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Abstract

The fundamental concept in the theory of fuzzy transform (F-transform) is
that of fuzzy partition. The original definition assumes that each two fuzzy
subsets overlap in such a way that sum of membership degrees in each point
is equal to 1. However, this condition can be generalized to obtain a denser
fuzzy partition that leads to improvement of approximation properties of F-
transform. However, a problem arises how one can effectively construct such
type of fuzzy partitions. We use a generating function having special properties
and it is not immediately clear whether it really defines a general uniform fuzzy
partition. In this paper, we provide necessary and sufficient condition using
which we can solve this task so that optimal generalized uniform fuzzy partition
can be designed more easily. This is important in various practical applications
of the F-transform, for example in image processing, time series analysis, solving
differential equations with boundary conditions, and other ones.
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1. Introduction

Fuzzy transform (F-transform) is a special soft computing technique pro-
posed by Perfilieva in [3] (see also [5]) with a very wide scale of possible appli-
cations (see [4, 11]). The F-transform has two phases: direct and inverse. The
direct F-transform transforms a bounded real function f to a finite vector of real
numbers and the inverse one sends it back. The result is a function f̂ approx-
imating f . The core of the F-transform technique consists in partitioning of a
given continuous interval using fuzzy sets that are in the theory of F-transform
usually called basic functions. The (finite) system of basic functions is called
fuzzy partition. It should be noted that the idea of fuzzy partition was initiated
in the paper [7] as a natural generalization of the standard concept of a partition
where the condition to be mutually disjoint is relaxed a little.

Despite of the result in [5, Corollary 2] saying that the function f̂ uniformly
converges to the original function f , one can recognize a problem with smooth-
ness of f̂ . For example, one can see in a model of trend of time series using the
F-transform that larger spreads of basic functions lead to less smooth trends. A
possible solution of this problem is to use a generalization of the concept of fuzzy
partition suggested in [8] and investigated in [1, 10]. In contrast with the origi-
nal definition of fuzzy partition, where only two fuzzy sets can have a non-empty
intersection with respect to minimum operation, the generalized fuzzy partition
relaxes this condition to an arbitrary number fuzzy sets. In [8, 10], this number
is constant, but generally one can omit even this restriction (see [1]). Besides
better control of the smoothness of the resulting function, the generalized fuzzy
partitions may also better reduce random noise (see [1, Corollary 4.10]).

From the theoretical point of view the most important generalized fuzzy
partitions are the uniform ones. They are obtained by means of one fixed fuzzy
set K called a generating function, a bandwidth h and a constant shift r. Thus,
the fuzzy partition is characterized by a triplet (K,h, r).

In this paper, we provide a necessary and sufficient condition for a uniformly
defined system of fuzzy sets to form a generalized fuzzy partition. We thus
obtain a tool using which we can check effectively if a generating function with
a given bandwidth and a shift defines a generalized uniform fuzzy partition.

The paper is structured as follows. In the next section, we investigate nec-
essary and sufficient condition for the uniform fuzzy partitions. Results of this
section are generalized in Section 3 where we form the necessary and sufficient
condition for the generalized fuzzy partitions. Section 4 illustrates how the nec-
essary and sufficient condition can be used in the analysis of the triangle and
raised cosine type fuzzy partitions. Section 5 contains concluding remarks.

2. Necessary and sufficient conditions for uniform fuzzy partitions

Let N, Z and R denote the set of natural numbers, integers and reals, re-
spectively. It is well-known that a uniform fuzzy partition is defined using a
generating function K which is modified by a parameter h characterizing its

2
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spread. Each basic function of the uniform fuzzy partition is then constructed
by a suitable shift of the modified generating function K.

Definition 2.1. A function K : R → [0, 1] is called a generating function if it
is an even integrable function that is non-increasing in [0,∞) such that

K(x)

{
> 0, if x ∈ (−1, 1);
= 0, otherwise.

(1)

A generating function K is said to be normal if K(0) = 1.

Note that the previous definition is more general than the analogous defi-
nition of a generating function in [6], because the continuity of K is replaced
by its integrability and the normality of K is considered as an additional extra
condition.1 For our investigation of necessary and sufficient condition of uni-
form fuzzy partitions, we will consider uniform fuzzy partitions of the real line
defined as follows (cf. [2]).

Definition 2.2. Let K be a normal generating function, h be a positive real
number and x0 ∈ R. A system of fuzzy sets defined by

Ai(x) = K

(
x− x0

h
− i

)
(2)

for any i ∈ Z is said to be a uniform fuzzy partition of the real line determined
by the triplet (K,h, x0) if the following condition2 is satisfied:

S(x) =
∑
i∈Z

Ai(x) = 1 (3)

holds for any x ∈ R.

The parameters h and x0 are called a spread and a central node, respectively.
The fuzzy sets Ai in (2) that form a uniform fuzzy partition of the real line are
called basic functions. A simple consequence of (2) is the formula Ai(x) =
A0(x − hi) that holds for any x ∈ R and i ∈ Z. Putting xi = x0 + ih one can
simply check that Ai(xi) = 1 and Ai is centered around the node xi.

Remark 2.1 (Important). One can see that a uniform fuzzy partition (UFP)
of closed real intervals used in the fuzzy transform can be extended to a uniform
fuzzy partition of the whole real line. Therefore, each UFP of a closed real
interval can be understood as a UFP of the real line limited to the closed real
interval. Hence, investigation of properties of uniform fuzzy partitions can be
restricted to investigation of their properties on the real line. For the sake of
simplicity, we will omit the clause “real line” when speaking about uniform
fuzzy partition.

1In [1], a generating function was called a basal function.
2This conditions is often called Ruspini’s condition.

3
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Let us present two most useful examples of the generating function and a
uniform fuzzy partition determined by it (see [5]).

Example 2.2 (Triangle generating function). Let K : R → [0, 1] be de-
fined by

KT (x) = max(1− |x|, 0). (4)

One can see in Figure 1 part of the uniform fuzzy partition of R determined by
(KT , 2, 1). For example, the basic function A2 is obtained by transforming of
KT to a fuzzy set KT,h having the bandwidth h = 2 and shifting the center 0
of KT,h to the new center (node) x2 = x0 +2h = 1+2 · 2 = 5. The transformed
function KT,h is depicted on Figure 1 using dashed line.

1

1 2 3 4 5 6 7−1−2−3−4−5−6−7
x

KT,h

A0 A1 A2A−1A−2A−3

Figure 1: A part of the UFP of the real line determined by (KT , 2, 1). The transformed
triangle generating function KT,h with h = 2 centered around 0 is depicted by dashed line.

Example 2.3 (Raised cosine generating function). Let K : R→ [0, 1] be
defined by

KC(x) =

{
1
2 (1 + cos(πx)), −1 ≤ x ≤ 1;

0, otherwise.
(5)

On Fig. 2, one can see a part of the UFP of R determined by (KC , 2, 1). By
dashed line is depicted the transformed raised cosine generating function KC,h.

In the sequel, we are interested in conditions under which we can decide if
a triplet (K,h, x0) determines a UFP. One will see that choice of the central
node has no influence on verification if a triplet (K,h, x0) determines a UFP.
The following lemma demonstrates that it is sufficient to consider the special
case of (K,h, x0) for x0 = 0.

Lemma 2.1. A triplet (K,h, x0) determines a UFP iff (K,h, 0) determines a
UFP.

4
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1

1 2 3 4 5 6 7−1−2−3−4−5−6−7
x

KC,h

A0 A1 A2A−1A−2A−3

Figure 2: Part of the UFP of the real line determined by (KC , 2, 1). The transformed raised
cosine generating function KC,h with h = 2 centered around 0 is depicted by dashed line.

Proof. Let (K,h, x0) determine a UFP and consider the triplet (K,h, 0). By
the definition of UFP, the triplet (K,h, 0) determines a UFP if it satisfies (3).
Put

Sx0
(x) =

∑
i∈Z

K

(
x− x0

h
− i

)
.

From the assumption, we know that Sx0
(x) = 1 for any x ∈ R, and we have to

prove that the same holds for S0(x). Thus,

S0(x) =
∑
i∈Z

K
(x
h
− i

)
=

∑
i∈Z

K

(
(x + x0)− x0

h
− i

)
= Sx0

(x+ x0) = 1.

The converse implication can be proved by analogous arguments.

We will below restrict ourselves to uniform fuzzy partitions with x0 = 0 and
so, we will write (K,h) instead of (K,h, x0).

Example 2.4. Let KT be the triangle generating function and y ∈ [ 12 , 1] be an
arbitrary element. Then,∫ y

1−y

KT (x)dx =

∫ y

1−y

(1− x)dx =

[
x−

x2

2

]y
1−y

= y −
1

2
.

Example 2.5. Let KC be the raised cosine generating function and y ∈ [1/2, 1]
be an arbitrary element. Then,∫ y

1−y

KC(x)dx =

∫ y

1−y

1

2
(1 + cos(πx))dx =

[
x

2
+

sin(πx)

2π

]y
1−y

= y −
1

2
.

Note that in both examples, we obtained∫ y

1−y

K(x)dx = y −
1

2
(6)

5
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holds for any 1
2 ≤ y ≤ 1. Putting y = 1 in (6), one can simply obtain from

the symmetry of K that
∫ 1

−1 K(x)dx = 1, which implies that
∫∞
−∞

Ai(x)dx = h
for any i ∈ Z. Recall that xi+1 = xi + h, thus the difference between two
consecutive nodes is h.These observations motivate us to formulate a necessary
and sufficient condition for the uniform fuzzy partitions in the following form.

Theorem 2.2. A triplet (K,h, x0) determines a uniform fuzzy partition iff
x1 − x0 = h

∫∞
−∞

K(x)dx and
∫ y

1−y
K(x)dx = y − 1

2 holds for any y ∈ [ 12 , 1].

Proof. (⇒) By Definition 2.2, we know that x1 − x0 = h. Then, it is sufficient

to prove that
∫ 1

−1
K(x)dx = 1.

From (3) and Definition 2.2, we have (substituting u = x
h
− i)

2h =

∫ h

−h

S(x)dx =

∫ h

−h

⎛
⎝ ∑

i=0,±1

Ai(x)

⎞
⎠ dx =

∑
i=0,±1

∫ h

−h

K
(x
h
− i

)
dx =

=
∑

i=0,±1

h

∫ 1−i

−1−i

K(u)du = 2h

∫ 1

−1

K(u)du.

Hence, we obtained that
∫ 1

−1
K(u)du = 1.

Let us now show that
∫ y

1−y
K(x)dx = y − 1

2 holds for any 1
2 ≤ y ≤ 1. From

(3) and Definition 2.2, we have
∫ z

−z
S(x)dx = 2z for any positive real number z.

Consider z ∈ [h2 , h]. Then (substituting u = x
h
− i)

2z =

∫ z

−z

S(x)dx =

∫ z

−z

∑
i∈Z

K
(x
h
− i

)
dx =

∑
i=0,±1

∫ z

−z

K
(x
h
− i

)
dx

=
∑

i=0,±1

h

∫ z
h
−i

− z
h
−i

K(u)du =

= h
( ∫ z

h

−
z
h

K(u)du+

∫ z
h
−1

−1

K(u)du+

∫ 1

−
z
h
+1

K(u)du
)
=

= 2h
( ∫ z

h

0

K(u)du+

∫ 1

− z
h
+1

K(u)du
)
= 2h

(1
2
+

∫ z
h

− z
h
+1

K(u)du
)
,

where we used a simple consequence of the symmetry ofK (i.e., K(x) = K(−x)):

∫ z
h

− z
h

K(u)du = 2

∫ z
h

0

K(u)du and

∫ z
h
−1

−1

K(u)du =

∫ 1

− z
h
+1

K(u)du.

By putting y = z
h
, we obtain the desired statement.

(⇐) It easy to see that S(x) is an even periodic function with the period
h, i.e., S(x) = S(−x) and S(x) = S(x + h). Indeed, we have (recall that

6
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K(x) = K(−x))

S(x) =
∑
i∈Z

K
(x
h
− i

)
=

∑
i∈Z

K
(
−
x

h
+ i

)
=

∑
i∈Z

K
(
−
x

h
− i

)
= S(−x),

S(x) =
∑
i∈Z

K
(x
h
− i

)
=

∑
i∈Z

K

(
x+ h

h
− (i+ 1)

)
=

=
∑
i∈Z

K

(
x+ h

h
− i

)
= S(x+ h).

Hence, it is sufficient to prove that
∫ z

0
S(x)dx = z for z ∈ [0, h], because this

statement is equivalent to S(x) = 1 for any x ∈ [0, h].3 Since S(x) is periodic
with the period h, we simply obtain that S(x) = 1 for any x ∈ R. Analogously
to the proof of the necessary condition, we obtain

∫ z

−z

S(x)dx = 2h
( ∫ z

h

0

K(u)du+

∫ 1

− z
h
+1

K(u)du
)
.

If z
h
∈ [ 12 , 1], then (by the assumption on K)

∫ z

−z

S(x)dx = 2h
(1
2
+

∫ z
h

−
z
h
+1

K(u)du
)
= 2h

(1
2
+

z

h
−

1

2

)
= 2z.

If z
h
∈ [0, 12 ), then∫ z

−z

S(x)dx = 2h
(1
2
−

∫ − z
h
+1

z
h

K(u)du
)
= 2h

(1
2
−

∫ − z
h
+1

1−(− z
h
+1)

K(u)du
)
=

2h
(1
2
− (−

z

h
+ 1−

1

2
)
)
= 2h

(1
2
+

z

h
−

1

2
) = 2z.

Since S(x) is an even function, we obtain
∫ z

0 K(x)dx = z for any z ∈ [0, h],
which completes the proof.

3. Necessary and sufficient conditions for generalized uniform fuzzy
partitions

As mentioned in Introduction, generalization of uniform fuzzy partitions
with more active basic functions can be used to obtain smoother result of (in-
verse) fuzzy transform and to reduce better random noise. In contrast with
generalization of uniform fuzzy partitions considered in [1] and [10], we suppose
that generating functions need not take normal form.

3Indeed, if
∫ z

0
S(x)dx = z for z ∈ [0, h], then putting H(z) =

∫ z

0
S(x)dx we obtain dH(z)

dz
=

S(z) = 1.

7
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Definition 3.1. Let K be a generating function, h and r be positive real num-
bers and x0 ∈ R. A system of fuzzy sets defined by

Ai(x) = K

(
x− x0 − i r

h

)
(7)

for any i ∈ Z is called a generalized uniform fuzzy partition (GUFP) of the
real line determined by the quadruplet (K,h, r, x0) if the Ruspini’s condition is
satisfied.

The parameters h and x0 have the same meaning as in the case of uniform
fuzzy partitions, and r is called a shift. Let K be a generating function and h
a bandwidth. By Kh(x) = K(x

h
) we denote a generating function modified by

the bandwidth h.

Remark 3.1. It is easy to see that if one requires the normality of K, an
equivalent definition of a generalized uniform fuzzy partition of the real line is
obtained if we require S(x) to be a constant function on R (cf., [1, 9, 10]).

Clearly, a generalized uniform fuzzy partition determined by (K,h, h, x0) is
a uniform fuzzy partition (by Definition 2.2), where the normality of K immedi-
ately follows from the Ruspini’s condition. Analogously as in the case of uniform
fuzzy partitions (see Lemma 2.1), the central node does not play a significant
role in the investigation below.

Lemma 3.1. A quadruplet (K,h, r, x0) determines a generalized uniform fuzzy
partition iff (K,h, r, 0) determines it.

Proof. Obvious.

By this lemma, we can restrict ourselves to quadruplets in the form (K,h, r, 0).
For simplicity, we will write only (K,h, r) instead of (K,h, r, 0).

Lemma 3.2. If (K,h, r) determines a generalized uniform fuzzy partition then

r = h
∫ 1

−1
K(x)dx.

Proof. Recall thatKh(x) = K(x
h
). One can see that

∫ h

−h
Kh(x)dx = h

∫ 1

−1 K(x)dx.

We will prove that r =
∫ h

−h
Kh(x)dx.

Let k be the greatest natural number for which −h + kr < h holds true.
means that −h+ (k + 1)r ≥ h. Put

R =

∫ −h+r

h−kr

Kh(x)dx+

∫ −h+2r

h−(k−1)r

Kh(x)dx + · · ·+

∫ −h+kr

h−r

Kh(x)dx =

=
k∑

i=1

∫ −h+ir

h−(k−i+1)r

Kh(x)dx.

(8)

8
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We will show that R is a remainder in the computation of two special integrals.4

Put r′ = (k + 1)r − 2h and consider the following two integrals∫ h+r

−h−r

S(x)dx = 2(h+ r) and

∫ h+r′

−h−r′
S(x)dx = 2(h+ r′).

Note that −h−r′+(k+1)r = h and h+r′− (k+1)r = −h. Now, let us expand
the first integral to the integrals containing Kh (substituting u = x− ir):∫ h+r

−h−r

S(x)dx =

∫ h+r

−h−r

(∑
i∈Z

Kh(x − ir)

)
dx =

∑
i∈Z

∫ h+r−ir

−h−r−ir

Kh(u)du =

=

∫ h+r

−h−r

Kh(u)du+

∫ h

−h−2r

Kh(u)du +

∫ h+2r

−h

Kh(u)du+

+

k∑
i=1

∫ h−ir

−h−2r−ir

Kh(u)du+

k∑
i=1

∫ h+2r+ir

−h+ir

Kh(u)du =

= 3

∫ h

−h

Kh(u)du+

k∑
i=1

∫ h−ir

−h

Kh(u)du +

k∑
i=1

∫ h

−h+ir

Kh(u)du =

= 3

∫ h

−h

Kh(u)du+

(∫ h−r

−h

Kh(u)du+

∫ h

−h+kr

Kh(u)du

)
+

+

(∫ h−2r

−h

Kh(u)du+

∫ h

−h+(k−1)r

Kh(u)du

)
+ · · ·+

+

(∫ h−kr

−h

Kh(u)du +

∫ h

−h+r

Kh(u)du

)
.

Note that by the assumption on k, the integrals∫ h−ir

−h−2r−ir

Kh(u)du and

∫ h+2r+ir

−h+ir

Kh(u)du

are equal to 0 for any i = k+1, k+2, . . . Therefore, the infinite sum considered
above can be replaced by finite one.

Since k is the greatest natural number with −h + kr < h, we obtain that
h− r ≤ −h+ kr, h− 2r ≤ −h+ (k − 1)r, etc. Then,∫ h−r

−h

Kh(u)du+

∫ h

−h+kr

Kh(u)du =

=

∫ h−r

−h

Kh(u)du+

∫ −h+kr

h−r

K(u)du+

∫ h

−h+kr

Kh(u)du−

∫ −h+kr

h−r

K(u)du =

=

∫ h

−h

Kh(u)du−

∫ −h+kr

h−r

Kh(u)du,

4In Figure 3, example of the integral R in (8) is presented.
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where
∫ −h+kr

h−r
Kh(u)du is the last integral in the expression of R. Analogously,

one could express the remaining brackets which implies

2(h+ r) =

∫ h+r

−h−r

S(x)dx = (3 + k)

∫ h

−h

Kh(u)du −R. (9)

Analogously, let us expand the second integral (we omit the first two steps):∫ h+r′

−h−r′
S(x)dx =

∑
i∈Z

∫ h+r′−ir

−h−r′−ir

Kh(u)du =

=

∫ h+r′

−h−r′
Kh(u)du+

k∑
i=1

∫ h+r′−ir

−h−′r−ir

Kh(u)du+

k∑
i=1

∫ h+r′+ir

−h−′r+ir

K(u)du =

=

∫ h

−h

Kh(u)du+

k∑
i=1

∫ h−r′−ir

−h

Kh(u)du+

k∑
i=1

∫ h

−h−′r+ir

Kh(u)du =

=

∫ h

−h

Kh(u)du +

(∫ h

−h−r′+r

Kh(u)du +

∫ h+r′−kr

−h

Kh(u)du

)
+

(∫ h

−h−r′+2r

Kh(u)du+

∫ h+r′−(k−1)r

−h

Kh(u)du

)
+ · · ·+

+

(∫ h

−h−r′+kr

Kh(u)du+

∫ h+r′−r

−h

Kh(u)du

)
.

In this case, however, we have −h − r′ + r ≤ h + r′ − kr, −h − r′ + 2k ≤
h+ r′ − (k− 1)r, etc. Since −h− r′ + r = h− kr and h+ r′ − kr = −h+ r, the
declared inequality may be rewritten as h− kr ≤ −h+ r. Then∫ h

−h−r′+r

Kh(u)du+

∫ h+r′−kr

−h

Kh(u)du =

∫ h

h−kr

Kh(u)du+

∫ −h+r

−h

Kh(u)du =

=

∫ h−kr

−h

Kh(u)du+

∫ h

h−kr

Kh(u)du+

∫ −h+r

h−kr

Kh(u)du =

=

∫ h

−h

Kh(u)du +

∫ −h+r

h−kr

Kh(u)du,

where
∫ −h+r

h−kr
Kh(u)du is the first integral in the expression of R.

Analogously, we can express the formula in the remaining brackets which
implies

2(h+ r′) =

∫ h+r′

−h−r′
S(x)dx = (1 + k)

∫ h

−h

Kh(u)du+R. (10)

Putting µ =
∫ h

−h
Kh(u)du = h

∫ 1

−1 K(x)dx and adding (9) and (10), we obtain

2(2h+ r + r′) = 2(2 + k)µ.

10
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Substituting r′ = (k + 1)r − 2h into the previous equality, we obtain

(k + 2)r = (k + 2)µ.

Hence, we obtain r = µ = h
∫ 1

−1
K(x)dx, which concludes the proof.

2 4 6−2−4−6

r

rr

r

h−h
u

K(u)

Figure 3: The crosshatched surface expresses the value of R (h = 7 and r = 4.9).

It is easy to see that this lemma generalizes the first part of the necessary
condition for uniform fuzzy partitions. As we know, the uniform fuzzy partitions

deal with normal generating functions for which
∫ 1

−1
K(x)dx = 1. Hence, we

obtain as the result r = h.

Lemma 3.3. If (K,h, r) determines a generalized uniform fuzzy partition then

y =
r

2
+

∞∑
i=1

∫ y+(i−1)r

ir−y

Kh(x)dx. (11)

holds for any y ∈ [ r2 , r].

Proof. Let (K,h, r) determine a GUFP and y ∈ [ r2 , r] be arbitrary. Analogously
to the proof of Lemma 3.2, we consider the integral

2y =

∫ y

−y

S(x)dx,

which may be expanded as follows (substituting u = x− ir):

∫ y

−y

S(x)dx =

∫ y

−y

(∑
i∈Z

Kh(x− ir)

)
dx =

∑
i∈Z

∫ y−ir

−y−ir

Kh(u)du =

=

∫ y

−y

Kh(u)du +

∞∑
i=1

∫ y−ir

−y−ir

Kh(u)du+

∞∑
i=1

∫ y+ir

−y+ir

Kh(u)du.

11
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2 4 6 8 10 12−2−4−6

∫
y

0 K(u)du

∫
y+r

−y+r
K(u)du

∫
y+2r

−y+2r
K(u)du

h−h
u

K(u)

Figure 4: The crosshatched surfaces denote the intersections of consecutive integrals (y = 3,
h = 7, r = 4.9).

In Figure 4, one can see three surfaces expressing the right symmetric side
of the integral

∫ y

−y
Kh(u)du, the first integral

∫ y+r

−y+r
Kh(u)du, and the second

integral
∫ y+2r

−y+2r Kh(u)du from the sum
∑∞

i=1

∫ y+ir

−y+ir
Kh(u)du.

5 Clearly, to cal-

culate the integral
∫ h

0 Kh(u)du in this special example, the integrals from the

sum
∑∞

i=3

∫ y+ir

−y+ir
Kh(u)du may be ignored, because they are equal to 0. It is

easy to see (cf. Figure 4) that∫ y

0

Kh(u)du+

∫ y+r

−y+r

Kh(u)du+

∫ y+2r

−y+2r

Kh(u)du + · · · =

=

∫ −y+r

0

Kh(u)du+ 2

∫ y

−y+r

Kh(u)du+

∫ −y+2r

y

Kh(u)du+

2

∫ y+r

−y+2r

Kh(u) +

∫ −y+3r

y+r

Kh(u)du+ · · · .

In general, this result can be rewritten as∫ y

0

Kh(u)du+

∞∑
i=1

∫ y+ir

−y+ir

Kh(u)du =

=

∫ −y+r

0

Kh(u)du+

∞∑
i=1

(
2

∫ y+(i−1)r

−y+ir

Kh(u)du +

∫ −y+(i+1)r

y+(i−1)r

Kh(u)du

)
=

=

∫ h

0

Kh(u)du+

∞∑
i=1

∫ y+(i−1)r

−y+ir

Kh(u)du =
r

2
+

∞∑
i=1

∫ y+(i−1)r

ir−y

Kh(u)du,

5In this figure, we took Kh(u) = 0.35(1 + cos(πu
7
)), h = 7, r = 4.9, and y = 3.
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where we used r =
∫ h

−h
Kh(u)du from Lemma 3.2. From the symmetry of Kh,

we obtain that

2y =

∫ y

−y

S(x)dx = 2

(
r

2
+

∞∑
i=1

∫ y+(i−1)r

ir−y

Kh(u)du

)
, (12)

and the proof is finished.

Remark 3.2. Put z = y − r
2 . Then, we can rewrite the condition (11) as

z =

∞∑
i=1

∫ z+βi

−z+βi

Kh(x)dx, (13)

where z ∈ [0, r
2 ] and βi = (2i− 1) r2 . Since the domain of Kh is [−h, h], one can

simply check that

z =
k∑

i=1

∫ z+βi

−z+βi

Kh(x)dx, (14)

where k is the least natural number for which it holds − r
2 + βk ≥ h. Of course,

we may have
∫ z+βk

−z+βk
Kh(x)dx = 0 for some choices of z.

It is easy to see that if we consider a uniform fuzzy partition determined by
(K,h, h), then (11) can be rewritten as

y =
h

2
+

∞∑
i=1

∫ y+(i−1)h

ih−y

Kh(x)dx =
h

2
+

∫ y

h−y

Kh(x)dx,

which holds for any y ∈ [h2 , h]. Putting y′ = y
h
, we obtain y′ ∈ [ 12 , 1]. Then, the

previous equality may be expressed as

hy′ −
h

2
=

∫ hy′

h−hy′

Kh(x)dx = h

∫ y′

1−y′

K(x)dx.

Now, one can see that the necessary condition for the uniform fuzzy partition
provided in Theorem 2.2 is a special case of the conditions in Lemmas 3.2 and
3.3. We will show that these conditions are also sufficient.

Lemma 3.4. If (K,h, r) is a triplet such that r = h
∫ 1

−1
K(u)du and (11) is

satisfied for any y ∈ [ r2 , r] then (K,h, r) determines a generalized uniform fuzzy
partition.

Proof. Analogously to the proof of Theorem 2.2, one can simply check that S(x)
determined by (K,h, r) is an even periodic function with the period r. Hence, it
is sufficient to prove that

∫ y

0 S(x)dx = y for any y ∈ [0, r], because this implies
S(x) = 1 for any x ∈ R (see the sufficiency part of the proof of Theorem 2.2).

13
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In the proof of Lemma 3.3, we have shown (see (12)) that

∫ y

−y

S(x)dx = 2

(
r

2
+

∞∑
i=1

∫ y+(i−1)r

ir−y

Kh(u)du

)
.

As a consequence of the symmetry of S(x), we obtain

∫ y

0

S(x)dx =
r

2
+

∞∑
i=1

∫ y+(i−1)r

ir−y

Kh(u)du. (15)

If y ∈ [ r2 , r], then a straightforward consequence of (11) is
∫ y

0 S(x) = y. Analo-
gously to the derivation of the previous formula (15), one can simply check that
if y ∈ [0, r

2 ), then ∫ y

0

S(x)dx =
r

2
−

∞∑
i=1

∫ ir−y

ir−(r−y)

Kh(u)du. (16)

Hence, we obtain (using assumption (11) and the fact that r − y ∈ [ r2 , r])∫ y

0

S(x)dx = r −

(
r

2
+

∞∑
i=1

∫ (r−y)+(i−1)r

ir−(r−y)

Kh(u)du

)
= r − (r − y) = y,

which concludes the proof.

The results of the previous three lemmas provide us necessary and sufficient
condition for generalized uniform fuzzy partitions.

Theorem 3.5. A triplet (K,h, r) determines a generalized uniform fuzzy par-

tition iff r = h
∫ 1

−1
K(x)dx and (11) is satisfied for any y ∈ [ r2 , r].

As a simple consequence of this theorem we obtain that a GUFP determined
by (K,h, r) remains a GUFP if we can change bandwidth of the generating
function K.

Corollary 3.6. If (K,h, r) determines a generalized uniform fuzzy partition
and α > 0 is a real number then (K,αh, αr) determines it as well.

Proof. We must prove that (K,αh, αr) satisfies the necessary conditions of The-

orem 3.5. We have r = h
∫ 1

−1 K(x)dx by the assumption. Then

αr = αh

∫ 1

−1

K(x)dx,

and the first necessary condition is satisfied. Let y ∈ [αr2 , αr]. Then y
α
∈ [ r2 , r]

and

y

α
=

r

2
+

∞∑
i=1

∫ y
α
+(i−1)r

ir−
y

α

Kh(x)dx,

14
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whence

y =
αr

2
+

∞∑
i=1

α

∫ y

α
+(i−1)r

ir−
y

α

Kh(x)dx.

Putting αx = u, we obtain

y =
αr

2
+

∞∑
i=1

α

∫ y+(i−1)αr

iαr−y

Kh

(u

α

)
du =

αr

2
+

∞∑
i=1

∫ y+(i−1)αr

iαr−y

Kαh(u)du,

where Kαh(u) = K( u
αh

) = Kh(
u
α
). Hence, the second necessary condition of

Theorem 3.5 is satisfied and so, (K,αh, αr) determines a GUFP.

4. An application of necessary and sufficient conditions

In this section, we will demonstrate how the results obtained in the pre-
vious section can be applied in investigation of the generalized uniform fuzzy
partitions. By R

+ we denote the set of positive reals.
Let us define the product of scalars from R

+ and real functions by

(α� f)(x) = αf(x). (17)

where αf(x) is the product of reals. It is easy to see that if K is a generating
function, then α � K need not be a generating function, because (α � K)(0)
may be greater than 1, i.e., α�K is not a fuzzy set.

Let K be a generating function such that

K(0) = 1 and

∫ 1

−1

K(x)dx = 1.

For example, K can be the generating function KT or KC from Examples 2.2
and 2.3, respectively. Using Theorem 3.5, (K,h, r) can be a generalized uniform
fuzzy partition if h = r. By Corollary 3.6, it is sufficient to verify that (K, 1, 1)
determines a GUFP, which is equivalent to verification that (K, 1) determines
a uniform fuzzy partition.

Now one can ask for which α ∈ R the triplet (α � K, 1, α) determines a
generalized uniform fuzzy partition. Note that

r = h

∫ 1

−1

(α�K)(x)dx = α 1

∫ 1

−1

K(x)dx = α.

Below we will present a necessary and sufficient condition for α that allows
us to determine infinitely many generalized uniform fuzzy partitions based on
the triangle and raised cosine generating functions.

15
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4.1. Generalized uniform fuzzy partition of triangular type

LetKT be the triangular generating function defined in Example 2.2. We will
say that a generalized uniform fuzzy partition is of triangle type if its generating
function is in the form α�KT .

Theorem 4.1. Let α ∈ R
+ and (α � KT )(0) ∈ (0, 1]. Then, (α � KT , 1, α)

determines a GUFP iff 1
α
∈ N.

Proof. By Theorem 2.2 and using Remark 3.2, (α � KT , 1, α) determines a
GUFP iff

z =

∞∑
i=1

∫ z+βi

−z+βi

(α�KT )(x)dx (18)

holds for any z ∈ [0, α2 ], where βi = (2i− 1)α2 .
(⇒) Let us suppose that (α�KT , 1, α) determines a GUFP and let k be the

greatest natural number for which βk ≤ 1. It is easy to see that if βk < 1, then
there exists z ∈ (0, α2 ] such that z + βk ≤ 1 and −z+ βk+1 ≥ 1. Let us consider
two cases. First, let us suppose that βk < 1 and let z 	= 0 satisfy the previous
inequalities. Then, (18) can be rewritten as

z =

k∑
i=1

∫ z+βi

−z+βi

(α�KT )(x)dx = α

k∑
i=1

∫ z+βi

−z+βi

(1− x)dx =

= α

k∑
i=1

(
z + βi −

z2 + 2zβi + β2
i

2
− (−z + βi −

z2 − 2zβi + β2
i

2
)
)
=

= α
k∑

i=1

2z(1− βi) = 2αz
(
k −

k∑
i=1

(iα−
α

2
)
)
=

= 2αz
(
k +

kα

2
−

k(k + 1)α

2

)
= 2αz

(
k −

αk2

2

)
.

This implies that αk = 1. Since k is a natural number, we obtain 1
α
∈ N.

Let us suppose that βk = 1, i.e., kα− α
2 = 1. Since (18) is satisfied for any

z ∈ [0, α
2 ], let us suppose that z ∈ (0, α

2 ). Then, we have (applying the previous
results and the fact that (k − 1)α = 1− α

2 )

z =
k−1∑
i=1

∫ z+βi

−z+βi

(α�KT )(x)dx +

∫ 1

−z+βk

(α�KT )(x)dx =

= 2αz
(
(k − 1)−

α(k − 1)2

2
) + α

∫ 1

−z+1

(1− x)(x)dx =

= 2αz(k − 1)
(
1−

α(k − 1)

2

)
+

αz2

2
= 2z(1−

α

2
)(1−

1− α
2

2
) +

αz2

2
=

= z(1−
α

2
)(1 +

α

2
) +

αz2

2
= z(1−

α2

4
) +

αz2

2
,

16
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which implies that z = α
2 . But contradicts z �=

α
2 . Hence, βi must be less than

1 and so, 1
α
∈ N.

(⇐) Let us consider a triplet (α�KT , 1, α) and
1
α
∈ N. We must prove that

(18) is satisfied for an arbitrary z ∈ [0, α
2 ]. By the assumption on α, we have

z+βk ≤ 1 for any z ∈ [0, α2 ] and kα = 1, where k was defined above. Therefore,
using the previous results and the fact that kα = 1, we obtain

∞∑
i=1

∫ z+βi

−z+βi

(α�KT )(x)dx =

k∑
i=1

∫ z+βi

−z+βi

(α�KT )(x)dx =

= 2αkz
(
1−

αk

2

)
= 2z(1−

1

2
) = z,

which concludes the proof.

Remark 4.1. It follows from the previous theorem and Corollary 3.6 that
each generalized uniform fuzzy partition of triangle type has the form (α �
KT , h, αh, x0) for arbitrary h ∈ R

+, 1/α ∈ N and x0 ∈ R.

In Figure 5, a part of the generalized uniform fuzzy partition of triangle type
for h = 2, α = 1/4 and x0 = 1 is presented.

Figure 5: A part of the triangle type GUFP of the real line determined by (0.25�KC , 2, 0.5, 1).

4.2. Generalized uniform fuzzy partition of raised cosine type

Let KC denote the raised cosine generating function defined in Example 2.3.
We will say that a generalized uniform fuzzy partition is of raised cosine type if
its generating function has in the form α�KC .

Theorem 4.2. Let α ∈ R
+ and (α � KC)(0) ∈ (0, 1]. Then, (α � KC , 1, α)

determines a generalized uniform fuzzy partition iff 1
α
∈ N.

17
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Proof. Since the proof is nearly the same as the proof of Theorem 4.1, we omit
some of its parts.

(⇒) Let (α�KC , 1, α) determine a generalized uniform fuzzy partition and
z ∈ (0, α2 ] be such that z + βk ≤ 1 and −z + βk+1 ≥ 1. First, let βk < 1 and
z �= 0 satisfy the previous inequalities. Then, (18) can be rewritten as

z =

k∑
i=1

∫ z+βi

−z+βi

(α �KC)(x)dx =

k∑
i=1

∫ z+βi

−z+βi

α

2
(1− cos(πx))dx =

α

k∑
i=1

(
z + βi

2
+

sin(π(z + βi))

2π
+

z − βi

2
−

sin(π(−z + βi))

2π

)
=

αzk +
1

2π

k∑
i=1

(sin(πz) cos(πβi) + cos(πz) sin(πβi)−

sin(−πz) cos(πβi)− cos(−πz) sin(πβi)) = αzk +
α sin(πz)

π

k∑
i=1

cos(πβi).

Putting V = α
π

∑k

i=1 cos(πβi), we can simplify the previous equality to

z = αzk + V sin(πz).

Now, let us suppose that V �= 0. Then, the previous equality can be rewritten
as (recall that z �= 0)

sin(πz)

z
=

1− αk

V
,

but this is a contradiction, because the function sin(πz)/z is not a constant
function in (0, α2 ]. Hence, V = 0, which implies that αk = 1, and so, 1

α
∈ N.

Let βk = 1. Then, we have (using the previous results)

z =
k−1∑
i=1

∫ z+βi

−z+βi

(α�KC)(x)dx +

∫ 1

−z+βk

(α�KC)(x)dx =

αz(k − 1) +
α sin(πz)

π

k−1∑
i=1

cos(πβi) +
αz

2
−

α sin(πz)

2π
=

αz(k −
1

2
) +

α sin(πz)

π

(
k−1∑
i=1

cos(πβi)−
1

2

)
= αz(k −

1

2
)−

α sin(πz)

2π
,

where we used
∑k−1

i=1 cos(πβi) = 0. This equality follows from the assumption on
βk, where we can put βi = i/k, and the fact that cos(iπ/k) = − cos(π− iπ/k) =
− cos((k − i)π/k). Hence, we obtain

sin(πz)

z
=

2π(α(k − 1/2)− 1)

α
,

18
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but this is a contradiction, because the function sin(πz)/z is not a constant
function in (0, α/2]. Hence, βi is less than 1 and so, 1/α ∈ N.

(⇐) Let us consider a triplet (α �KC , 1, α) and 1/α ∈ N. We must prove
that (18) is satisfied for an arbitrary z ∈ [0, α/2]. By the assumption on α, we
have kα = 1 and z + βk ≤ 1 for any z ∈ [0, α/2]. Therefore, using the previous
results and the fact that kα = 1, we obtain

∞∑
i=1

∫ z+βi

−z+βi

(α�KC)(x)dx =

k∑
i=1

∫ z+βi

−z+βi

(α�KC)(x)dx =

αzk +
α sin(πz)

π

k∑
i=1

cos(πβi) = z +
α sin(πz)

π

k∑
i=1

cos(π(2i− 1)
α

2
) =

z +
α sin(πz)

π

k∑
i=1

cos((2i − 1)
π

2k
) = z,

where we used
∑k

i=1 cos((2i − 1) π
2k ) = 0. Again, this equality follows from the

assumption on α, i.e., α = 1
k
, and the fact that

cos((2i− 1)
π

2k
) = − cos(π − (2i− 1)

π

2k
) =

− cos(
2kπ

2k
− (2i− 1)

π

2k
) = − cos(2(k − i)− 1)

π

2k
.

Hence, (α�KC , 1, α) determines a generalized uniform fuzzy partition.

Analogously to Remark 4.1, one can characterize the class of all generalized
uniform fuzzy partitions of cosine type. In Figure 6, a part of the raised cosine
type GUFP for h = 2, α = 1/2 and x0 = 1 is presented.

Figure 6: A part of the raised cosine type GUFP of the real line determined by (0.5 �
KC , 2, 1, 1).
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5. Concluding remarks

In this paper, necessary and sufficient conditions for generalized uniform
fuzzy partitions were found. We have shown that a quadruplet (K,h, r, x0) de-

termines a generalized uniform fuzzy partition if r = h
∫ 1

−1
K(x)dx. In practice,

this condition may significantly help us to design an optimal GUFP, because r
is derived from K and h! Now, if (K,h, r, x0) is such that the previous necessary
condition is satisfied, we have two possibilities how to verify that (K,h, r, x0)
determines GUFP:

1. to check for (K,h, r) that the Ruspini’s condition (3) is satisfied for all
x ∈ [0, r];

2. to check for (K,h, r) that the equality (11) (or equivalently (13)) is satis-
fied for all y ∈ [ r2 , r] (or z ∈ [0, r

2 ]).

It should be noted that it is sufficient to verify the Ruspini’s condition for
all x ∈ [0, r], because the function S(x) expressing the sum in (3) is a periodic
function with the period r. Both verifications can be done theoretically in a
similar way as was demonstrated for the generalized uniform fuzzy partitions of
triangle and raised cosine type, or using a computer.

Finally, let us remark that generalized non-uniform partitions determined
by symmetric generating functions can be defined as a linear combination of
generalized uniform fuzzy partitions:

(K,h, r,x0, a) = a1(K1, h1, r1, x10) + · · ·+ an(Kn, hn, rn, xn0),

where K = (K1, . . . ,Kn), h = (h1, . . . , hn), etc., ai > 0 for any i = 1, . . . , n,
a1 + · · · + an = 1. Naturally, the j-th basic function Aj of (K,h, r,x0, a) is
defined by

Aj(x) = a1Aj1(x) + · · ·+ anAjn(x),

and it is easy to check that the Ruspini’s condition is satisfied for (K,h, r,x0, a).
Investigation of necessary and sufficient conditions for other types of generalized
uniform fuzzy partitions (such as generating functions defined using splines) is
a topic for future research.
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