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Abstract—In many practical situations, we encounter physical
quantities like time for which there is no fixed starting point for
measurements: physical properties do not change if we simply
change (shift) the starting point. To describe knowledge about
such properties, it is desirable to select membership functions
which are similarly shift-invariant. We show that while we cannot
require that each membership function is shift-invariant, we can
require that the linear space of all linear combinations of given
membership functions is shift-invariant. We describe all such
shift-invariant families of membership functions, and we show
that they are naturally related to the corresponding formulas of
chemical kinetics.

Index Terms—membership function, symmetry-based ap-
proach, chemical kinetics

I. SYMMETRY-BASED APPROACH TO SELECTING
MEMBERSHIP FUNCTIONS: MAIN IDEA

Shift-invariant quantities: a brief reminder. For many phys-
ical quantities like time, there is no fixed starting point. If
instead of the original starting point, we select a new one
which is q0 units smaller, then the original numerical value q
changes into q′ = q+q0. For such quantities, all the properties
do not change if we simply change this starting point, i.e., if
we replace each value q by a shifted value q + q0.

Comment. For some quantities like temperature, strictly speak-
ing, there actually is an absolute 0, but in most practical
situations, this absolute 0 is irrelevant. So, e.g., we can
equally use degrees Celsius and degrees Fahrenheit which have
different starting points; see, e.g., [1].

Ideally, membership functions should reflect this symmetry.
Often, our knowledge is imprecise (“fuzzy”). To describe and
process such knowledge, L. Zadeh invented the ideas of fuzzy
sets; see, e.g., [2], [4], [7]. A fuzzy set on a universal set X
is characterized by its membership function µ : X → [0, 1].

For shift-invariant quantities, it is desirable that our selec-
tion of the corresponding membership functions µ : IR → [0, 1]
reflect the corresponding shift-invariance.

Comments.
• Symmetries like shift-invariance are often very useful in

the analysis of uncertainty, including fuzzy and neural
approaches; see, e.g., [3] and references therein.

• In principle, membership functions can be non-smooth
and even discontinuous. However, to simplify our analy-
sis, we will assume that all the membership functions are
smooth (i.e., differentiable).

First attempt to describe shift-invariance of membership
functions. Let us analyze how we can describe this invariance
in precise terms. A seemingly natural idea is to require that
each membership function is shift-invariant, i.e., that

µ(q) = µ(q + q0)

for all q and q0.
Unfortunately, this simply idea does not work: if we impose

the above condition, then, by selecting q0 = −q, we get
µ(q) = µ(0) for all q. Thus, the only membership function
µ(q) which satisfies this condition is the constant function
– and such functions do not carry any knowledge about the
quantity q.

So, we need a different way of describing shift-invariance
of membership functions.

Our idea: first part. Since we cannot require that a single
membership function is shift-invariant, it is reasonable to
require that a collection of several membership functions is
shift-invariant.

The idea of multiple membership functions is natural in
applications of fuzzy techniques: we usually have several rules
containing different membership functions µi(q) [2], [4]. If
we want to predict the values of a quantity q, then, in some
versions of fuzzy system modeling and fuzzy control, we first
generate an appropriate linear combination

∑
ci ·µi(q) of these

membership functions.
Thus, since we cannot require that each membership func-

tion µi(q) is shift-invariant, we can require that the set of all
such linear combinations is shift-invariant.



Comment. From the mathematical viewpoint, this set of all
linear combinations is closed under linear combination and
thus, forms a linear space of functions. Thus, we arrive at the
following definition.

Definition 1.

• By a finite-dimensional linear space of functions (or
simply linear space, for short), we mean the class of all

functions of the type
n∑

i=1

ci · µi(q), where:

• n ≥ 1,
• differentiable functions µ1(q), . . . , µn(x) are fixed

(and assumed to be linearly independent), and
• the coefficients c1, . . . , cn can take any real values.

• We say that a linear space L is shift-invariant if for every
function f(q) from the space L and for every real number
q0, the function f(q + q0) also belongs to the class L.

Our idea: second part. The main objective of this paper
is to describe all fuzzy-related shift-invariant linear spaces of
functions.

This description can be simplified if we take into account
that if we have two disjoint linear spaces L1 and L2 each of
which is shift-invariant, then the set L of linear combinations
of all functions from L1 and L2 is also shift-invariant. Thus, to
describe all shift-invariant families, it is sufficient to describe
all basic families, i.e., all linear spaces which cannot be
decomposed into smaller spaces L1 and L2.

Definition 2.

• If L1 and L2 are two linear spaces, then their linear enve-
lope is a space of all functions of the type f1(q)+ f2(q),
where f1(q) ∈ L1 and f2(q) ∈ L2.

• We say that a shift-invariant linear space L is basic if it
cannot be represented as a linear envelope of two shift-
invariant linear spaces L1 and L2.

Our idea: third part. We are not just interested in general
functions, we are interested in membership functions, i.e., in
functions whose values are from the interval [0, 1]. Let us
therefore make the following additional requirement that these
values are from the interval [0, 1] – at least when q is non-
negative.

We also want to exclude the trivial membership function
µ(q) ≡ 1 for all q.

Definition 3. We say that a linear space of functions L is
fuzzy-related if the following two conditions hold:

• L is the set of all linear combinations of functions µ1(q),
. . . , µn(q) for each of which µi(q) ∈ [0, 1] for all q ≥ 0.

• L does not include the constant functions f(q) ≡ 1 for
all q.

II. SYMMETRY-BASED APPROACH TO SELECTING
MEMBERSHIP FUNCTIONS: MAIN RESULT

Proposition. Each basic shift-invariant fuzzy-related linear
space L is a linear combination of functions

µ1(q) = exp(−λ · q), µ2(q) = q · exp(−λ · q), . . . ,

µi(q) = qi−1 · exp(−λ · q), . . . , µn(q) = qn−1 · exp(−λ · q),

for some λ > 0.

Proof.

1◦. Let L = {
∑

ci ·µi(q)} be a shift-invariant linear space. By
definition of shift-invariance, this mean that for each function
f(q) from this space (in particular, for each function f(q) =
µi(q)), the shifted function f(q+q0) also belongs to this space.
For f(q) = µi(q), this means that the function µi(q+ q0) also
belongs to the space L. By definition of the space L, this means
that the shifted function µi(q + q0) is a linear combination of
the original functions µ1(q), . . . , µn(q), i.e., that

µi(q + q0) =
n∑

j=1

cij(q0) · µj(q), (1)

for some real numbers values cij(q0).
The equality (1) holds for all i = 1, . . . , n, so we arrive at

the following system of equalities:

µ1(q + q0) =
n∑

j=1

c1j(q0) · µj(q),

. . .

µi(q + q0) =
n∑

j=1

cij(q0) · µj(q), (2)

. . .

µn(q + q0) =
n∑

j=1

cnj(q0) · µj(q).

2◦. By Definition 1, each function µi(q) is differentiable. Let
us use the formula (1) to prove that the functions cij(q0)
are also differentiable. Indeed, let us select n different values
q1, . . . , qk, . . . , qn of the quantity q, and let us repeat the
formula (1) for each of these values. We then get the following
system of equalities:

µi(q1 + q0) =
n∑

j=1

cij(q0) · µj(q1),

. . .

µi(qk + q0) =
n∑

j=1

cij(q0) · µj(qk), (3)

. . .

µi(qn + q0) =
n∑

j=1

cij(q0) · µj(qn).



The system (3) is a linear system of equations with n un-
knowns ci1(q0), . . . , cin(q0). It is known that in general, each
element of the solution to a system of linear equations can be
described – via the so-called Cramer rule – as a ratio of two
determinants, i.e., as a smooth function of the coefficients and
the free terms. In our case, the coefficients µj(qk) are constants
(hence, are differentiable), and the free terms µi(qk + q0) are
also differentiable functions of q0. Thus, each element cij(q0)
is a result of applying a smooth function to smooth functions
and is, therefore, a differentiable function of q0.

3◦. Now that we know that both the functions µi(q) and the
functions cij(q) are differentiable, we can differentiate both
sides of the equations (2) and set q0 to 0. As a result, we get
the following system of differential equations:

µ′
1(q) =

n∑
j=1

C1j · µj(q),

. . .

µ′
i(q) =

n∑
j=1

Cij · µj(q), (4)

. . .

µ′
n(q) =

n∑
j=1

Cnj · µn(q),

where we denoted Cij
def
= c′ij(0). Thus, for the functions

µ1(q), . . . , µn(q), we have a system of linear differential
equations with constant coefficients. Solutions to such systems
are well-known: they have the form xk · exp(−λ · q), where
−λ is an eigenvalue of the matrix Cij , and k is an integer
corresponding to degenerate eigenvalues, i.e., eigenvalues for
which the linear space of the corresponding eigenvectors is
more than 1-dimensional:

• if we have only one linear independent eigenvector cor-
responding to the eigenvalue λ, we only get the term
corresponding to k = 0;

• if we have two linear independent eigenvectors corre-
sponding to the eigenvalue λ, we get terms corresponding
to k = 0 and k = 1;

• if we have three linear independent eigenvectors corre-
sponding to the eigenvalue λ, we get terms corresponding
to k = 0, k = 1, and k = 2;

• . . .

4◦. Terms corresponding to the same eigenvalue λ form a shift-
invariant linear subspace; thus, from the fact that the linear
space L is basic, it follows that all the functions from this
space correspond to the same eigenvalue λ.

5◦. In general, for a linear system of differential equations with
constant coefficients, we can have positive, zero, and complex
eigenvalues, corresponding to negative, zero, or complex val-
ues λ.

5.1◦. In our cases, negative values λ are not possible, since then
we will have µi(q) = qi−1 ·exp(−λ·q) tend to infinity for q →

∞, which contradicts to our assumption that the linear space
is fuzzy-related, i.e., that we can select a basis of functions
whose values are, for all q ≥ 0, bounded to the interval [0, 1].

5.2◦. Zero values λ are also not possible:
• for i = 1, µi(q) = qi−1 · exp(−λ · q) with λ = 0 will be

a constant function, which contradicts Definition 3, and
• for i > 1, this expression tend to infinity for q → ∞,

which contradicts to our assumption that the linear space
is fuzzy-related, i.e., that we can select a basis of functions
whose values are, for all q ≥ 0, bounded to the interval
[0, 1].

5.3◦. Similarly, complex values λ = a + i · b are impossible,
since then terms µi(q) are then proportional to

qi−1 · exp(−a · q) · sin(b · q + φ)

for some φ, and thus, cannot be non-negative for all q ≥ 0.

5.4◦. Since negative, zero, or complex values λ are not
possible, we conclude that the value λ must be positive.

The proposition is proven.

III. MEANING OF THE ABOVE RESULT AND ITS RELATION
TO CHEMICAL KINETICS

What is chemical kinetics: brief reminder. Chemical kinetics
describes how the concentration of different chemical sub-
stances change when the chemical reactions occur. It is usually
assumed that the rate of a chemical reaction is proportional to
the production of the concentrations of all the substances which
are needed for the reaction to take place. For example, for a
reaction

A+B → C,

the reaction rate is proportional to the product a · b of the
concentrations of the substances A and B. Due to this reaction
rate k · a · b:

• the amounts a and b of substances A and B decrease with
this rate, while

• the amount c of the substance C increases with this rate,
i.e., we have

da

dt
= −k · a · b,

db

dt
= −k · a · b, (5)

dc

dt
= k · a · b.

If we have several different chemical reactions, then, to de-
scribe the resulting rate of change of each concentration, we
add the rates corresponding to different reactions.

Relation between membership functions and chemical
kinetics: an intuitive idea. Let us consider a simple case
when we have membership functions corresponding to “small”,
“medium”, and “large”. When the value of the quantity is
small, we are sure that this value is small and not medium or



large. Thus, for this starting value, the membership function
corresponding to “small” has a value s = 1, while the other two
membership functions corresponding to “medium” and “large”
have values m = 0 and ℓ = 0.

As we increase q, what was originally small starts slowly
transforming into medium, then what was originally medium
starts slowly transforming into large, etc. Intuitively, on the
quantitative level, this can be described by the following
chemical reaction:

s → m;

m → ℓ. (6)

If we assume that both reactions have the same rate k, then we
conclude that for this system of reactions, the corresponding
system of equations has the form

ds

dq
= −k · s;

dm

dq
= k · s− k ·m; (7)

dℓ

dq
= k ·m.

(Note that since we increase q, not time, the derivatives are
with respect to q.)

In view of the above intuitive idea, it is therefore reasonable
to interpret the “concentrations” s(q), m(q), and ℓ(q) as the
degrees to which we believe that the value q is, correspond-
ingly, small, medium, or large. In other words, it is reasonable
to interpret the dependencies s(q), m(q), and ℓ(q) as the
membership functions corresponding to “small”, “medium”,
and “large”.

Comment. The above system of reactions is well-studied in
chemical kinetics; explicit solutions are given, e.g., in [5], [6].

From an intuitive idea to a formal connection between
chemical kinetics and membership functions. Instead of
three consequent membership functions corresponding to
“small”, “medium”, and “large”, we can consider an arbitrary
number n of such functions µ1(q), . . . , µn(q). In this case, the
chemical reactions have the form

µ1 → µ2,

µ2 → µ3,

. . . ,

µn−1 → µn. (8)

If we assume that all these reactions have the same rate λ, then
the corresponding chemical kinetic equations have the form:

dµ1(q)

dq
= −λ · µ1(q),

dµ2(q)

dq
= λ · µ1(q)− λ · µ2(q),

. . .

dµi(q)

dq
= λ · µi−1(q)− λ · µi(q), (9)

. . .

dµn−1(q)

dq
= λ · µn−2(q)− λ · µn−1(q),

dµn(q)

dq
= λ · µn−1(q).

Once we set the initial values µ1(0) = 1 and µ2(0) = . . . =
µn(0) = 0, this system allows us to uniquely determine the
values µi(q) for all q ≥ 0.

One can easily check that the corresponding solution has
the form

µi(q) =
λi−1

(i− 1)!
· qi−1 · exp(−λ · q). (10)

Indeed, if we plug in this expression into the both sides of the
equation (9), we conclude that:

• the left-hand side of the equation (9) has the form

dµi(q)

dq
=

λi−1

(i− 1)!
· (i− 1) · qi−2 · exp(−λ · q)−

λ · λi−1

(i− 1)!
· qi−1 · exp(−λ · q) =

λ · λi−2

(i− 2)!
· qi−2 · exp(−λ · q)−

λ · λi−1

(i− 1)!
· qi−1 · exp(−λ · q),

• while the right-hand side of the equation (9) has the form

λ · µi−1(q)− λ · µi(q) =

λ · λi−2

(i− 2)!
· qi−2 · exp(−λ · q)−

λ · λi−1

(i− 1)!
· qi−1 · exp(−λ · q).

So, we indeed have equality for all q.

Comment about normalization. It should be noticed that the
corresponding functions (10) are not normalized, in the sense
that the maximum of each such function is not equal to 1. If
we want normalized membership functions, we must multiply
each such function by a corresponding normalizing factor.

To find such a factor, let us find the maximum of the
function (10). The maximum of each function µi(q) is attained

where the derivative
dµi(q)

dq
is equal to 0. Using the formula

(9) for this derivative, we conclude that the maximum is
attained when λ · µi−1(q)− λ · µi(q) = 0, i.e., when

µi−1(q) = µi(q).

Substituting the expressions (10) into both sides of this equal-
ity, we conclude that

λi−2

(i− 2)!
· qi−2 · exp(−λ · q) = λi−1

(i− 1)!
· qi−1 · exp(−λ · q).



Dividing both sides of this equality by the left-hand side, we

conclude that 1 =
λ

i− 1
· q, so, that the maximum is attained

when q = (i− 1) · 1
λ

. (Hence, maxima are equally spaced.)
For this maximizing value q, we have λ ·q = i−1 and thus,

the corresponding value of µi(q) is equal to

mi = max
q

µi(q) =
(i− 1)i−1

(i− 1)!
· exp(−(i− 1)). (11)

Hence, the normalized membership function µ̃i(q) =
µi(q)

mi
,

for which max
q

µ̃i(q) = 1, has the form

µ̃i(q) =
λi−1

(i− 1)i−1
· qi−1 · exp((i− 1)− λ · q). (12)

Comment. The expression (11) for the normalizing coefficient
is somewhat complex. We can get a simpler expression for
large i if we we use the known asymptotic for the factorial

n! ∼
(n
e

)n

·
√
2π · n.

This enables us to conclude that asymptotically,

mi = max
q

µi(q) =
(i− 1)i−1

(i− 1)!
· exp(−(i− 1)) ∼

(i− 1)i−1 · ei−1

(i− 1)i−1 ·
√
2π · (i− 1)

· exp(−(i− 1)) =

1√
2π · (i− 1)

. (13)

Discussion. Normalization does not change the linear space
generated by the membership functions.

Thus, we conclude the intuitive ideas from chemical ki-
netics leads to the same class of membership functions as
the symmetry-based approach, the class of functions with
equally spaced maxima. This provides us with an additional
confirmation that these membership functions are reasonable
to use.
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