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Abstract: We show how transformation group ideas can be naturally used to generate1

efficient algorithms for scientific computations. The general approach is illustrated on the2

example of determining, from the experimental data, the dissociation constants related to3

multiple binding sites. We also explain how the general transformation group approach is4

related to the standard (backpropagation) neural networks; this relation justifies the potential5

universal applicability of the group-related approach.6
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1. Why Use Symmetries (and Groups) in General Scientific Computations?11

Use of symmetries in chemistry: a brief reminder. In many practical situations, physical systems12

have symmetries, i.e., transformations that preserve certain properties of the corresponding physical13

system. For example, a benzene molecule C6H6 does not change if we rotate it 60◦: this rotation14

simply replaces one carbon atom by another one. The knowledge of such geometric symmetries helps in15

chemical computations; see, e.g., [4,5,10].16
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Group theory: a mathematical tool for studying symmetries. Since symmetries are useful, once17

we know one symmetry, it is desirable to know all the symmetries of a given physical system. In other18

words, once we list the properties which are preserved under the original symmetry transformation, it is19

desirable to find all the transformations that preserve these properties.20

If a transformation f preserves the given properties, and the transformation g preserves these21

properties, then their composition h(x) = f(g(x)) also preserves these properties. For example, if22

the lowest energy level of the molecule does not change when we rotate it 60 degrees, and does not23

change when we rotate it 120 degrees around the same axis, then it also will not change if we first rotate24

it 60 degrees and then 120 degrees, to the total of 180 degrees.25

Similarly, if a transformation f does not change the given properties, then the inverse transformation26

f−1 also does not change these properties. So, the set of all transformations that preserve given properties27

is closed under composition and inverse; such a set is called a transformation group or symmetry group.28

Mathematical analysis of such transformation is an important part of group theory.29

Problems of scientific computations: a brief reminder. In this paper, we argue that symmetries can30

be used in scientific computations beyond geometric symmetries. To explain our idea, let us briefly recall31

the need for scientific computations.32

One of the main objectives of science is to be able to predict future behavior of physical systems. To33

be able to make these predictions, we must find all possible dependencies y = F (x1, . . . , xn) between34

different physical quantities. Often, we only know the general form of the dependence, i.e., we know35

that y = G(x1, . . . , xn, c1, . . . , cm) for a known expression G(x1, . . . , cm), but we do not know the exact36

values of the corresponding parameters c1, . . . , cm. These values must be determined from the empirical37

data. For example, Newton’s equations provide a general description of how the acceleration of each38

celestial body depends on its spatial location, but this description contains masses ci of celestial bodies;39

these masses must be determined based on the astronomical observations.40

In general, to be able to predict the value of a desired quantity y for which we know the form of the41

dependence y = G(x1, . . . , xn, c1, . . . , cm), we must do the following:42

• first, we use the known observations x
(k)
i and y(k) of xi and y to find the parameters ci of the43

corresponding dependence from the condition that y(k) ≈ G(x
(k)
1 , . . . , x(k)

n , c1, . . . , cm);44

• after that, we measure the current values xi of the corresponding quantities, and use these45

measured values and the reconstructed values of the parameters ci to estimate y as y =46

G(x1, . . . , xn, c1, . . . , cm).47

In scientific computation, the first problem is known as the inverse problem and the second problem as48

the forward problem. Usually:49

• the forward problem is reasonably straightforward: it consists of applying a previously known50

algorithm, while51

• an inverse problem is much more complex since it requires that we solve a system of equations,52

and for this solution, no specific algorithm is given.53
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Inverse problem as the problem of finding the inverse transformation: ideal case when54

measurement errors can be ignored. We assume that we know the form of the dependence y =55

G(x1, . . . , xn, c1, . . . , cm) between the quantities xi and y; the only unknowns are the parameters56

c1, . . . , cm. We want to find the values of these parameters ci based on the measurement results.57

In the idealized case when we can ignore the measurement uncertainty, the measured values x(k)
i and58

y(k) coincide with the actual values of the corresponding quantities. Thus, based on each measurement59

k, we can conclude that y(k) = G(x
(k)
1 , . . . , x(k)

n , c1, . . . , cm). So, each measurement leads to an equation60

that with m unknowns c1, . . . , cm.61

In general, we need m equations to find m unknowns. Thus, in this idealized case, it is sufficient
to perform m measurements, and then determine the desired values c1, . . . , cm from the corresponding
systems of m equations with n unknowns c1, . . . , cm:

y(1) = G(x
(1)
1 , . . . , x(1)

n , c1, . . . , cm);

. . .

y(m) = G(x
(m)
1 , . . . , x(m)

n , c1, . . . , cm).

The dependence y = G(x1, . . . , xn, c1, . . . , cm) is often highly non-linear; so, to find the desired values62

ci, we need to solve a system of nonlinear equations. Such systems are often difficult to solve (in precise63

terms, the problem of solving a system of non-linear equations is known to be NP-hard; see, e.g., [2,6]).64

Once the measurements of the quantities x(k)
i have been performed, the problem of solving the above65

system of equations can be equivalently reformulated as follows:66

• we have a transformation f : IRm → IRm which maps an m-dimensional tuple c = (c1, . . . , cm)67

into an m-dimensional tuple y = f(c) with components y = (y1, . . . , ym) which are determined68

by the formula yk = G(x
(k)
1 , . . . , x(k)

n , c1, . . . , cm);69

• we know the measured values ymeas =
(
y(1), . . . , y(m)

)
;70

• we want to find the tuple c for which f(c) = ymeas.71

One way to solve this system is to find the inverse transformation f−1, and then to apply this inverse72

transformation to the tuple ymeas consisting of the measured values of the quantity y, resulting in the73

desired tuple c = f−1(ymeas).74

Inverse problem: general case. So far, we have considered the ideal case, when the measurement75

errors are so small that they can be safely ignored. In most practical situations, measurement errors must76

be taken into account.77

Usually, the measurement errors are relatively small. In such cases, as a reasonable first
approximation c

(0)
i to the actual values ci, we can use the values obtained when we ignore the

measurement errors – i.e., the values obtained by solving the above system of non-linear equations.
Once we know these approximate values c

(0)
i , we can conclude that the actual values ci have the form

ci = c
(0)
i + ∆ci for some small differences ∆ci. For these values, the equations for determining ∆ci take

the form y(k) ≈ G(x
(k)
1 , . . . , x(k)

n , c
(0)
1 + ∆c1, . . . , c

(0)
m + ∆cm). Since the differences ∆ci are small, we
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can expand the above expression in Taylor series in ∆ci and ignore quadratic and higher order terms in
this expansion. As a result, we get a system of approximate linear equations:

m∑
i=1

gki ·∆ci ≈ y(k) −G(x
(k)
1 , . . . , x(k)

n , c
(0)
1 , . . . , c(0)m ),

where gki
def
=

∂Gk

∂ci
(x

(k)
1 , . . . , x(k)

n , c
(0)
1 , . . . , c(0)m ). We can now solve this system of equations and find78

the desired differences ∆ci, e.g., by using the Least Squares Method (see, e.g., [8]). This method is79

computationally feasible and efficient.80

Thus, once we know how to efficiently solve the inverse problem in the idealized no-noise case, we81

can also efficiently extend the corresponding algorithm to the general noisy case. In other words, the82

main computational complexity of solving the inverse problem occurs already in the non-noise case:83

once this case is solved, the general solution is straightforward. Because of this fact, in this paper, we84

concentrate on solving the no-noise problem – keeping in mind that the above linearization procedure85

enables us to readily extends the no-noise solution to the general case.86

Often, computations can be simplified if we represent the to-be-inverted transformation f as a87

composition. In many practical situations, we can make computations easier if, instead of directly88

solving a complex inverse problem, we represent it as a sequence of easier-to-solve problems.89

For example, everyone knows how to solve a quadratic equation a ·x2 + b ·x+c = 0. This knowledge90

can be effectively used if we need to solve a more complex equation a · x4 + b · x2 + c = 0. For that, we91

represent a · x4 + b · x2 + c as a · y2 + b · y + c, where y = x2. Then:92

• first, we solve the equation a · y2 + b · y + c and find y;93

• next, we solve an equation x2 = y with this y and find the desired value x.94

In general, if we represent a transformation f as a composition f = f1 ◦ . . . ◦ fn of transformations fi,95

then the inverse transformation f−1 can be represented as f−1n ◦ . . . ◦ f−11 . Thus, if we can represent the96

original difficult-to-invert transformation f as a composition of several easier-to-invert transformations97

fi, this will simplify the inversion of f .98

Conclusion: transformations (and transformation groups) can help in scientific computations.99

In transformation terms, solving an inverse problem means finding the inverse transformation, and100

simplification of this process means using compositions – and a possibility to invert each of the composed101

transformations. For this idea to work, the corresponding class of transformations should be closed under102

composition and inverse, i.e., it should form a transformation group.103

In a transformation group, the multiplication of two transformation f and g is their composition f ◦g,104

and the inverse element to a transformation f is the inverse transformation f−1.105

How symmetries and groups can help in scientific computations: general idea summarized. The106

inverse problem of scientific computations – the problem of estimating the parameters of the model107

which are the best fit for the data – is often computationally difficult to solve. From the mathematical108
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viewpoint, this problem can be reduced to finding the inverse f−1 to a given transformation. The109

computation of this inverse can be simplified if we represent f as a composition of easier-to-invert110

transformations f = f1 ◦ . . . ◦ fN ; then, we can compute f−1 as f−1 = f−1N ◦ . . . ◦ f−11 .111

2. How To Use Symmetries (and Groups) in General Scientific Computations: General Idea112

Main idea: reminder. An inverse problem of interval computations consists of finding an inverse f−1113

to a given transformation f . This inverse is sometimes difficult to compute. To simplify computation of114

f−1, we try to represent f as a composition of easier-to-invert transformations fi.115

Which transformations are the easiest-to-invert. Which transformations are easier to invert?116

Inverting a transformation f : IRm → IRm means solving a system of m equations fk(c1, . . . , cm) = y(k)117

with m unknowns c1, . . . , cm.118

The simplest case is when we have a system of linear equations. In this case, there are well-known119

feasible algorithms for solving this system (i.e., for inverting the corresponding linear transformation).120

It would be nice if we could always only use linear transformations, but alas, a composition of linear121

transformations is always linear. So, to represent general non-linear transformations, we need to also122

consider some systems of non-linear equations.123

For nonlinear systems, in general, the fewer unknown we have, the easier it is to solve the system.124

Thus, the easiest-to-solve system of non-linear equations is the system consisting of a single nonlinear125

equation with one unknown.126

Resulting approach to scientific computing. We would like to represent an arbitrary transformation127

f as a composition of linear transformations and functions of one variable.128

The corresponding representation is always possible. We are interested in transformations

f : IRm → IRm

which can be obtained as multiple compositions of:129

• (reversible) linear transformation and130

• transformations of the type (x1, . . . , xn) → (f1(x1), . . . , fm(xm)) which consist of applying131

(reversible) smooth (differentiable) functions of one variable to the components of the input tuple.132

One can easily check that such transformations form a group G: namely, it is a transformation group133

generated by the union of two smaller transformation groups – the group of linear transformations and134

the group of component-wise transformations.135

To analyze which transformations can be approximated by compositions from this group, let us136

consider its closure G (in some reasonable sense as described, e.g., in [3,7,9]). This closure also forms a137

group. It is known (see, e.g., [3,7,9]) that if a group of smooth (differentiable) transformations is closed138

(in some reasonable sense) and contains all invertible linear transformations, then it coincides either with139
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the group of all linear transformations, or with the group of all projective transformations, or with the140

group of all smooth transformations. Since some transformations (x1, . . . , xn)→ (f1(x1), . . . , fm(xm))141

from the group G are not linear and not projective (in 1-D case, this means not fractionally linear, we142

thus conclude that the closure G coincides with the group of all invertible smooth transformations.143

By definition of the closure, this means that any differentiable transformation f : IRm → IRm can be144

approximated, with any given accuracy, by a transformation from the group G, i.e., by a composition of145

linear and component-wise transformation. Since in practice, we only know the values and dependencies146

with certain accuracy anyway, this means that, from the practical viewpoint, any transformation can be147

represented as a composition of linear and component-wise transformations.148

Comment. The same argument show that we can still approximate a general transformation if, instead149

of generic non-linear functions fi(xi), we allow only one specific not-fractionally-linear function, e.g.,150

the sigmoid function s0(x) =
1

1 + exp(−x)
.151

Once we know the corresponding representation, we can solve the inverse problem. Our objective152

is to find the tuple of the parameters c = (c1, . . . , cm) by solving a system of non-linear equations153

f(c) = ymeas. Our idea is to find the inverse transformation f−1 and then to compute c as c = f−1(ymeas).154

Once we know how to represent the transformation f as a composition f = f1 ◦ . . . ◦ fN of easy-to-
invert linear and component-wise transformations f1, . . . , fN , then we have f−1 = f−1N ◦ . . .◦f−11 . Thus,
we can efficiently compute c = f−1(ymeas) as

c = f−1N (f−1N−1(. . . f
−1
1 (ymeas) . . .)),

i.e., by starting with the tuple ymeas and by sequentially applying easy-to-compute transformations f−11 ,155

f−12 , . . . , f−1N .156

To make this idea practically useful, we need to be able to represent a generic transformation as a157

desired composition. For this method to be useful, we need to be able to represent a general non-linear158

transformation f : IRm → IRm as a composition of linear and component-wise transformations.159

In some cases, the desired representation can be obtained analytically, by analyzing a specific160

expression for the transformation f . One of such cases is described in the next section.161

To obtain such a representation in the general case, we can use the fact that the desired compositions

f(x) = f1 ◦ f2 · . . . ◦ fN−1(x) ◦ fN(x) = f1(f2(. . . (fN−1(fN(x))) . . .))

correspond to computations by multi-layer neural networks. Namely:162

• we start with the input layer, in which we input m values x1, . . . , xm;163

• in the first processing layer, we apply the transformation fN to the inputs x and get m intermediate164

results – components of the tuple fN(x);165

• in the second processing layer, we apply the transformation fN−1 to the results fN(x) of the first166

layer and thus, get the tuple fN−1(fN(x));167
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• . . .168

• finally, at the last (N -th) processing layer, we apply the transformation f1 to the results
f2(. . . (fN(x)) . . .) of the previous processing layer, and thus, get the desired tuple

f(x) = f1(f2(. . . (fN(x)) . . .)).

A general linear transformation has the form yk =
m∑
i=1

wik · xi−wk0; the corresponding layer consists of169

m linear neurons each of which takes, as inputs, all the signals from the previous layer and compute the170

corresponding value
m∑
i=1

wik · xi − wk0. Similarly, a non-linear transformation yi = fi(xi) consists of m171

non-linear neurons each of which take only one input xi and transforms it into the value fi(xi).172

This is a usual arrangement of neural networks. For example, in one of the most widely used 3-layer173

neural network with K hidden neurons:174

• we first compute K linear combinations of the inputs yk =
m∑
i=1

wki · ci − wk0;175

• then, we apply, to each value yk, a function s0(y) of one variable s0(y), resulting in zk = s0(yk);176

usually, a sigmoid function s0(y) =
1

1 + exp(−y)
is used;177

• finally, we compute a linear combination y =
K∑
k=1

Wk · zk −W0.178

(It is worth mentioning that a similar universal approximation result is known for neural networks: we179

can approximate an arbitrary continuous transformation (with any given accuracy) by an appropriate180

3-layer neural network, i.e., as a composition of linear transformations and functions of one variable;181

see, e.g., [1,7].)182

Neural networks are widely used in practice; one of the main reasons for their practical usefulness is183

that an efficient backpropagation algorithm is known for their training, i.e., for computing the weights184

wki and Wi for which the neural network represent the given dependence y = F (x), i.e., for which,185

for given inputs x, we get the desired output y = F (x); see, e.g., [1]. Since a general representation186

of a transformation f(c) as a composition of linear and component-wise functions is equivalent to its187

representation by the corresponding multi-linear neural network, we can use the general backpropagation188

algorithm to find the coefficients of the corresponding neurons and thus, to find a representation of the189

original non-linear transformation f(c) as the composition of linear and component-wise functions.190

As we have mentioned, once such a representation is found, we can invert each of the components and191

thus, easily compute c = f−1(ymeas), i.e., solve the inverse problem in the non-noise case. As described192

earlier, we can then use linearization to transform this idealized no-noise solution into a solution which193

takes into account noise (= measurement errors).194



Version December 24, 2013 submitted to Symmetry 8 of 12

3. Case Study: Finding Reaction Parameters of Multiple Binding Sites195

Case study: description. Let us show how the above general approach can applied to a specific196

important problem of finding multiple binding sites.197

When there is a single binding site at which a ligand L can bind to a receptor R, the corresponding
chemical kinetic equations L + R → LR and LR → L + R with intensities k+ and k− lead to the
following equilibrium equation for the corresponding concentrations [L], [R], and [LR]:

k+ · [L] · [R] = k− · [LR].

From this, we get
[R]

[LR]
=

kd
[L]

, where we denoted kd
def
=

k−

k+
. Thus,

[R] + [LR]

[LR]
= 1 +

kd
[L]

=
kd + [L]

[L]
.

Hence, the bound proportion of the receptor B def
=

[LR]

[R] + [LR]
depends on the concentration [L] of the

ligand as

B =
[L]

kd + [L]
.

The presence of the bound ligands can be experimentally detected by the dimming of the fluorescence.198

The original intensity of the fluorescence is proportional to the original concentration [R](0) of the199

receptor; since some of the receptor molecules got bound, this original concentration is equal to200

[R](0) = [R] + [LR]. The dimming is proportional to the concentration [LR] of the bound receptor.201

Thus, the relative decrease in the fluorescence intensity is proportional to the ratio B.202

Let us now consider the case of several (S) binding sites. Each binding site can be bound by one ligand203

molecule. Let us denote the ligand molecule bound to the s-th site by L(s). In these terms, for example,204

the molecule in which the ligand is bound to the first and the third sites will be denoted by L(1)L(3)R.205

For each binding site s, we have reactions L + R → L(s)R and L(s)R → L + R with intensities k+
s and206

k−s . We assume that the reactions at different binding sites are independent, so that the the intensities207

with which the ligand attached to the s-th site does not depend on whether other binding sites are bound208

or not. For example, for s′ 6= s, the reactions L + L(s′)R → L(s)L(s′)R and L(s)L(s′)R → L + L(s′)R209

have the same intensities k+
s and k−s which do not depend on s′. Because of this independence, we can210

summarized all the reactions in which a ligand is added to or deleted from the s-th binding site into two211

reactions: R−s + L → R+s with intensity k+
s and a reaction R+s → L + R−s with intensity k−s , where212

R−s is the total concentration of all the receptor molecules for which the s-th binding site is free, and213

R+s is the total concentration of all the receptor molecules for which there is a ligand bound to the s-th214

binding site.215

These summarized reactions lead to the following equilibrium equation for the corresponding
concentrations [L], [R−s], and [R−s]:

k+ · [L] · [R−s] = k− · [R+s].



Version December 24, 2013 submitted to Symmetry 9 of 12

From this, we get
[R−s]

[R+s]
=

kds
[L]

, where we denoted kds
def
=

k−s
k+
s

. Thus,

[R−s] + [R+s]

[R+s]
= 1 +

kd
[L]

=
kd + [L]

[L]
,

and hence,
[R+s]

[R−s] + [R+s]
=

[L]

kds + [L]
.

Similarly to the case of the single binding site, the presence of bound ligands dims the fluorescence.
Let ws be the dimming (per unit concentration) caused by the presence of the ligand at the s-th site. The
total dimming Ds caused by all the molecules at which the ligand is bound of the s-th site is thus equal
to Ds = ws · [R+s]. Since the different binding sites are independent, it is reasonable to assume that the
dimmings corresponding to different binding sites simply add up. Thus, the overall dimming D is equal
to the sum of the dimmings Ds corresponding to different binding sites s, i.e., to

D =
S∑

s=1

Ds =
S∑

s=1

ws · [R+s].

The original intensity of the fluorescence I is proportional to the original concentration [R](0) of the
receptor: I = k · [R](0), where for every s, we have [R](0) = [R−s] + [R+s]. Thus, the relative dimming

B
def
=

D

I
takes the form

B =
D

I
=

S∑
s=1

ws · [R+s]

k · ([R−s] + [R+s])
=

S∑
s=1

ws

k
· [R+s]

[R−s] + [R+s]
.

Substituting the above expression for the ratio
[R+s]

[R−s] + [R+s]
into this formula, we conclude that

B =
S∑

s=1

ws

k
· [L]

kds + [L]
,

i.e.,

B =
S∑

s=1

rs · [L]

kds + [L]
(1)

where we denoted rs
def
=

ws

k
.216

Inverse problem corresponding to the case study. The problem is to find the values rs and kds

from the observations. In other words, we observe the bound proportions y(k) for different ligand
concentrations [L] = x(k), and we want to find the values rs and kds for which

y(k) =
S∑

s=1

rs · x(k)

kds + x(k)
. (2)
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How to use group-theoretic ideas to simplify the corresponding computations: analysis of the217

problem. The system (2) is a difficult-to-solve system of nonlinear equations with 2S unknowns. To218

simplify the solution of this system, let us represent its solution as a composition of linear transformations219

and functions of one variable.220

By adding all S fractions
rs · x
kds + x

, we get a ratio of two polynomials
P (x)

Q(x)
. Here, Q(x) is the product

of all S denominators x + kds, and is, thus, a S-th order polynomial with the leading term xS:

Q(x) = xS + qS−1 · xS−1 + . . . + q1 · x + q0. (3)

Similarly, since P (x) is divisible by x, we get P (x) = pS · xS + pS−1 · xS−1 + . . . + p1 · x.221

The equations y(k) =
P (x(k))

Q(x(k))
can be equivalently represented as y(k) ·Q(x(k)) = P (x(k)), i.e., as

y(k) · (x(k))S + qS−1 · y(k) · (x(k))S−1 + . . . + q1 · y(k) · x(k) + q0 · y(k) =

pS · (x(k))S + pS−1 · (x(k))S−1 + . . . + p1 · x(k). (4)

This is a system of linear equations with 2S unknowns pi and qi. Solving this system of linear equations222

is relatively easy.223

Once we solve this linear system and find the values qi, we can find the parameters kds from the224

condition that for x = −kds, we have x + kds = 0 and thus, the product Q(x) of all such terms is equal225

to 0. The equation Q(−kds) = 0 is a nonlinear equation with one unknown, i.e., exactly the type of226

nonlinear equation that we want to solve.227

Finally, once we find all the values kds, the equation (2) becomes a linear system of equations for the228

remaining unknowns rs.229

Thus, the decomposition of the original difficult-to-invert transformation into a composition of easier-230

to-invert transformations (linear transformations and functions of one variable) leads to the following231

algorithm for computing the parameters of multiple binding sites.232

Inverse problem corresponding to the case study: resulting algorithm. We start with the values233

y(k) of the bound proportion corresponding to different ligand concentrations x(k). Our objective is to234

find the parameters rs and kds of different binding sites s = 1, . . . , S. To compute these parameters, we235

do the following:236

• first, we solve the linear system (4) with 2S unknowns pi and qi;237

• we then use the computed values qi to form the polynomial (3) and to solve the equation Q(−x) =238

0 with one unknown x; as a result, we get 2S solutions kds;239

• we then substitute the resulting values kds into the formula (1) and solve the resulting system of S240

linear equations with S unknowns rs.241

Comment. Our numerical experiments confirmed the computational efficiency of the new algorithm.242
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4. Conclusion243

Geometric symmetries has been effectively used to simply scientific computations, in particular,244

computations related to chemical problems. In this paper, we show that non-geometric “symmetries”245

(transformations) can also be very helpful in scientific computations. Specifically, we show that the246

inverse problem – the problem of finding the parameters of the model based on the measurement results247

– can be solved by computing the inverse to a transformation describing the forward problem – the248

problem of predicting the measurement results based on the known values of the model’s parameters.249

In general, the computation of such an inverse (i.e., solving the corresponding system of non-linear250

equations) is a complex computational problem. This computation can be simplified if we can represent251

the to-be-inverted forward transformation as a composition of several easier-to-invert transformations,252

e.g., linear and component-wise transformations. In some cases, such a representation can be obtained by253

analyzing the original transformation; such a case related to computing parameters of multiple binding254

sites is described in the paper. In general, to find such a composition, we can use the fact that the desired255

representation means that the to-be-inverted transformation is computed by an appropriate multi-layer256

neural network; then, the backpropagation algorithm (typical for training neural networks) can be used257

to compute the corresponding representation.258
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