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Abstract: We show how group-theoretic ideas can be naturally used to generate efficient1

algorithms for scientific computations. The general group-theoretic approach is illustrated on2

the example of determining, from the experimental data, the dissociation constants related to3

multiple binding sites. We also explain how the general group-theoretic approach is related to4

the standard (backpropagation) neural networks; this relation justifies the potential universal5

applicability of the group-theoretic approach.6
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1. Why Use Group Theory in General Scientific Computations?10

Use of symmetries in chemistry: a brief reminder. In many practical situations, physical systems11

have symmetries, i.e., transformations that preserve certain properties of the corresponding physical12

system. For example, a benzene molecule C6H6 does not change if we rotate it 60◦: this rotation13

simply replaces one carbon atom by another one. The knowledge of such geometric symmetries helps in14

chemical computations; see, e.g., [2,3,5].15
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Group theory: a mathematical tool for studying symmetries. Since symmetries are useful, once16

we know one symmetry, it is desirable to know all the symmetries of a given physical system. In other17

words, once we list the properties which are preserved under the original symmetry transformation, it is18

desirable to find all the transformations that preserve these properties.19

If a transformation f preserves the given properties, and the transformation g preserves these20

properties, then their composition h(x) = f(g(x)) also preserves these properties. For example, if21

the lowest energy level of the molecule does not change when we rotate it 60 degrees, and does not22

change when we rotate it 120 degrees around the same axis, then it also will not change if we first rotate23

it 60 degrees and then 120 degrees, to the total of 180 degrees.24

Similarly, if a transformation f does not change the given properties, then the inverse transformation25

f−1 also does not change these properties. So, the set of all transformations that preserve given properties26

is closed under composition and inverse; such a set is called a transformation group or symmetry group.27

Mathematical analysis of such transformation is an important part of group theory.28

Problems of scientific computations: a brief reminder. In this paper, we argue that group theory29

can be used in scientific computations beyond geometric symmetries. To explain our idea, let us briefly30

recall the need for scientific computations.31

One of the main objectives of science is to be able to predict future behavior of physical systems. To32

be able to make these predictions, we must find all possible dependencies y = F (x1, . . . , xn) between33

different physical quantities. Often, we only know the general form of the dependence, i.e., we know34

that y = G(x1, . . . , xn, c1, . . . , cm) for a known expression G(x1, . . . , cm), but we do not know the exact35

values of the corresponding parameters c1, . . . , cm. These values must be determined from the empirical36

data. For example, Newton’s equations provide a general description of how the acceleration of each37

celestial body depends on its spatial location, but this description contains masses ci of celestial bodies;38

these masses must be determined based on the astronomical observations.39

In general, to be able to predict the value of a desired quantity y for which we know the form of the40

dependence y = G(x1, . . . , xn, c1, . . . , cm), we must do the following:41

• first, we use the know observation x
(k)
i and y(k) of xi and y to find the parameters ci of the42

corresponding dependence from the condition that y(k) ≈ G(x
(k)
1 , . . . , x(k)

n , c1, . . . , cm);43

• after that, we measure the current values xi of the corresponding quantities, and use these44

measured values and the reconstructed values of the parameters ci to estimate y as y =45

G(x1, . . . , xn, c1, . . . , cm).46

In scientific computation, the first problem is known as the inverse problem and the second problem as47

the forward problem. Usually:48

• the forward problem is reasonably straightforward: it consists of applying a previously known49

algorithm, while50

• an inverse problem is much more complex since it requires that we solve a system of equations,51

and for this solution, no specific algorithm is given.52
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Inverse problem as the problem of finding the inverse transformation. In the idealized case, when53

we can ignore the measurement uncertainty, the generic inverse problem can be reformulated as follows:54

• we have a transformation f corresponding to the forward problem, a transformation which maps55

the tuple c = (c1, . . . , cm) of parameters into predicted values ypred = f(c), where each component56

y
(k)
pred has the form y

(k)
pred = G(x

(k)
1 , . . . , x(k)

n , c1, . . . , cm);57

• we want to find the inverse transformation f−1 which, based on the observed values y(k), computes58

the corresponding parameters c1, . . . , cm.59

Often, computations can be simplified if we represent the to-be-inverted transformation f as a60

composition. In many practical situations, we can make computations easier if, instead of directly61

solving a complex inverse problem, we represent it as a sequence of easier-to-solve problems.62

For example, everyone knows how to solve a quadratic equation a ·x2+ b ·x+c = 0. This knowledge63

can be effectively used if we need to solve a more complex equation a · x4 + b · x2 + c = 0. For that, we64

represent a · x4 + b · x2 + c as a · y2 + b · y + c, where y = x2. Then:65

• first, we solve the equation a · y2 + b · y + c and find y;66

• next, we solve an equation x2 = y with this y and find the desired value x.67

In general, if we represent a transformation f as a composition f = f1 ◦ . . . ◦ fn of transformations fi,68

then the inverse transformation f−1 can be represented as f−1
n ◦ . . . ◦ f−1

1 . Thus, if we can represent the69

original difficult-to-invert transformation f as a composition of two easier-to-invert transformations fi,70

this will simply the inversion of f .71

Conclusion: transformation groups naturally appear in scientific computations. In transformation72

terms, solving an inverse problem means finding the inverse transformation, and simplification of this73

process means using compositions – and a possibility to invert each of the composed transformations.74

Thus, the corresponding class of transformations should be closed under composition and inverse, i.e., it75

should form a transformation group.76

How group theory can help in scientific computations: general idea summarized. The inverse77

problem of scientific computations – the problem of estimating the parameters of the model which are78

the best fit for the data – is often computationally difficult to solve. From the mathematical viewpoint,79

this problem means finding the inverse f−1 to a given transformation. The computation of this inverse80

can be simplified if we represent f as a composition of easier-to-invert transformations f = f1 ◦ . . . ◦ fn;81

then, we can compute f−1 as f−1 = f−1
n ◦ . . . ◦ f−1

1 .82

2. How To Use Group Theory in General Scientific Computations: General Idea83

Main idea: reminder. An inverse problem of interval computations consists of finding an inverse f−1
84

to a given transformation f . This inverse is sometimes difficult to compute. To simplify computation of85

f−1, we try to represent f as a composition of easier-to-invert transformations fi.86
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Which transformations are the easiest-to-invert. Which transformations are easier to invert?87

Inverting a transformation f : IRm → IRm means solving a system of m equations f (k)(c1, . . . , cm) =88

y(k) with m unknowns c1, . . . , cm.89

The simplest case is when we have a system of linear equations. In this case, there are well-known90

feasible algorithms for solving this system (i.e., for inverting the corresponding linear transformation).91

It would be nice if we could always only use linear transformations, but alas, a composition of linear92

transformations is always linear. So, to represent general non-linear transformations, we need to also93

consider some systems of non-linear equations.94

For nonlinear systems, in general, the fewer unknown we have, the easier it is to solve the system.95

Thus, the easiest-to-solve system of non-linear equations is the system consisting of a single nonlinear96

equation with one unknown.97

Resulting approach to scientific computing. We would like to represent an arbitrary transformation98

f as a composition of linear transformations and functions of one variable.99

The corresponding representation is always possible. The possibility to represent an arbitrary100

transformation (with any given accuracy) as a composition of linear transformations and functions101

of one variable follows from the known fact that the standard 3-layer neural networks are universal102

approximators; see, e.g., [1,4]. Specifically, in a 3-layer neural network with K hidden neurons:103

• we first compute K linear combinations of the inputs yk =
m∑
i=1

wki · ci − wi0;104

• then, we apply, to each value yk, a function s0(y) of one variable s0(y), resulting in zk = s0(yk);105

usually, a sigmoid function s0(y) =
1

1 + exp(−y)
is used;106

• finally, we compute a linear combination y =
K∑
k=1

Wk · zk −W0.107

3. Case Study: Finding Multiple Binding Sites108

Case study: description. Let us show how the above general approach can applied to a specific109

important problem of finding multiple binding sites.110

When there is a single binding site at which a ligand L can bind to a receptor R, the corresponding111

chemical kinetic equations L + R → LR and LR → L + R with intensities k+ and k− leads to the112

following equilibrium equation for the corresponding concentrations [L], [R], and [LR]: k+ · [L] · [R] =113

k− · [LR]. From this, we get
[R]

[LR]
=

kd
[L]

, where we denoted kd
def
=

k−

k+
. Thus,

[R] + [LR]

[LR]
= 1 +

kd
[L]

=114

kd + [L]

[L]
. Thus, the bound proportion of the receptor B def

=
[LR]

[R] + [LR]
depends on the concentration [L]115

of the ligand as B =
[L]

kd + [L]
.116
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For the case of several (S) binding sites, B is a linear combination of terms corresponding to different
binding sites, i.e.,

B =
S∑

s=1

Rs · [L]
kds + [L]

(1)

for appropriate values Rs and kds.117

Inverse problem corresponding to the case study. The problem is to find the values Rs and kds

from the observations. In other words, we observe the bound proportions y(k) for different ligand
concentrations [L] = x(k), and we want to find the values Rs and kds for which

y(k) =
S∑

s=1

Rs · x(k)

kds + x(k)
. (2)

How to use group-theoretic ideas to simplify the corresponding computations: analysis of the118

problem. The system (2) is a difficult-to-solve system of nonlinear equations with 2S unknowns.119

To simplifying the solution of this system, let us represent its solution as a composition of linear120

transformations and functions of one variable.121

By adding all S fractions
Rs · x
kds + x

, we get a ratio of two polynomials
P (x)

Q(x)
. Here, Q(x) is the product

of all S denominators x+ kds, and is, thus, a S-th order polynomial with the leading term xS:

Q(x) = xS + qS−1 · xS−1 + . . .+ q1 · x+ q0. (3)

Similarly, since P (x) is divisible by x, we get P (x) = pS · xS + pS−1 · xS−1 + . . .+ p1 · x.122

The equations y(k) =
P (x(k))

Q(x(k))
can be equivalently represented as y(k) ·Q(x(k)) = P (x(k)), i.e., as

y(k) · (x(k))S + qS−1 · y(k) · (x(k))S−1 + . . .+ q1 · y(k) · x(k) + q0 · y(k) =

pS · (x(k))S + pS−1 · (x(k))S−1 + . . .+ p1 · x(k). (4)

This is a system of linear equations with 2S unknowns pi and qi. Solving this system of linear equations123

is relatively easy.124

Once we solve this linear system and find the values qi, we can find the parameters kds from the125

condition that for x = −kds, we have x + kds = 0 and thus, the product Q(x) of all such terms is equal126

to 0. The equation Q(−kds) = 0 is a nonlinear equation with one unknown, i.e., exactly the type of127

nonlinear equation that we want to solve.128

Finally, once we find all the values kds, the equation (2) becomes a linear system of equations for the129

remaining unknowns Rs.130

Thus, the decomposition of the original difficult-to-invert transformation into a composition of easier-131

to-invert transformations (linear transformations and functions of one variable) leads to the following132

algorithm for computing the parameters of multiple binding sites.133
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Inverse problem corresponding to the case study: resulting algorithm. We start with the values134

y(k) of the bound proportion corresponding to different ligand concentrations x(k). Our objective is to135

find the parameters Rs and kds of different binding sites s = 1, . . . , S. To compute these parameters, we136

do the following:137

• first, we solve the linear system (4) with 2S unknowns pi and qi;138

• we then use the computed values qi to form the polynomial (3) and to solve the equation Q(−x) =139

0 with one unknown x; as a result, we get 2S solutions kds;140

• we then substitute the resulting values kds into the formula (1) and solve the resulting system of S141

linear equations with S unknowns Rs.142

Comment. Our numerical experiments confirmed the computational efficiency of the new algorithm.143
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2. Jaffé, H.H.; MacKenzie, R.E. Symmetry in Chemistry, Dover: New York, New York, USA, 2012.153

3. Kettle, S.F.A. Symmetry and Structure: Readable Group Theory for Chemists, Wiley: New York,154

New York, USA, 2007.155

4. Nguyen, H.T.; Kreinovich, V. Applications of continuous mathematics to computer science, Kluwer:156

Dordrecht, Netherlands, 1997.157

5. Wigner, E.P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra;158

Academic Press: Waltham: Massachusetts, USA, 1959.159

c© May 8, 2013 by the authors; submitted to Symmetry for possible open access160

publication under the terms and conditions of the Creative Commons Attribution license161

http://creativecommons.org/licenses/by/3.0/.162


	Why Use Group Theory in General Scientific Computations?
	How To Use Group Theory in General Scientific Computations: General Idea
	Case Study: Finding Multiple Binding Sites
	Acknowledgements

