computable numbers: reminder. Intuitively, a real number is computable if we
can compute it with any desired accuracy. In more precise terms, a real number
x is called computable if there exists an algorithm that, given a natural number
n, returns a rational number 7, which is 27 "-close to z: |z — r,| < 277 [1,3].

Computable metric spaces: motivation. A similar notion of computable elements
can be defined for general metric spaces. In general, a element z is computable
if there is an algorithm which generates better and better approximation to x.
At each moment of time, we only have a finite amount of information about z;
based on this information, we produce an approximation corresponding to this
information. Any information can be represented, in the computer, as a sequence
of Os and 1s; any such sequence can be, in turn, interpreted as a binary integer n.
Let Z,, denote an approximation corresponding to an integer n. Then, it makes
sense to require that in a computable metric space, there is a sequence of such
approximating elements {Z,}.

Computable means, in particular, that the distance dx (T, Z,,) between such
elements should be computable. Thus, we arrive at the following definition.

Computable metric spaces: definition. By a computable metric space, we mean a
metric space X with a sequence {z,} of elements such that there is an algorithm
that, given two natural numbers m and n, returns the distance dx (2., z,) (i-e.,
for every natural number k, returns a rational number 75, which is 27 *-close to
dx (T, 1))

We say that an element = of a computable metric space X is computable if

there exists an algorithm that, given a natural number n, returns an integer k.,
for which Zy, is 27 "-close to z: dx (T, ,x) < 27"
Computable functions: definition. A function f : X — Y from a computable
metric space X to a computable metric space Y is called computable if there
exists an algorithm which uses = as an input and computes, for each integer
n, a 27 ™-approximation yi to f(z). By “uses x as an input”, we mean that to
compute ¥, this algorithm can request, for each integer m, a 2~ "-approximation
xp to x (and to use the index ¢ of this 2~ ™-approximation in computing yy).

Computable functions are continuous. The problem with the above definition is
that all the functions computable according to this definition are continuous;
see, e.g., [1,3]. Thus, we cannot use this definition to check how well we can
compute a discontinuous function.

This continuity is easy to understand. For example, if we have a function
f(z) form real numbers to real numbers which is equal to 0 for x < 0 an to 1 for
x > 0, then, if we could compute f(z) for a given x with accuracy 272, then we
would be able, given a computable real number z, to tell whether this number
is positive or not, and this is known to be algorithmically impossible.

Computable compact set. In analyzing computability, it is often useful to start
with pre-compact metric spaces, i.e., metric spaces X for which, for every positive
real number € > 0, there exists a finite e-net, i.e., a finite list of elements L such
that every element x € X is e-close to one of the elements from this list. In a
Euclidean space, every bounded set is compact. A pre-compact set is compact if
every converging sequence has a limit.



A natural idea is to call a compact metric space X computable compact if X
is a computable metric space and there is an (additional) algorithm that, given
an integer n, returns a finite list L,, of elements of X which is a 27 "-net for X.

2 Towards A New Definition of Computable
Discontinuous and Multi-Valued Functions

Simplifying comment. Before we start analyzing the problem, let us make one
important comment. Functions can not only be discontinuous or multi-valued,
they can also be undefined for some inputs z. However, in contrast to disconti-
nuity and multiplicity of values, this is not a serious problem: if a relation is not
everywhere defined, we can make it everywhere defined if we consider, instead of
the original set X, a projection of R on this set. For example, a function /7 is
not everywhere defined on the real line, but it is everywhere defined on the set
of all non-negative real numbers. Thus, without losing generality, we can assume
that our relation is everywhere defined.

Definition 1. A relation R C X X Y is called everywhere defined if for every
x € X, there exists a y € Y for which (x,y) € R.

Analysis of the problem. From the physical viewpoint, what does it mean that
the dependence between = and y — as described by a given discontinuous and/or
multi-valued function — is computable?

In the ideal case, when we have a continuous single-valued dependence, the
value z uniquely determines the value y = f(z). In this case, once we know =z,
we want to compute f(z) with a given accuracy. This is exactly the idea behind
the usual definition of a computable function.

For a multi-valued function, for the same input x, we may get several different
values y. In this case, it is desirable to compute the set of all possible value y
corresponding to a given z. When we limit ourselves to multi-valued mappings
from a compact set X to a compact set Y, the set of x-possible values of y is
pre-compact, and thus, with any given accuracy, can be described by a finite list
L of possible values. In other words:

— first, the list L should represent all possible values, i.e., if y is a possible
value of f(x) for a given z, then y should be close to one of the values from
the finite list L;

— second, all the values from the list L must be possible values; in other words,
for every value from the list, there must exist a close possible value of f(x).

Discontinuity provides an additional complexity which can be illustrated on
the example of the above discontinuous function f(z) =0 for z < 0and f(z) =1
for x > 0. In particular, for z = 0, we get f(z) = f(0) = 0. However, at each
stage of the computation, we only know an approximate value of z. So, when the
actual value of the input is x = 0, we will never find out whether x is non-positive
(in which case f(z) = 0) or positive (in which case f(z) = 1). Thus, no matter
how accurately we measure z, the only information about y that we can conclude



is y is either equal to 0 or equal to 1. In general, we need to take into account
not only the values f(z) for a given x, but also the values f(z’) corresponding
to values 2’ which are close to z. In view of this, the above properties of the list
L must be appropriately modified:

— first, the list L should represent all possible values, i.e., if y is a possible
value of f(z') for some z’ which is close to the given z, then y should be
close to one of the values from the finite list L;

— second, all the values from the list L must be possible values; in other words,
for every value from the list, there must exist a close value y which is a
possible value of f(z’) for some 2’ which is close to z.

In general, the closeness does does not have to be the same in both cases. Thus,
we arrive at the following definition.

Definition 2. Let X and Y be computable compact sets with metrics dx and dy .
An everywhere defined relation R C X X Y is called computable if there exists
an algorithm that, given a computable element x € X and computable positive
numbers 0 < e < ¢’ and 0 < 6, produced a finite list {y1,...,ym} C Y that
satisfies the following two properties:

(1) if (2',y) € R for some x' for which dx (z',x) < e, then there exists an i for
which dy (y,y:) < 6;

(2) for each element y; from this list, there exist values x' and y for which
dx(z,2') <€, dy(yi,y) <9, and (2',y) € R.

3 Properties of the New Definition

Main result. If X and Y are metric spaces with metrics dx and dy, then on their

Cartesian product X x Y (i.e., the set of all pairs (x,y), z € X and y € V) we

can define a metric dxxy ((z,y), (z',y")) def max(dx (z,z),dy (y,y')). One can

check that if X and Y are both compact sets, then the product X x Y is also a
compact set: to get an e-net for X x Y, it is sufficient to take e-nets Lx for X
and Ly for Y'; one can then easily check that the set Lx x L, of all possible pairs
is an e-net for the Cartesian product X x Y. This construction is computable,
so we conclude that the Cartesian product of computable compact sets is also a
computable compact set.

Our first — somewhat surprising — result is that this new definition is equiv-
alent to simply requiring that the set R (describing the graph of the relation) is
a computable compact set:

Proposition 1. Let X andY be computable compact sets. A relation R C X XY
is computable if and only if the set R is a computable compact set.

Proof. <= Let us first prove that if R is a computable compact set, then the rela-
tion R is computable in the sense of Definition 2. Indeed, let = be a computable
element of X, and let the computable positive values € < &’ be given. Then, ac-
cording to a known result from [1], we can find a computable value ¢ € (g,¢&’) for



which the set § % {(#',y) € R:dx(z,2") <ep} is also a computable compact
set. Thus, for a given computable number § > 0, there exists a finite §-net for
this set S. Let us denote the elements of this §-net L by (z1,y1),-- -, (Zm, Ym)-
Let us show that, as the desired finite list, we can now take the list {y1,...,ym}
Let us prove that this list satisfies both desired properties.

(1) If (¢',y) € R for some 2’ for which dx (z,2') < e, then, due to € < &,
we have dx(z,x') < 9. Thus, (2',y) € S. Since L = {(z1,%1),- -, (Tm, Ym)}
is a d-net for the set S, we conclude that there exists an index i for
which dxxyv((z,y), (zi,y;)) < 6. By definition of dxxy, this means that
max(dx (2',x;),dy (y,y;)) < 6 and therefore, dy (y,y;) < §. The first property
from Definition 1 is proven.

(2) Let us now prove the second property. Let y; be one of the selected
elements. By our construction, the corresponding pair (z;,y;) belongs to d-net for
the set S. In particular, this means that (z;,y;) € S. This means that (z;,y;) € R
and that dx (x, ;) < eg. Since g9 < &', we conclude that dx (x, z;) < &’. Thus, for
each 7, there exists ' = x; and y = y; for which dx (z,2') <&’ dy (y;,y) =0 <6,
and (2/,y) € R. The second property is proven as well.
= Let us now prove that if R is a computable relation in the sense of Definition
2, then R is computable compact set. For that, we must show how, given a
computable positive real number o > 0, we can generate an a-net for this set R.
First, we use that fact that X is a computable compact, and generate an (a/2)-
net {x1,...,2,}. For each point z;, we then apply Definition 2 for § = ¢ = /2
and ¢’ = « and generate the corresponding list {91, - ., Yim, }- Let us show that
the pairs (z;,y;,;) form an a-net for the set R.

Indeed, by Definition 2, for each 7 and j, there exist values x’ and y for
which dx (z;,2") <& = a, dy(y;5,¥) < = /2, and (2/,y) € R. Thus, the pair
(xi,yi;) is a-close to an element (2/,y) € R.

Vice versa, let (z,y) € R. Since x; form an («/2)-net, there exists an @
for which d(z,x;) < «a/2 = e. From Property (1) of Definition 2, we can
now conclude that there exists a j for which dy(y,y;;) < § = «. Thus,
dxxy ((z,y), (#:,935)) = max(dx(z, i), dy (y,9i;)) < max(a/2,0) = a. The
proposition is proven.

Inverse functions: a corollary. If the range of R is the whole set Y, then, from
Proposition 1, it follows that a multi-valued function (relation) R is computable
if and only if its inverse R~! = {(z,y) : (y,z) € R} is computable.
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